International Mathematical Forum, Vol. 8, 2013, no. 17, 841 - 849
HIKARI Ltd, www.m-hikari.com

Modes of Ideal Continuity of
(¢)-Group-Valued Measures
Antonio Boccuto

Department of Mathematics and Computer Sciences
via Vanvitelli, 1
[-06123 Perugia, Italy
boccuto@dmi.unipg.it, boccuto@yahoo.it

Xenofon Dimitriou

Department of Mathematics
University of Athens
Panepistimiopolis, Athens 15784, Greece
and
Department of Mathematics
Technological and Educational Institute of Piraeus
Petrou Ralli and Thivon, 250
Egaleo, 12244 Piraeus, Greece
xenofon11@gmail.com
(corresponding author)

Copyright © 2013 Antonio Boccuto and Xenofon Dimitriou. This is an open access
article distributed under the Creative Commons Attribution License, which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Abstract

In this paper we deal with (ideal) continuity of lattice group-valued
finitely additive measures, and prove some basic properties and com-
parison results. We investigate the relations between different modes of
ideal continuity, and give some characterization. Finally we pose some
open problems.
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1 Introduction

Ideal convergence was introduced in [42], though a primitive version of [41]
is also included in the references of [42], and independently in [49] under the
name of ”cofilter convergence”, and was recently developed and investigated
in several papers in the context of normed and/or metric spaces. Among the
related literature, we quote [4, 5, 8, 9, 22, 30, 31, 35, 38, 41, 50, 53, 54, 55].
This concept has been studied also in topological spaces ([28, 29, 43, 44]) and
(¢)-groups ([7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24]). A particular case
of ideal convergence is the statistical convergence, introduced in [34] and [58]
(see also [27, 36, 39, 42, 47, 48, 52]).

In [42, Proposition 3.3] a characterization of the classical continuity is
given with ideal convergent sequences. In the literature there are several stud-
ies about abstract methods of convergences and related modes of continuity,
in particular associated with summability matrices and almost convergence.
Some relations between them are established, for instance, in [6, 25, 26, 27, 40,
45, 51, 56]. In [21] some modes of continuity between almost and ideal conver-
gence are investigated, for normed space-valued functions, while in [3, 46, 57]
and [24] there are some comparison results between different types of ideal con-
tinuity for topological space- and Riesz space-valued functions, respectively.

In this paper we consider modes of ideal continuity for lattice group-valued
measures, dealing with two fixed admissible ideals of N. We give some char-
acterization, relating them with continuity of finitely additive measures with
respect to a positive real-valued measure (see also [10, 12, 13]). In this setting,
we give some characterizations of this property in terms of ideal convergence.
Similar results have been proved in [24] for modes of continuity of functions.
Our concept of continuity of measures is similar to absolute continuity of mea-
sures and substantially different from that of continuity of functions, and to-
gether with ideal exhaustiveness plays a fundamental role in Measure Theory,
for example in several types of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym
convergence theorems for (¢)-group-valued measures, when it is dealt with
ideal pointwise convergent of the measures involved (see also [12, 13, 14, 23]).
Finally, we pose some open problems.
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2 The main results

For the concepts of (admissible) ideal, filter, (O)-sequence, (O)-convergence
and ideal (O)-convergence ((OZ)-convergence) in lattice groups, we refer to
19, 20, 33, 42].

Let ¥ be a og-algebra of parts of an abstract infinite set G, A : ¥ — R be
a positive finitely additive measure, dy(A, B) := A(AAB), A, B € X be the
(pseudo)-A\-distance, where A denotes the symmetric difference (see also [32]).
A finitely additive measure p : ¥ — R is said to be A-continuous at A € X, iff

Otim(\ |u(B)—uA)]) =0,

P Bex.dy(AB)<1/p

namely there is an (O)-sequence (0,), in R such that for any p € N there is
q = q(p) € N with

H1) |p(B) — u(A)| < 0, whenever dy(A, B) < 1/q.

We say that p : X — R is A-continuous on Y iff it is A-continuous at every
Aek.

Let 77, Z, be two admissible ideals of N, and A € ¥. A finitely additive
measure 4 : % — R is (Zy,Zy)-A-continuous at A iff there is an (O)-sequence
(0p)p in R such that for each sequence (A,), in ¥ with (Z;) lim d\(Ay, A)=0
we have (OZ,) lim w(A,) = u(A) with respect to (o,),.

We say that p is (Z1,Zs)-\-continuous on X, iff it is (Z;,Zy)-A-continuous
at every A € X.

Note that p is A-absolutely continuous if and only if it is A-continuous at
() (see also [12]).

We will use the definitions and notations above, unless differently stated.

