
Abstract
Buffer insertion has become an increasingly critical optimi-
zation in high performance design. The problem of finding a
delay-optimal buffered Steiner tree has been an active area
of research, and excellent solutions exist for most instances.
However, current approaches fail to adequately solve a par-
ticular class of real-world “difficult” instances which are
characterized by a large number of sinks, variations in sink
criticalities, and varying polarity requirements. We propose
a new Steiner tree construction called C-Tree for these
instance types. When combined with van Ginneken style
buffer insertion, C-Tree achieves higher quality solutions
with fewer resources compared to traditional approaches.

1. Introduction
Interconnect’s domination of system performance has made

buffer insertion a critical step in modern VLSI design

methodologies. The number of buffers needed to achieve

timing closure continues to rise with decreasing feature size.

Several works have studied the problem of inserting buffers

to reduce the delay on signal nets. van Ginneken’s dynamic

programming algorithm [13] has become a classic in the

field. Given a fixed routing topology, his algorithm finds the

optimal buffer placement on the topology under the Elmore

delay model for a single buffer type and simple gate delay

model. Together the enhancements to this work (e.g.,

[1][2][10][11][12]) make the van Ginneken style of buffer

insertion quite potent as it can handle many constraints,

buffer types, and delay models, while retaining optimality

under many of these conditions.

The primary shortcoming with this approach is that the

buffers must be inserted on the given Steiner topology. Thus,

both Okamoto and Cong [12] and Lillis et al. [11] have

combined buffer insertion with Steiner tree constructions,

the former with A-Tree [6] and the latter with P-Tree [9].

This simultaneous approach is in some sense equivalent to

the two-step approach of (1) constructing a Steiner tree, and

(2) running van Ginneken style buffer insertion. An optimal

solution can always be realized using the two-step approach

if one uses the “right” Steiner tree (i.e., the tree resulting

from ripping buffers out of the optimal solution) since the

buffer insertion step is optimal. Of course, finding the

“right” tree is difficult since the true objective cannot be

directly optimized during the Steiner construction. However,

if one tries to construct a “buffer-aware” Steiner tree, i.e., a

tree with topology that anticipates good potential buffer

locations, we believe the two-step approach can be as

effective as the simultaneous approach.

For most nets, finding the right Steiner tree is easy

(assuming no resource constraints). For two-pin nets a direct

connection is optimal, and there are a manageable number of

topologies for five sinks or less. This work focuses on the

most difficult nets for which finding the appropriate Steiner

topology is not at all obvious. These nets typically have

more than 15 sinks, varying degrees of sink criticalities, and

differing sink polarity constraints. Finding effective

solutions for these nets is critical; a high-fanout net is more

likely to be in a critical path because it is inherently slow.

Figure 1 Example showing the minimum unbuffered delay tree
(a) leads to a buffered tree (b) that is inferior to the best buffered

tree (c) (since it needs fewer buffers). If two sinks are critical
then a different optimal topology (d) would result.

Of course, a good heuristic for finding the right Steiner tree

must take into account potential buffering. Figure 1(a) shows

a 4-sink example where only one sink is critical. The (a)

unbuffered tree has minimum wire length, yet (b) inserting

buffers requires three buffers to decouple the three non-

critical sinks; however, for a different topology (c) the

buffered tree requires just one decoupling buffer. Thus, the

tree in (c) uses fewer resources, and may also achieve a

lower delay to the critical sink since the driver in (c) drives a

smaller capacitive load than in (b).

One approach to finding this topology is to cluster non-

critical sinks together and route each cluster individually. If

there are multiple critical sinks (d), then a different topology

Permission to make digital or hard copies of all or part of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004.$5.00.

