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Abstract

In the classical formulation an experimental design is a set of sites at each of which
an observation is taken on a response Y . The algebraic method treats the design as
giving an “ideal of points” from which potential monomial bases for a polynomial
regression can be derived. If the Gröbner basis method is use then the monomial
basis depends on the monomial term ordering. The full basis has the same number
of terms as the number of design points and gives an exact interpolator for the
Y -values over the design points. Here the notation of design point is generalized to
a variety. Observation means, in theory, that one observes the value of the response
on the variety. A design is a union of varieties and the assumption is, then, that
on each variety we observe the response. The task is to construct an interpolator
for the function between the varieties. Motivation is provided by transect sampling
in a number of fields. Much of the algebraic theory extends to the general case.
But special issues arise including the consistency of interpolation at the intersection
of the varieties and the consequences of taking a design of points restricted to the
varieties.

1 Introduction

Experimental design is defined simply as the choice of sites, or observation
points, at which to observe a response, or output. A set of such points is the
experimental design. Terminology varies according to the field. Thus, sites may
be called “treatment combinations”, “input configurations”, “runs”, “data
points” and so on. For example in interpolation theory “observation point”
is common. Whatever the terminology or field we can nearly always code up
the notion of an observation point as a single point in k dimensions which
represents a single combination of levels of k independent variables.

The purpose of this paper is to extend the notation of an observation point
to a whole algebraic variety. An experimental design is then a union of such
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varieties. An observation would be the acquired knowledge of the restriction of
the response to the variety. This is an idealization, but one with considerable
utility. It may be, for example that one models the restriction of the response
to each variety by a separate polynomial.

An important example of sampling via a variety is transect sampling. This is a
method used in the estimation of species abundance in ecology and geophysics.
A key text is Buckland et al. (1993) and the methods are developed further
in Mack & Quang (1998). There one collects information about the distance
of objects from the transects and tries to estimate the average density of the
objects in the region of interest, namely to say something about a feature
connected with the whole region. A useful idea is that of “reconstruction”;
one tries to reconstruct a function given the value on the transects. This re-
construction we interpret here as “interpolation”, or perhaps we should say
“generalized” interpolation. Other examples are geophysics, tomography, com-
puter vision and imaging.

Our task is to extend the algebraic methods used for observation points to
this generalized type of experimental design and interpolation. Within this,
the main issue is to create monomial bases to interpolate between the varieties
on which we observe. At one level this is a straightforward extension, but there
a number of special constructions and issues the discussion of which should
provide an initial guide to the area.

(1) The most natural generalization is to the case where the varieties are
hyperplanes, and therefore we shall be interested in hyperplane arrange-
ments. This covers the case of lines in two dimensions, the traditional
transects mentioned above.

(2) There are consistency issues when the varieties intersect: the observation
on the varieties must agree on the intersection.

(3) Since observing a whole function on a variety may be unrealistic one
can consider traditional point designs restricted to the varieties. That is,
we may use standard polynomial interpolation on the varieties and then
combine the results to interpolate between varieties, but having in mind
the consistency issue just mentioned.

(4) It is also natural to use power series expansions on each variety: is it
possible to extend the algebraic interpolation methods to power series?
We are here only able to touch on the answer.

We now recall some basic ideas. Interpolation is the construction of a function
f(x) that coincides with observed data at n given observation points. That
is, for a finite set of distinct points D = {d1, . . . , dn}, d1, . . . , dn ∈ Rk and
observation values y1, . . . , yn ∈ R, we build a function such that f(di) = yi,
i = 1, . . . , n. We set our paper within design of experiments theory where the
design is a set of points D, n is the design (sample) size and k is the number
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of factors. Approaches to interpolation range from statistically oriented tech-
niques such as kriging, see Stein (1999), to more algebraic techniques involving
polynomials, splines or operator theory, see Phillips (2003) and Sakhnovich
(1997).

Pistone & Wynn (1996) build polynomial interpolators using an isomorphism
between the following real vector spaces: the set of real valued polynomial func-
tions defined over the design, φ : D −→ R, and the quotient ring R[x1, . . . , xk]/I(D).
To construct the quotient ring they first consider the design D as the set of
solutions to a system of polynomial equations. Then this design corresponds
to the design ideal I(D), that is the set of all polynomials in R[x1, . . . , xk] that
vanish over the points in D. The polynomial interpolator has n terms and is
constructed using a basis for R[x1, . . . , xk]/I(D) called standard monomials.

This algebraic method of constructing polynomial interpolators can be applied
to, essentially, any finite set of points, see for example Holliday et al. (1999)
and Pistone et al. (2006). In fractional factorial designs it has lead to the use
of indicator functions, see Fontana et al. (1997), Pistone & Rogantin (2008).
Another example arises when the design is a mixture, i.e. the coordinate values
of each point in D add up to one. In such a case the equation

∑k
i=1 xi = 1

is incorporated into the design ideal, namely the polynomial
∑k

i=1 xi − 1 ∈
I(D), see Giglio et al. (2001). More recently, Maruri-Aguilar et al. (2007) used
projective algebraic geometry and considered the projective coordinates of the
mixture points. Their technique allows the identification of the support for a
homogeneous polynomial model.