We now give our main result, which extends [3, Theorem 3] to the (¢)-group
setting (concerning similar results for functions, see also [24]).

Theorem 2.1 Let A : ¥ — [0,+00[, pn : X — R be two finitely additive
measures, and fix A € ¥. Then the following properties hold:

(a) If Ty C Iy, then u is (Zy,Zs)-A-continuous at A if and only if p is
A-continuous at A.

(b) If Ty \ Io # 0, then p is (Zy,Z2)-A-continuous at A if and only if
w(B) =0 for every B € X..

Proof: We begin with (a). We first prove the ”if” part. Let Z; C Z, and
F(I:), F(Z) be the dual filters associated with Z;, Z, respectively, (o,), be
an (O)-sequence in R related with A-continuity of x4 and (A,), be a sequence
in ¥, with (Z;) lim dr(A,, A) = 0. Fix arbitrarily p € N. By H1), we get {n €
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N dy(A,, A) < 1/p} € {n € N & [u(A,) — p(A)] < 0,} € F(T)) € FIT,),
that is (OZ,) lim,, pu(A,) = p(A).

We now turn to the "only if” part. Suppose that p is (Z, Zy)-A-continuous
at A. We claim that u is A-continuous at A. By (Zy, Zy)-A-continuity of u, there
is an (O)-sequence (0,), in R with (OZy) lim,, p1(A,,) = p(A) w.r.t. (0,), when-
ever (Z;) lim d, (An, A) = 0. We now prove that (0,), satifies the condition H1).
If not, then there are p € N and a sequence (A,), in X, with d)(A4,, A) < 1/q
and |u(A,) — p(A)| £ op for each ¢ € N. Since (O) lignd,\(Aq,A) =0, then

(Z1) lign dx(Ag, A) = 0 and so, by (Z1, Zy)-A-continuity of u, (OZs) lign (4, =

p(A) with respect to (0,),. Hence, N = {q € N : |u(A,) — u(A)| £ o5} € Iy,
which is impossible, since Z, is non-trivial. This concludes the proof of (a).

We now turn to (b), and we prove only the "only if” part, since the ”if” part
is straightforward. Choose arbitrarily B € ¥, and let us show that u(B) =
p(A). From this and arbitrariness of B € 3 it will follow that pu(B) = u(0) =0
for all B € . If u(B) # p(A), then for every (O)-sequence (0,,), thereisp € N
with [u(B) — u(A)| £ op. By hypothesis, there is a set C' € 7, \ Z,. Note that
N\ C is infinite: otherwise, since Z; is admissible, we should have N\ C' € 7;
and hence also N € 7Z;, which is impossible, because Z; is non-trivial. Set
N\ C :={ny : k € N}. Let (Zx)x be a sequence in X, with limy, d)(Z, A) = 0.
For each n € N, let

) Zy, ifn=ny;
A"'_{B, ifneC.

For each p € N there is kg € N with dy(A,,, A) = d\(Zk, A) < 1/p whenever
k > ko, and so the set {n € N : d\(A,,A) £ 1/p} is contained in C' U
{n1,...,ng,—1} € Zy. Thus (Il)lirrlnd,\(An,A) =0, and hence, by (Z1,Z,)-\-
continuity of p, there is an (O)-sequence (o,), with (OZ) lim w(Ay) = u(A)

with respect to (o,),, namely
D:={neN:|uA,)—uA)| £o,} €I, foreachp € N.

As u(A,) = p(B) for every n € C, it follows that C' C D, and thus C € Z,,
obtaining a contradiction. This proves the ”only if” part.

Open problems: (a) Prove similar results by using (D)-convergence.

(b) Examine similar results by requiring A to take values in the positive
cone on an arbitrary (¢)-group.

(c) Investigate the (Zy,Z)-A-equicontinuity of a family M of measures
(finitely and/or o-additive), defined on a o-algebra ¥ and with values in an
(¢)-group R, A being a positive finitely additive measure defined on .

(d) A sequence of measures p, : ¥ — R, n € N, is said to be (Zy,Z5)-A-
ezhaustive at A € ¥ iff there is an (O)-sequence (0,), (depending on A) such
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that for every p € N and for each sequence (Ay); in ¥ with

there are C', D € Iy with |p,(Ax) —pn(A)| < o, forall k € N\ D andn € N\C.
The sequence (i, )y is (Z1, Zo)-A-exhaustive on X iff it is (Z;, Zy)-exhaustive
at every A € 3.
Establish some relations between (Z;, Z)-exhaustiveness, (ideal) continuity

and ideal limit theorems for (¢)-group-valued measures (see also [2, 10, 13, 14,
23, 24]).
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