(a)

(c)

critical

(b)

(d)

critical

critical

critical
critical

Buffered Steiner Trees for Difficult Instances
C. J. Alpert1, M. Hrkic2, J. Hu1, A. B. Kahng3, J. Lillis2, B. Liu3,
S. T. Quay1, S. S. Sapatnekar4, A. J. Sullivan1, P. Villarrubia1

1 IBM Corp., Austin, TX 78758
2 University of Illinois at Chicago, EECS Dept., Chicago, IL 60607

3 University of California at San Diego, CS Dept., San Diego, CA 92093
4 University of Minnesota, ECE Dept., 55455

4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357489816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which clusters critical sinks together will yield the best

solution. One could find this tree by clustering sinks into a

critical and non-critical cluster. The Steiner algorithm must

be aware of opportunities to adjust the topology to allow for

potential off-loading of non-critical sinks.

Finding the “right” Steiner tree becomes more difficult if

one considers polarity constraints. During synthesis, fanout

trees are built to repower and distribute a signal and/or its

complement to a set of sinks without knowledge of the

layout of the net. Once the net is placed, the tree may be

grossly suboptimal. At this stage, the buffers and inverters

can be ripped out of the tree and re-inserted while utilizing

the new layout information. However, removing the buffers

and inverters may leave sinks with opposing polarities.

Figure 2 shows a net with five sinks with positive (‘+’)

polarity and five with negative (‘-’) polarity. The tree in (a)

requires at least five inverters to satisfy polarity constraints,

while the tree in (b) requires just one. The latter solution can

be found by independently routing two clusters, one with all

positive sinks and one with all negative sinks. Existing

timing-driven Steiner tree constructions (e.g., [3][4][9])

cannot find this topology.

Figure 2 Example of how polarity constraints affect topology.
The tree in (a) requires at least five inverters to satisfy polarity

constraints while the tree in (b) requires just one.

The purpose of this work is to find a Steiner tree algorithm

for particularly difficult instances which can be used in

conjunction with van Ginneken style buffer insertion. Our

proposed C-Tree heuristic first clusters sinks based on

spatial, temporal, and polarity locality. Next, a sub-tree is

then formed within each cluster, and finally, the trees are

connected using a timing-driven Steiner tree at the top level.

We show that this two-level approach is not only more

efficient than the existing state-of-the art, but also generates

higher quality solutions while using fewer buffers.

2. Preliminaries
We are given a net with pins,

where is the unique source and are the sinks.

Let and denote the 2-dimensional coordinates of

, and let , , and denote the

required arrival time, input capacitance, and polarity

constraint for sink . We assign for a sink

which requires the inversion of the signal from to , and

for a “normal” sink that prohibits the inversion

of the signal. A rectilinear Steiner tree has a set of

nodes where is the set of intermediate 2-

dimensional Steiner points and a set of horizontal and

vertical edges . Wire resistance and capacitance parasitics

are given to permit interconnect delay calculation for a

particular geometric topology.

For a given tree , a buffered tree can

be constructed from if (i) there exists a set of nodes

(corresponding to buffers) such that , (ii)

each edge in is either in or is contained1 within some

edge in and (iii) is a rectilinear Steiner tree. Note that

and are not necessarily disjoint. Hence, buffers in

can only be inserted on the edges in . Running van

Ginneken style buffer insertion on guarantees a buffered

tree . Let be the number of buffers inserted in

, i.e., .

Each Steiner tree (with or without buffers) has a unique path

from to sink . For each , let denote the

particular buffer type (size, inverting, etc.), chosen from a

buffer library ,inserted at . Let be the

delay from to within . The delay can be computed

using many ways; for this discussion, we adopt the Elmore

model for wires and a switch-level linear model for gates.

Our formulation is by no means restricted to these models

(see e.g., [2]). The slack for a tree is given by

.

The traditional buffer tree objective function is to maximize

. This can waste resources since additional

buffers may be used to garner only a few extra picoseconds

of performance. An alternative is to find the fewest buffers

such that . However, a zero slack solution

may not be achievable in this formulation, yet the designer

still wishes to reduce the slack, even if a positive slack is not

achievable. Instead of a single objective, one can generate a

solution set that trades off maximizing the worst slack with

the number of inserted buffers. This can be achieved with a

van Ginneken style algorithm [10] or via simultaneous

optimization [11]. Our problem statement is as follows:

Buffered Steiner Tree Problem: Given timing and polarity

constraints and the topology for net , a buffer library ,

and the technology’s interconnect parasitics, find a single

Steiner tree over so that the family of buffered trees

constructed from by applying van Ginneken style buffer

insertion using satisfies polarity constraints and is

dominant. A family is dominant if for every buffered tree

, there exists a tree in such that

 and .

