
On the development of a logic calculator: a novel
tool to perform logical operations

Oscar Chávez-Bosquez1, Pilar Pozos-Parra1, and Kevin McAreavey2

1 Universidad Juárez Autónoma de Tabasco, División Académica de Informática y
Sistemas. Cunduacán, Tabasco, Mexico,
{oscar.chavez, pilar.pozos}@ujat.mx,

2 School of Electronics, Electrical Engineering and Computer Science, Queen’s
University Belfast, Northern Ireland,

kevin.mcareavey@qub.ac.uk

Abstract. In this paper we propose a Logic Calculator with three op-
eration modes: evaluation of logical formulae; logical entailment and
conversion of a formula to Disjunctive Normal Form (DNF) and Con-
junctive Normal Form (CNF). It is worth noting there are no existing
automated tools for these three computations integrated into one tool
providing a graphical calculator format. Logic Calculator is available at
https://sourceforge.net/p/logiccalculator.

Keywords: propositional logic; logical entailment; disjunctive normal
form; conjunctive normal form; open source tool

1 Introduction

In this paper we describe a helpful tool developed for the automatic computa-
tion of logic operations: the Logic Calculator. We show the development of the
calculator and describe its functionality: (i) Evaluation of logical formulae. In
this mode, it evaluates the basic Boolean operations: negation; conjunction; dis-
junction; conditional and bi-conditional. The user can insert the logical formula
and the Logic Calculator displays the truth table along with the models of the
formula. (ii) Logical entailment. In this mode, the user can insert a number of
premises followed by a number of conclusions, so the Logic Calculator displays
the truth table of each premise/conclusion and the result of whether or not these
premises logically entail the given conclusions. (iii) Conversion to Disjunctive
Normal Form (DNF) and Conjunctive Normal Form (CNF). In this mode, the
user inserts a logical formula and the Logic Calculator outputs its representation
in both DNF and CNF. The main benefit of the Logic Calculator is the auto-
matic evaluation of complex logic operations where manual calculations may be
too difficult and take a considerable time, while there may also be a lack of
confidence concerning the logic results obtained by hand.

9

https://sourceforge.net/p/logiccalculator


2 Preliminaries

In this paper we consider the language L of propositional logic formed from
the finite set of P24 = {a, b, . . . , t, w, x, y, z} variables, where 24 denotes the
maximum available number of variables in the Logic Calculator.

The set ρ = {¬,∧,∨,→,↔} denotes valid logical operators.

A Well Formed Formula (WFF), also called formula or sentence, is a propo-
sitional formula ψ containing a subset of variables from P24 and a subset of
operators from ρ. Parentheses are used in the traditional way [6].

We can define a WFF as follows:

– An atomic formula (atom or variable) is a formula.

– If ψ is a formula, then ¬ψ is a formula.

– If ψ and υ are formulas, and ◦ is a binary connective, then ψ ◦υ is a formula.
Where ◦ ∈ ρ \ {¬} is a binary connectives.

A truth table is a list of all possible truth assignments (possible worlds) for
the set of variables. Such a table typically contains several rows and columns,
with the header representing the variables and the WFF. The truth table is com-
posed of one column for each input variable and one final column for all possible
results of the logical operation that the table represents [3]. Rows represent every
possible interpretation and the truth-values that would occur. Each one of these
combinations is called an interpretation, such as an assignment of truth-values
to all of the variables in the formula. [5].

A model of a propositional formula ψ is a possible interpretation where ψ is
true under the interpretation in the classical truth functional manner. If there
is a model for ψ, then ψ is said to be satisfiable.

When we want to know whether a set of sentences is a logical conclusion of
another set of sentences, this is known as logical entailment [4]. A set of sentences
Ψ logically entails a sentence ψ if and only if every truth assignment that satisfies
Ψ also satisfies ψ. That is, the models of Ψ are also models of ψ. This relation
is denoted as Ψ |= ψ.

A literal is an atom or negation of an atom. A formula is in Conjunctive
Normal Form (CNF) if it is a conjunction of clauses, where a clause is a dis-
junction of literals. A formula is in Disjunctive Normal Form (DNF) if it is a
disjunction of terms, where a term is a conjunction of literals. As in CNF, the
only propositional operators in DNF are ∧, ∨, and ¬. The ¬ operator can only
appear as part of a literal, which means that it can only precede an atom [3].

3 Implementing the Logic Calculator

In this section we describe the modules and functionality of the Logic Calculator.
We explain the main algorithms implemented and show some examples of using
the three Logic Calculator modes.