If, instead of a set of points, we consider the design as an affine variety, then
the algebraic techniques discussed are still valid. As a motivating example,
consider the circle in two dimensions with radius two and center at the origin.
Take the radical ideal generated by the circle as its design ideal, i.e. the ideal
generated by x2

1 + x2
2 − 4. The set of standard monomials is infinite in this

case. For a monomial order with initial order x2 ≺ x1, the set of standard
monomials is {xj

2, x1x
j
2 : j ∈ Z≥0}, and can be used to interpolate over the

circle. However, a number of questions arise: What is the interpretation of
observation on such a variety? What method of statistical analysis should be
used?

In this paper, then, we are concerned with extending interpolation to when the
design no longer comprises a finite set of points, but it is defined as the union
of a finite number of affine varieties, see Definition 1. Only real affine varieties
(without repetition) and the radical ideals generated by them are considered.
Real affine varieties can be linked to complex varieties, see Whitney (1957) for
an early discussion on properties of real varieties. The first case we consider is
when varieties are defined by linear equations. In Section 2.2 we study the case
when the design V comprises the union of (k−1)-dimensional hyperplanes. In
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Section 2.3 we present the case, when every affine variety is an intersection of
hyperplanes. The following is a motivating example of such linear varieties.

Example 1 Consider a general bivariate Normal distribution (X1, X2)
T ∼

N
(

(µ1, µ2)
T , Σ

)

with

Σ =







σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2





 ,

where σ1, σ2 are real positive numbers, and ρ ∈ [−1, 1] ⊂ R. Now when Σ is
fixed, log p(x1, x2) is a quadratic form in µ1, µ2, where p(x1, x2) is the normal
bivariate density function. Imagine that, instead of observing at a design point,
we are able to observe log p(x1, x2) over a set of lines Vi, i = 1, . . . , n. That
is, the design V is a union of lines (transects), and suppose we have perfect
transect sampling on every line on the design. This means that we know the
value of log p(x1, x2) on every line. The question is: how do we reconstruct the
entire distribution? Are there any conditions on the transect location?

We do not attempt to resolve these issues here. Rather we present the ideas
as a guide to experimentation on varieties in the following sense. If I(V) is
the design ideal, then the quotient ring R[x1, . . . , xk]/I(V) is no longer of
finite dimension, but we can still obtain a basis for it and use it to construct
statistical models for data observed on V.

Even though we can create a theory of interpolation by specifying, or “observ-
ing” polynomial functions on a fixed variety V, we may wish to observe a point
set design D which is a subset of V. In Section 3 we present this alternative,
that is, to subsample a set of points D from a general design V.

If instead, a polynomial function is given at every design point, it is often
possible to obtain a general interpolator which in turn coincides with the
individual given functions. In Section 4 we give a simple technique for building
an interpolator over a design and in Section 5 we survey the interpolation
algorithm due to Becker & Weispfenning (1991). A related approach is to
obtain a reduced expression for an analytic function defined over a design,
which is discussed in Section 6. In Section 7 we discuss further extensions.

2 Definitions

In this Section we restrict to only the essential concepts for the development
of the theory, referring the reader to the books in algebraic geometry by Cox
et al. (1997), Kreuzer & Robbiano (2000) and Kreuzer & Robbiano (2005); we
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also refer the reader to the monograph in algebraic statistics by Pistone et al.
(2001).

An affine algebraic set is the solution in Rk of a finite set of polynomials. The
affine algebraic set of a polynomial ideal J is Z(J). The set of polynomials
which vanish on a set of points W in Rk is the polynomial ideal I(W ), which
is radical. Over an algebraically closed field, such as C, the ideal I(Z(J))
coincides with the radical ideal

√
J . However, when working on R, which is

not algebraically closed, the above does not necessarily hold.

Example 2 Take J = 〈x3 − 1〉 ⊂ R[x], i.e. the ideal generated by x3 − 1.
Therefore Z(J) = {1} and I(Z(J)) = 〈x − 1〉. However J is a radical ideal
and yet I(Z(J)) 6= J .

Recall that for W ⊂ Rk, the set Z(I(W )) is the closure of W with respect
to the Zariski topology on R

k. There is a one to one correspondence be-
tween closed algebraic sets in Rk and radical ideals in R[x1, . . . , xk] such that
I(Z(J)) = J .

Example 3 Consider I = 〈x2〉 ⊂ R[x]. Clearly I is not a radical ideal. How-
ever, its affine algebraic set is Z(I) = {0}, which is irreducible.

A real affine variety V is the affine algebraic set associated to a prime ideal.
Remind that an algebraic variety V is irreducible, whenever V is written as
the union of two affine varieties V1 and V2 then either V = V1 or V = V2.

Definition 1 A design variety V is affine variety in Rk which is the union of
irreducible varieties, i.e. for V1, . . . ,Vn irreducible varieties, V =

⋃n
i=1 Vi.