The formulation does not restrict the algorithm to a

particular buffer resource or timing constraint, but rather

allows the designer to choose a solution within the family

(a)

+ + ++ +-- - - -

+ + ++ +-- - - -
(b)

N s0 s1 … sn, , ,{ }= n 1+

s0 s1 … sn, ,
x s() y s()

s RAT s() cap s() pol s()

s pol s() 1=

1 Edge is said to be contained within edge

if

and .

s0 s
pol s() 0=

T V E,()
V N I∪= I

E

T V E,() T B V B EB,()
T V '

V B V V '∪=

EB E

x
1

y
1

,() x
2

y
2

,()()
x

3
y

3
,() x

4
y

4
,(),() min x

3
x

4
,() x

1
x

2
, max x

3
x

4
,()≤ ≤

min y
3

y
4

,() y
1

y
2

, max y
3

y
4

,()≤ ≤

E T B
V V ' T B

T
T

T B nb T B()
T B V '

s0 si v V '∈ b v()

B v D s0 si T B, ,()
s0 si T B

T B
slack T B() min RAT si() D s0 si T B, ,()– 1 i n≤ ≤||{ }=

slack T B()

slack T B() 0≥

N B

T N F
T
B

F
T B' T B F
slack T B() slack T B'()≥ nb T B() nb T B'()≥

5

that is most appropriate for the particular design. Although

not explicitly stated, there is actually a wire length

component that can also be traded off. For example, if the

routing resources are more tightly constrained than the area

resources, one might want to reduce wire length for the

price of additional buffers, while maintaining the same

timing characteristics. To handle this constraint, one could

used a cost function that combine the costs of buffering and

wire resources which would allow simultaneous wire sizing

within the buffer insertion optimization.

3. The C-Tree Algorithm

3.1 Overview
Our Steiner construction is called C-Tree, for “Clustered

tree”, emphasizing the clustering step, as opposed to the

underlying timing-driven tree heuristic. The fundamental

idea behind C-Tree is to construct the tree in two levels. C-

Tree first clusters sinks with similar characteristics

(criticality, polarity and distance). This step potentially

isolates positive sinks from negative ones and non-critical

sinks from critical ones. The algorithm then constructs low-

level Steiner trees over each of these clusters. Finally, a top-

level timing-driven Steiner tree over the set of clusters is

computed. This tree is then merged with the low-level trees

to yield a solution for the entire net.

Figure 3 C-Tree Steiner Tree Algorithm (N, k).

Figure 3 presents C-Tree pseudocode. We assume that two

generic subroutines, Clustering and TimingDrivenSteiner,

are given (see Sections 3.2-3.4). However, one could

implement these subroutines in a variety of ways to achieve

similar clustering and routing functionality.

Step 1 invokes Clustering, which takes the sinks of a net as

input and outputs a set of clusters . The

net corresponding to the top-level tree is also initialized

to contain the source. Step 2 iterates over the clusters, and in

Step 3, a tapping point is computed for cluster . The

tapping point represents the source for the tree over

and also the point where the top-level tree will connect

to . We choose to be a point on the bounding box of

closest to . Step 4 then assigns to be the source

for . Step 5 invokes TimingDrivenSteiner on to yield

a tree . Step 6 then propagates the up to yield

an constraint for . The capacitance of is

assigned to be that of After completing these operations

for all the tapping points, consists of plus tapping

points which now serve as sinks. Step 7 computes the top-

level Steiner tree for this instance, and Step 8 merges all the

Steiner trees into a single solution.

Figure 4 shows an example. In (a), a clustering of the sinks

is performed. In (b), the three tapping points are shown as

black circles, and Steiner trees are computed for each

cluster. Next (c), the top-level Steiner tree connecting the

source to the tapping points is found, and finally, (d) the

tapping points are removed and the Steiner trees are merged

into a single tree. A clear advantage of this approach is that

van Ginneken style buffer insertion can insert buffers to

either drive, decouple, or reverse polarity of any particular

cluster. Of course, C-Tree is sensitive to the actual

clustering algorithm used, which we now describe.