10



3.1 Logical Formula Evaluator mode

The first mode developed was the evaluation of logical formulae, since this is the
basic functionality and is also used by the Logical entailment mode.

The first step is to translate the input infix formula into a Reverse Polish
Notation (RPN) (postfix notation) using the Algorithm 1, based on Dijkstra’s
Shunting-yard algorithm [8]. Postfix notation, while less common than infix nota-
tion in written mathematics, is much more explicit in the sense that the operands
belonging to a particular operation can be expressed without the need for brack-
ets or operator precedence.

Algorithm 1: Shunting-yard algorithm adapted for logical operators.

input : WFF
output: RPN WFF

1 foreach token in turn in the input WFF do
2 if token is a variable α ∈ P24 then
3 Append α to the postfix output
4 else if token is ‘(’ then
5 push ‘(’ onto the stack
6 else if token is an operator ∆ ∈ ρ then
7 while there is an operator Λ of higher or equal precedence than ∆ at the top of

the stack do
8 Pop Λ off the stack
9 Append Λ to the postfix output

10 end
11 Push ∆ onto the stack

12 else if token is ‘)’ then
13 repeat
14 Pop token x off the stack
15 if x ∈ ρ then
16 Append x to the postfix output
17 end

18 until x is ‘(’ ;

19 else
20 throw ConvertException
21 end

22 end
23 while there are operators in the stack do
24 Pop the operator ∆ on the top of the stack
25 Append ∆ to the postfix output

26 end

To parse the expression, the operator precedence must also be defined. The
list of valid operators in order of precedence (highest to lowest) is: [1] Nega-
tion (¬), [2] Conjunction (∧), [3] Disjunction (∨), [4] Implication (→) and [5]
Bi-implication (↔). Where operators have equal precedence, their associativity
indicates in which order they are applied.

For example, the WFF 1 is processed by Algorithm 1, producing the RPN
WFF 2.

p ∨ q ↔ (q → r) ∧ ¬s (1)

p q ∨ q r → s ¬ ∧ ↔ (2)

11



The second step consists in setting up the truth table for the formula vari-
ables. If we consider the case where n is the number of distinct variables in the
formula, then we need to set up a truth table with n columns and 2n rows, as
follows: column under the first variable should alternate 2n−1 true’s with 2n−1

false’s; column under the second variable should alternate 2n−2 true’s with 2n−2

false’s; continuing until we reach the last column variable.
The third step consists of evaluating the RPN WFF for each interpretation

of the generated truth table. The explicitness of the RPN WFF obtained by
Algorithm 1 allows us to implement the algorithm for evaluating postfix notation
in a straightforward manner. Algorithm 2 shows the RPN parser developed using
a stack as a helper data structure.

Algorithm 2: RPN parser.

input : RPN WFF, Interpretation Boolean values
output: Interpretation Boolean result

1 foreach token in turn in the RPN WFF do
2 if token is a variable α ∈ P24 then
3 Push α Boolean value in the stack
4 else if token is an operator ∆ ∈ ρ then
5 if ∆ ≡ ¬ then
6 Pop Boolean value β from the stack
7 Apply negation to β
8 Push β in the stack

9 else
10 Pop Boolean value β from the stack
11 Pop Boolean value γ from the stack
12 Apply δ = β∆γ
13 Push δ in the stack

14 end

15 end

16 end
17 Pop Boolean result from the stack

For example given the RPN Formula 2 and the interpretation p = 1, q = 0,
r = 1 and s = 0, Algorithm 2 outputs 1 as the result of the evaluation. There
are 24 calls to Algorithm 2 since there are 4 variables in this formula.

3.2 Logical Entailment mode

In this mode we ca determine whether a set of premises logically entails a conclu-
sion (or set of conclusions). The logical symbol |= allows us to represent a logical
entailment, separating the premises from the conclusion, with associativity from
left to right. Premises are separated by commas (,). Parentheses are used in the
classical way, usually to override the normal precedence of operators. Premises
and conclusions are WFFs.

12



First step is to save the premises in a list and store the conclusion in separate
lists. After evaluating each WFF from the premises part (using the modules
developed for the Logical formula evaluator mode) and evaluating each WFF
from the conclusion, a final truth table is used to determine whether the logical
entailment holds (see Algorithm 3).