Figure 4 Example execution of the C-Tree algorithm.

3.2 Clustering Distance Metric
The key to clustering any data set is devising a dissimilarity

or distance metric between pairs of points. The points in our

instances have three properties: spatial (coordinates in the

plane), temporal (required arrival times), and polarity. Our

distance metric incorporates all of these elements; we first

define individual spatial, temporal and polarity metrics, then

combine them using scaling into a single distance metric.

The correct spatial and polarity metrics are straightforward.

The spatial (Manhattan) distance and polarity

distance for sinks and are given by

and ,

respectively. is zero when the polarities for

 and are the same and one when they are opposing.

Finding a good temporal metric is trickier. First, is

not the only indicator of sink criticality. If and have

the same yet is further from than , then is

more critical since it is harder to achieve the same

over the longer distance. An estimate of the achievable

Input: ≡ Net to be routed

≡ Number of clusters

Output: ≡ Routing tree over

1. . Set .

2. for to do

3. Find a tapping point for cluster .

4. Add to and label as the source.

5. Let .

6. Set , ,

 and add to .

7. Compute .

8. Combine all edges and nodes of into tree .

N s
0

s
1

… sn, , ,{ }=

k
T N

N
1

N
2

… N k, , ,{ } Clustering N s
0

–()= N
0

s
0

{ }=

i 1= k
tpi N i

t pi N i tpi
T i TimingDrivenSteiner N i()=

RAT tpi() slack T i()= cap tpi() cap T i()=

tpi N
0

T
0

TimingDrivenSteiner N
0

()=

T
0

T
1

… T k, , , T

N 1 N 2 … N k, , ,{ }
N 0

tpi N i
T i N i

T 0

T i tpi
N i s0 tpi

N i N i
T i RAT T i

RAT tpi tpi
T i

N 0 s0 k

(a) (b)

(c) (d)

sDist si s j,()
pDist si s j,() si s j

x si() x s j()– y si() y s j()–+ pol si() pol s j()–

pDist si s j,()
si s j

RAT
si s j

RAT si s0 s j si
RAT

6

delay to can be used to adjust the . Assuming an

optimally buffered direct connection from to , with

sub-trees decoupled by buffers with negligible input

capacitance, then the achievable delay is equivalent to the

formula for optimal buffer insertion on a two-pin net. Let

the achievable delay be denoted by using the

formula from [1]. Let be the

potentially achievable slack for . Now gives a

better indicator of the criticality of than .

Yet, is still not a good temporal metric.

Assume that the achievable slacks for three sinks are

, , and .

Sink is most critical while and are both non-

critical. Intuitively, is more similar to than to ,

despite the 8 ns difference, because both and have

high positive achievable slack. A temporal metric that looks

at the differences in values cannot capture this

behavior.

The criticality of is given by , where the more

critical sink has and as

, i.e., the criticality of a sink is one if it is most

critical and zero if it is totally uncritical; otherwise it lies

somewhere in between. We define criticality as follows:

 where

, (1)

Here and are the minimum and average

values over all sinks, and is a user parameter.2

Observe that is indeed one when

and zero as goes to infinity. For a sink with

average achievable slack (), then

equals when . An average sink has

criticality much closer to that of a sink with infinite as

opposed to minimum . Now, temporal distance

can be defined as the difference in sink

criticalities, or .

Both temporal and polarity distances are on a zero to one

scale, so spatial distance must be scaled before combining

terms. Let

be the spatial diameter of sinks. The scaled distance

between two sinks can be expressed as dividing by

. Our distance metric is a linear

combination of the spatial, temporal, and polarity distances:

. (2)

The parameter lies between zero and one and trades off

between spatial and temporal distance (we use).

Note that the distance between two sinks with the same

polarity is no more than the distance between two sinks with

opposite polarity which ensures that polarity has precedence

over spatial and temporal distance. This is key to avoiding

the behavior shown in Figure 2(a).