Algorithm 3: Logical entailment processor.

input : Premises list, conclusions list
output: Whether logical entailment holds

1 foreach WFF ψ in premises list do
2 Evaluate truth table of ψ
3 Add truth table to final table Γ

4 end
5 foreach WFF ψ in conclusions list do
6 Evaluate truth table of ψ
7 Add truth table to final table Γ

8 end
9 Evaluate Γ

For example, given the following case:

p ∨ q, q → r, ¬s |= q ∨ r (3)

We have the problem of determining whether {q ∨ r} (the conclusion) is
logically entailed from {p∨q, q → r,¬s} (the premises). So, the Logic Calculator
prints the final truth table and the result, in this case: “Premises do not logically
entail the conclusion”.

3.3 Normal Form Converter mode

The conversion of a WFF to its DNF and CNF is made in two steps. First, a
binary tree is created from parsing the WFF. Operator → is used to build the
tree from the minor priority operator. For example, the binary tree shown in
Figure 1 is created from Formula 4 with respect to the priority of operators.

a→ b ∧ c ∨ d→ e (4)

Second, the WFF conversion to CNF (resp. DNF) is based on the laws gov-
erning CNF and DNF conversion [5].

For example, walking through the binary tree t and generating the tree shown
in Figure 2, resulting in the CNF shown in Formula 5. Similarly, the tree shown
in Figure 3 corresponds to the DNF formula shown in Formula 6.

13



→

→

a ∨

∧

b c

d

e

Fig. 1. Binary tree t rep-
resenting the Formula 4.

∧

∨

a e

∧

∨

∨

¬b ¬c

e

∨

¬d e

Fig. 2. Binary tree corre-
sponding to CNF formula.

∨

∨

∧

a ∧

¬b ¬d

∧

a ∧

¬c ¬d

e

Fig. 3. Binary tree corre-
sponding to DNF formula.

In both Formula 5 and 6 we have a formula translated so there are no negated
parentheses and no other connectives apart from ¬, ∨ and ∧.

(a ∨ e) ∧ (¬b ∨ ¬c ∨ e) ∧ (¬d ∨ e) (5)

(a ∧ ¬b ∧ ¬d) ∨ (a ∧ ¬c ∧ ¬d) ∨ e (6)

It is worth clarifying that the Logic Calculator converts to an equivalent
CNF formula rather than an equisatisfiable CNF formula (via the insertion of
new variables [2]). The equisatisfiability technique is more common in terms of
existing tools. Source code of this module is based on the JavaScript code from
the Theorem Proving in Propositional Logic (WFFs) web site [1].

3.4 Logic Calculator GUI

One of the goals of the Logic Calculator is to provide a user-friendly User In-
terface (UI) similar to an arithmetic calculator. Figure 4 shows the GUI of the
Logic Calculator in Logical formula evaluator mode. The output box is a text
area for convenience, allowing easy copying and pasting of formulae. Debug area
outputs debug details and log information.

4 Performance tests

We stress-tested the Logic Calculator on an Alienware M17x laptop, with an
Intel Core i7-2670QM CPU @2.20GHz×8, 8 GB in RAM, 500 GB in HDD,
Ubuntu Linux 12.04 64-bit and OpenJDK 7 64-bit.

Table 1 (column Op1) shows processing time plus printing time of the truth
table. Memory is an issue when printing a truth table of 23 variables because
223 = 8388608 interpretations, so the Logic Calculator runs out of memory
at printing 4206949 lines. This runtime exception is thrown depending on the
amount of virtual memory that the JVM has access to. But we can perform
operations with up to 24 variables without memory problems. For example,
Table 1 (column Op2) shows processing time but only printing the number of
models without printing the truth table, and Table 1 (column Op3) shows time
performing conversions of WFF to their CNF and DNF. We can see that com-
puting formulae conversions is quite quick, even for 24 variables formula.

14



Fig. 4. Logic Calculator GUI components. (1) Main menu: Calculator, Examples &
Help options (2) Text area for formula diplay (3) Input controls: Go, Backspace & Clear
buttons (4) Calculator modes: Logical formula evaluator, Logical entailment evaluator
& Normal Form converter (5) Available operators, depending of the selected mode (6)
Up to 24 variables (7) Output & Debug tabs (8) Output text area for displaying results
(9) Status bar.

Table 1. Logic Calculator time (in seconds) evaluating 8 expressions: printing their
truth tables (Op1), without printing their truth tables (Op2), converting the expres-
sions to both CNF and DNF (Op3). Column 1 indicates the number of variables in
each formula. * indicates a java.lang.OutOfMemoryError. – indicates a non-tested
expression.