3.3 Clustering
For clustering sinks, we adopt the K-Center heuristic [7]

which seeks to minimize the maximum radius (distance to

the cluster center) over all clusters. K-Center is just one of

several potential clustering methods that could be used to

achieve the purpose of grouping sinks with common

characteristics. K-Center iteratively identifies points that are

furthest away, which are called cluster seeds. The remaining

points are clustered to their closest seed. For geometric

instances, K-Center guarantees that the maximum diameter

of any cluster is within a factor of two of the optimal

solution [7]. The time complexity of K-Center is .

3.4 Timing-Driven Steiner Tree Construction
The timing-driven Steiner tree method is implemented via

the Prim-Dijkstra algorithm [3] which trades off between

Prim’s minimum spanning tree algorithm and Dijkstra’s

shortest path tree algorithm via a parameter which lies

between and . Since Prim’s algorithm yields minimum

wire length (for a spanning tree) and Dijkstra’s yields a tree

with minimum radius, the trade-off is able to capture the

desirable properties behind both extremes.

In our experiments, we run the Prim-Dijkstra algorithm for

followed by a post-processing

algorithm that remove overlapping edges and generates a

Steiner tree. Of the five constructions, the tree which

minimizes the slack at the tapping point is selected.

Certainly, other choices are just as reasonable. In fact, we

speculate that P-Tree [11] would probably improve results

slightly. We chose the Prim-Dijkstra algorithm because it is

simple to implement, efficient and scalable, and because it

outperformed the critical sink construction of [4] in separate

experiments. P-Tree, while likely superior in terms of

quality, is not as efficient, scalable, and easy to implement.

4. Experimental Results
We identified 8 nets on various industrial designs that the

current production-level buffer insertion methodology had

difficulty optimizing. The polarity characteristics and

timing constraints for the nets are summarized in Table 1.

We compare C-Tree to the P-Tree [9] and Prim-Dijkstra [3]

timing-driven tree constructions and also to BP-Tree

(simultaneous buffering and routing) [11]. P-Tree was

shown to yield better timing results than either SERT [4] or

A-Tree [6]. P-Tree actually consists of two algorithms: P-

TreeA seeks to minimize area, while P-TreeAT generates a

family of solutions that trade off between area and timing.

The Prim-Dijkstra algorithm is actually equivalent to “flat”

C-Tree with each sink in its own cluster. For each tree, we

ran van Ginneken style buffer insertion using a library of

five non-inverting and two inverting buffers to generate a

family of solutions. Like P-Tree, BP-Tree also has two

modes which we suffix with either N (normal) or F (fast).

The results are summarized in Table 2. Comparisons for

each net are shown in several rows. The first two rows

contain results for P-TreeAT and P-TreeA, except for the

three largest nets for which P-TreeAT ran out of memory

2 If all achievable slacks are exactly equal, i.e., , then

we define for all sinks .

si RAT
s0 si

AD si()
AS si() RAT si() AD si()–=

si AS si()
si RAT si()

AS si() AS s j()–

AS s1() 1ns–= AS s2() 2ns= AS s3() 10ns=

s1 s2 s3

s2 s3 s1

s2 s3

AS

si crit si()
crit si() 1= crit si() 0→

AS si() ∞→

crit si() e
α mAS AS si()–() aAS mAS–()⁄

=

mAS min1 i n≤ ≤ AS si()= aAS AS si()
1 i n≤ ≤

∑ n⁄=

mAS aAS AS
α 0>

aAS mAS=

crit si() 1= si

crit si() AS si() mAS=

AS si() si
AS si() aAS= crit si()

e α–
0.135≅ α 2=

AS
AS

tDist si s j,()
crit si() crit s j()–

sDiam N() max sDist si s j,() 1 i j n≤,≤||{ }=

sDist
sDiam N() dist si s j,()

βsDist si s j,()
sDiam N()------------------------------ 1 β–()tDist si s j,() pDist si s j,()+ +

β
β 0.65=

O nk()

c
0 1

c 0.0 0.25 0.5 0.75 1.0, , , ,=

T

7

(on a machine with 2Gb of RAM). The next row is for BP-

TreeN except for the largest test case, for which BP-TreeF

is reported since BP-TreeN ran out of memory. In general,

BP-TreeF inserted about 3 times as many buffers as BP-

TreeN. The next row is “flat” C-Tree or the Prim-Dijkstra

algorithm. The remaining rows for each net are presented

for C-Tree for a decreasing number of clusters to show the

trade-off. For each algorithm, we present the following data:

Table 1 Polarity and temporal characteristics of the 8 nets.
• slack (to the most critical sink) in picoseconds (ps) and

wire length of the tree before buffer insertion,

• the slack (ps) and the number of buffers used for three of

the family of solutions generated. The Min Opt solution

has the minimal buffering needed to fix polarity con-

straints. The Full Opt solution has the maximum slack,

regardless of the number of buffers used, and Mid Opt

reflects a solution in between. The three solutions give a

reasonable view of the trade-off curve generated.

• the slack (ps) and wire length after a post-processing

step on the Full Opt buffered solution. Once buffers are

inserted, some wire length may be eliminated via simple

re-routing. This step tries to reduce wire length without

increasing slack from the Full Opt buffered tree.

• the total CPU time (s) for the entire process (tree con-

struction, buffer insertion, and post-processing). Runt-

imes are for a Sun Sparc Ultra-60 with 2Gb of RAM.

We make several observations.

• For the Full Opt solution, C-Tree was able to find solu-

tions with slacks at least as high as all the other

approaches for at least one clustering (except for n873

for which C-Tree’s slack was inferior by one ps). Some-

times the C-Tree slacks were significantly better (e.g.,

n870, and big1); most of the time the Full Opt slacks

were fairly indistinguishable among the algorithms.

• The fewer clusters used by C-Tree, the fewer the number

of buffers are needed to fix polarity constraints. With

two clusters, one buffer is always sufficient. However,

fewer clusters yields additional wire length. Indeed, two

clusters yields almost double the wire length since two

low-level trees are being routed over the same geometric

space, one to the positive and one to the negative polarity

sinks. When the number of clusters is small, the wire

length does increase significantly.

• The post-processing step did not affect slack much at all,

but occasionally reduced wire length (e.g., for big3).

• P-TreeAT and BP-TreeN are the most inefficient algo-

rithms. P-TreeA is slightly more inefficient than the

Prim-Dijkstra approach, but C-Tree is actually the fast-

est of the three constructions.

• For the larger nets, the other approaches require many

more buffers than C-Tree to find a feasible solution. For

example, P-Tree required 32, 27 and 27 buffers to satisfy

constraints for big1, big2, and big3, respectively. C-Tree

could generally find a solution with slack at least as high

as P-Tree with 4, 6, and 9 buffers, respectively.

• There was not much differentiation in slack among the

algorithms. The tree capacitances are mostly wire domi-

nated causing most buffers to be used to improve delay

instead of decoupling large loads. Nets with some very

high capacitance sinks may prove more “difficult”. Also,

in several cases the highest slack solution was actually

very close to the minimum sink RAT, which is an upper

bound on slack at the source. For difficult instances, one

may wish to alter the objective to capture the benefits of

improving timing to the less critical sinks.

5. Conclusion
We identified a class of buffered Steiner tree instances for

which existing algorithms are inadequate. These instances

have several sinks and varying temporal and polarity

constraints. We proposed the C-Tree algorithm which

utilizes a distance metric that combines spatial, temporal,

and polarity characteristics. Experiments show that C-Tree

obtains results with slack equal to or better than previous

approaches while using fewer buffers. C-Tree can also

trade-off between buffering and wiring resources via the

number of clusters. We hope that this work opens the door

for additional research on these types of difficult instances.

References
[1] C. J. Alpert and A. Devgan, “Wire Segmenting for Improved

Buffer Insertion”, IEEE/ACM DAC, 1997, pp. 588-593.

[2] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer Insertion
with Accurate Gate and Interconnect Delay Computation”,
IEEE/ACM Design Automation Conf., 1999, pp. 479-484.