Vars. Formula Op1 Op2 Op3

2 a→ b 0.040 0.029 0.032
5 a→ b ∧ c ∨ d→ e 0.202 0.030 0.032

10 a→ b ∧ c ∨ d→ e→ (f ∧ g → h ∧ (i ∨ j)) 0.643 0.082 0.033
20 a→ b∧ c∨ d→ e→ (f ∧ g → h∧ (i∨ j))→ k ∧ l∨¬m∨

n ∧ o→ p ∨ q → r ∧ s→ t
124.427 1.929 0.034

21 a→ b∧ c∨ d→ e→ (f ∧ g → h∧ (i∨ j))→ k ∧ l∨¬m∨
n ∧ o→ p ∨ q → r ∧ s→ (t ∧ w)

337.289 3.295 0.034

22 a→ b∧ c∨ d→ e→ (f ∧ g → h∧ (i∨ j))→ k ∧ l∨¬m∨
n ∧ o→ p ∨ q → r ∧ s→ (t ∧ w ∧ x)

765.596 7.846 0.034

23 a→ b∧ c∨ d→ e→ (f ∧ g → h∧ (i∨ j))→ k ∧ l∨¬m∨
n ∧ o→ p ∨ q → r ∧ s→ (t ∧ w ∧ x→ y)

* 20.481 0.042

24 a→ b∧ c∨ d→ e→ (f ∧ g → h∧ (i∨ j))→ k ∧ l∨¬m∨
n ∧ o→ p ∨ q → r ∧ s→ (t ∧ w ∧ x→ y ∧ ¬z)

– 40.408 0.052

15



5 Conclusion

The main benefit of the Logic Calculator is the automatic evaluation of complex
logic operations. For example, to evaluate complex logical formulae with at most
24 variables and any number of parentheses, or to determine if a set of highly
elaborate premises logically entails a set of highly elaborate conclusions, or to
translate complex logical formulae to CNF or DNF, are highly complex tasks.
Currently there are no tools which can solve these problems effectively, in a user-
friend manner. Logic Calculator addresses these issues, so it can be an effective
tool for new methods of reasoning.

The Logic Calculator was developed under the Open Java Development Kit
(OpenJDK) 7 but source code using Java 5 as target, therefore it needs Java
Runtime Environment version 5 or higher. OpenJDK platform has the same
attributes of the official JDK, plus the benefits of being free software [7].

Multiplatform support is also an advantage, thus it can be executed over
recent versions of Microsoft Windows, most Linux distributions, most UNIX
variants and modern versions of Mac OS. Future work considers improve the
efficiency of algorithms, manage more variables and a possible implementation
in a hardware device.

Logic Calculator source code is downloadable from Sourceforge repositories at
https://sourceforge.net/p/logiccalculator. A number of downloads up to
2016 is available at https://sourceforge.net/projects/logiccalculator/

files/stats/timeline?dates=2013-09-27+to+2016-12-31.

Acknowledgments

To CONACYT for supporting the doctoral program in Computer Science at the
Universidad Juárez Autónoma de Tabasco.

References

1. Allison, L. Theorem Proving in Propositional Logic (WFFs). http://www.

allisons.org/ll/Logic/Propositional/Wff/, 2015.
2. Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Pro-

cedures with Applications to Verification. Springer Publishing, USA, 1st edition,
2007.

3. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, USA, 2nd
edition, 2001.

4. M.R. Genesereth and E. Kao. Introduction to Logic. Morgan & Claypool Publishers.
Synthesis Lectures on Computer Science, USA, 2nd edition, 2013.

5. M. Hazewinkel. Encyclopedia of Mathematics, volume 10. Springer Publishing,
USA, 2002.

6. E. Mendelson. Introduction to Mathematical Logic. CRC Press, USA, 5th edition,
2009.

7. J. Russell and R. Cohn. OpenJDK. Book on Demand, USA, 1st edition, 2012.
8. R. Wilson. An Introduction to Dynamic Data Structures. McGraw Hill, USA, 1st

edition, 1988.

16

https://sourceforge.net/p/logiccalculator
https://sourceforge.net/projects/logiccalculator/files/stats/timeline?dates=2013-09-27+to+2016-12-31
https://sourceforge.net/projects/logiccalculator/files/stats/timeline?dates=2013-09-27+to+2016-12-31
http://www.allisons.org/ll/Logic/Propositional/Wff/
http://www.allisons.org/ll/Logic/Propositional/Wff/

	On the development of a logic calculator: a novel tool to perform logical operations