[3] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, D. Karger,
“Prim-Dijkstra Tradeoffs for Improved Performance-Driven
Routing Tree Design,” IEEE TCAD, 14(7), 1995, 890-896.

[4] K.D. Boese, A. B. Kahng, B. A. McCoy, G. Robins, “Near-
optimal Critical Sink Routing Tree Constructions”, IEEE
Trans. on CAD, 14(12), Dec. 1995, pp. 1417-1436.

[5] C. C. N. Chu and D. F. Wong, “Closed Form Solution to
Simultaneous Buffer Insertion/Sizing and Wire Sizing”, Inter-
national Symposium on Physical Design, 1997, pp. 192-197.

[6] J. Cong, K. S. Leung, and D. Zhou, “Performance-Driven
Interconnect Design Based on Distributed RC Delay Mode,”
IEEE/ACM Design Automation Conf., 1993, pp. 606-611.

[7] T. F. Gonzalez, “Clustering to Minimize the Maximum Inter-
cluster Distance”, Theoretical Comp. Sci., 38, 293-306, 1985.

[8] M. Lai and D. F. Wong, “Maze Routing with Buffer Insertion
and Wiresizing”, IEEE/ACM DAC., 2000, pp. 374-378.

[9] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, and C.-Y. Ho, “New Per-
formance Driven Routing Techniques With Explicit Area/
Delay Tradeoff and Simultaneous Wire Sizing”, 33th IEEE/
ACM DAC, 1996, pp. 395-400.

[10] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Optimal Wire Sizing
and Buffer Insertion for Low Power and a Generalized Delay
Model”, IEEE J. Solid-State Circuits, 31(3), 1996, 437-447.

Net
Name

Sinks RAT

+ - Total min max

n873 10 10 20 730 6656

poi3 10 10 20 52 6707

n189 15 14 29 610 6650

n786 18 14 32 97 6704

n870 24 19 43 739 6589

big1 40 48 88 1974 159565

big2 38 41 79 104 65838

big3 34 29 63 1097 40675

8

[11] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Simultaneous Rout-
ing and Buffer Insertion for High Performance Interconnect”,
Sixth Great Lakes Symposium on VLSI, 1996, pp. 148-153.

[12] T. Okamoto and J. Cong, “Buffered Steiner Tree Construction
with Wire Sizing for Interconnect Layout Optimization”,
IEEE/ACM Int. Conf.Computer-Aided Design, 1996, 44-49.

[13] L. P. P. P. van Ginneken, “Buffer Placement in Distributed
RC-tree Networks for Minimal Elmore Delay”, Intl. Sympo-
sium on Circuits and Systems, 1990, pp. 865-868.

Table 2 Summary of experimental results.

Net
Name

Algorithm #
Clusts

Before Opt Min Opt Mid Opt Full Opt Post Process CPU (s)

slack (ps) wire bufs slack (ps) bufs slack (ps) bufs slack (ps) slack (ps) wire

n873 P-TreeAT 1 -788 4358 7 213 9 494 11 547 547 4293 2.6

P-TreeA 1 -780 4321 7 204 9 494 11 547 547 4272 0.4

BP-TreeN 1 ---- ---- 7 151 9 541 10 566 ---- ---- 62.1

C-Tree 20 -769 4272 7 201 9 488 12 536 536 4272 0.2

C-Tree 11 -822 4512 6 194 8 491 11 537 537 4301 0.3

C-Tree 5 -993 5328 2 -92 5 520 9 528 539 5180 0.3

C-Tree 2 -1036 5703 1 -17 4 529 7 546 546 5703 0.4

poi3 P-TreeAT 1 -727 6010 10 -418 12 38 13 40 40 6008 2.0

P-TreeA 1 -727 6008 10 -418 12 36 13 38 38 6008 1.1

BP-TreeN 1 ---- ---- 7 -441 9 38 10 40 ---- ---- 65.1

C-Tree 20 -713 5852 8 36 9 43 9 43 43 6030 0.7

C-Tree 11 -775 6550 5 36 6 43 6 43 43 6248 0.8

C-Tree 4 -860 7501 2 18 3 25 4 31 31 6087 1.2

C-Tree 2 -1155 10823 1 -544 3 16 5 26 26 10823 1.0

n189 P-TreeAT 1 -1235 4963 10 217 12 514 14 560 560 4953 33.8

P-TreeA 1 -1229 4935 11 112 15 486 25 493 494 5033 2.3

BP-TreeN 1 ---- ---- 8 -98 10 419 12 472 ---- ---- 511.4

C-Tree 29 -1230 4937 9 200 12 491 15 510 510 4937 0.5

C-Tree 16 -1271 5134 8 166 10 468 12 533 533 5112 0.5

C-Tree 10 -1519 6314 5 -277 8 538 10 548 548 5576 0.6

C-Tree 2 -1824 7772 1 -880 3 531 6 574 578 7582 0.6

n786 P-TreeAT 1 -816 4958 9 -496 11 56 13 82 83 4896 118.4

P-TreeA 1 -807 4859 11 -494 13 58 15 82 82 4859 3.2

BP-TreeN 1 ---- ---- 9 -422 11 79 13 84 ---- ---- 748.1

C-Tree 32 -807 4859 13 -501 16 50 19 67 67 4859 0.9

C-Tree 15 -847 5308 6 -505 8 51 10 82 82 4971 0.8

C-Tree 7 -884 5718 3 -505 5 67 7 82 82 5294 0.7

C-Tree 2 -1199 9252 1 -619 4 61 6 70 70 9255 1.3

n870 P-TreeAT 1 -2587 4136 18 8 19 84 19 84 122 4119 193.3

P-TreeA 1 -2567 4089 17 49 18 98 19 99 99 4089 4.1

BP-TreeN 1 ---- ---- 13 97 17 288 21 295 ---- ---- 860.5

C-Tree 43 -2677 4061 18 -186 22 -104 26 -101 -101 4061 1.4

C-Tree 17 -2677 4347 7 133 11 245 15 254 254 4297 1.3

C-Tree 9 -2727 4464 6 132 8 241 11 258 258 4386 0.9

C-Tree 2 -3749 7688 1 -1965 5 348 9 355 355 7688 1.5

big1 P-TreeA 1 -932 14734 32 830 40 1083 48 1106 1228 16368 14.9

BP-TreeF 1 ---- ---- 99 1381 98 1479 97 1555 ---- ---- 308.5

C-Tree 88 -162 15798 33 1267 35 1412 37 1416 1416 15798 5.3

C-Tree 30 -844 23866 19 1090 21 1570 23 1595 1595 22230 7.0

C-Tree 12 -1358 30021 6 236 9 1659 12 1682 1682 25550 3.7

C-Tree 2 -982 25985 1 10 4 1660 7 1690 1692 25811 8.7

big2 P-TreeA 1 -1263 8899 27 -461 32 -71 38 -44 -44 8899 4.0

BP-TreeN 1 ---- ---- 20 -201 25 -29 29 -12 ---- ---- 494.6

C-Tree 79 -1258 9018 26 -303 29 -257 31 -255 -142 9226 3.7

C-Tree 49 -1398 10672 21 -442 25 -129 29 -114 -112 9872 2.8

C-Tree 28 -1682 13995 15 -704 22 -74 29 -68 -68 12340 3.2

C-Tree 2 -1614 13199 1 -1118 7 -62 12 -51 -51 13199 3.1

big3 P-TreeA 1 -23 6907 27 867 31 1012 34 1021 1022 6907 1.9

BP-TreeN 1 ---- ---- 19 570 22 1048 25 1055 ---- ---- 199.6

C-Tree 63 0 6966 23 631 26 1024 28 1027 1027 6966 1.8

C-Tree 38 -91 7987 18 871 21 979 23 981 988 7437 1.6

C-Tree 21 -282 10300 11 652 14 1013 17 1021 1022 9422 1.5

C-Tree 2 -264 9965 1 278 5 992 9 1028 1028 9962 0.9

9

	Main Page
	ISPD'01
	Front Matter
	Table of Contents
	Author Index