It is the purpose of this paper to show that (real) affine varieties are extensions
of points. We next review quotient rings and normal forms computable with
the variety ideal I(V).

Two polynomials f, g ∈ R[x1, . . . , xk] are congruent modulo I(V) if f − g ∈
I(V). The quotient ring R[x1, . . . , xk]/I(V) is the set of equivalence classes for
congruence modulo I(V). The ideal of leading terms of I(V) is the monomial
ideal generated by the leading terms of polynomials in I(V), which is written
as 〈LT(I(V))〉 = 〈LT(f) : f ∈ I(V)〉.

Two isomorphisms are considered. Firstly, as real vector space, the quotient
ring R[x1, . . . , xk]/〈LT(I(V))〉 is isomorphic to R[x1, . . . , xk]/I(V).
Secondly, the quotient ring R[x1, . . . , xk]/I(V) is isomorphic (as real vector
space) to R[V], the set of polynomial functions defined on V.

For a fixed monomial ordering ≺, let G be a Gröbner basis for I(V) and let
L≺(I(V)) be the set of all monomials in T k that cannot be divided by the

5



leading terms of the Gröbner basis G, that is

L≺(I(V)) := {xα ∈ T k : xα is not divisible by LT≺(g), g ∈ G} (1)

This set of monomials is known as the set of standard monomials, and when
there is no ambiguity, we refer to it simply as L(V). We reformulate in the
setting of interest of this paper the following proposition (Cox et al. 1997,
Section 5§3, Proposition 4).

Proposition 1 Let I(V) ⊂ R[x1, . . . , xk] be a radical ideal. Then
R[x1, . . . , xk]/〈LT(I(V))〉 is isomorphic as a R-vector space to the polynomials
which are real linear combinations of monomials in L(V).

In other words, the monomials in L(V) are linearly independent modulo 〈LT(I(V))〉.
By the two isomorphisms above, monomials in L(V) form a basis for the quo-
tient ring R[x1, . . . , xk]/I(V) and for polynomials on V. The division of a poly-
nomial f by the elements of a Gröbner basis for I(V) leads to a remainder r
with monomials in L(V), which is called the normal form of f .

Theorem 1 (Cox et al. 1997, Section 2§3, Theorem 3) Let I(V) be the ideal
of a design variety V; let ≺ be a fixed monomial order on R[x1, . . . , xk] and let
G = {g1, . . . , gm} be a Gröbner basis for I(V) with respect to ≺. Then every
polynomial f ∈ R[x1, . . . , xk] can be expressed as f =

∑m
i=1 gihi + r, where

h1, . . . hm ∈ R[x] and r is a linear combination of monomials in L(V).

We have that f − r ∈ I(V) and, in the spirit of this paper, we say that the
normal form r interpolates f on V. That is, f and r coincide over V. We may
write r = NF≺(f,V) to denote the normal form of f with respect to the ideal
I(V) and the monomial ordering ≺.

2.1 Designs of points

The most elementary experimental point design has a single point d1 =
(d11, . . . , d1k) ∈ Rk, whose ideal is I(d1) = 〈x1 − d11, . . . , xk − d1k〉. An ex-
perimental design in statistics is the set of distinct points D = {d1, . . . , dn},
whose corresponding ideal is the following intersection:

I(D) =
n
⋂

i=1

I(di). (2)

Example 4 For D = {(0, 0), (1, 0), (1, 1), (2, 1)} ⊂ R2, the set G = {x3
1 −

3x2
1 + 2x1, x

2
1 − 2x1x2 − x1 + 2x2, x

2
2 − x2} is a Gröbner basis for I(D). If we

set a monomial order for which x2 ≺ x1 then the leading terms of G are x3
1, x

2
2
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and x2
1 and thus L(D) = {1, x1, x2, x1x2}. Any real-valued polynomial function

defined over D can be expressed as a linear combination of monomials in L(D).

That is, for any function f : D −→ R, there is a unique polynomial r(x1, x2) =
c0 + c1x1 + c2x2 + c12x1x2 where the constants c0, c1, c2, c12 are real numbers
whose coefficients can be determined by solving the linear system of equations
r(di) = f(di) for di ∈ D. In particular if we observe real values yi at di ∈ D, in
statistical terms, r is a saturated model. For example, if we observe the data
2, 1, 3,−1 at the points in D then r = 2 − x1 + 5x2 − 3x1x2 is the saturated
model for the data.

2.2 Designs of hyperplane arrangements

Let H(a, c) be the ((k − 1)-dimensional) affine hyperplane directed by a non-
zero vector a ∈ Rk and with intercept c ∈ R, i.e.

H(a, c) =
{

x = (x1, . . . , xk) ∈ R
k : la(x) − c = 0

}

with la(x) :=
∑n

i=1 aixi. Now for a set of vectors a1, . . . , an ∈ Rk, and real
scalars c1, . . . , cn, the hyperplane arrangement A is the union of the affine
hyperplanes H(ai, ci), that is

A =
n
⋃

i=1

H(ai, ci). (3)

We restrict the hyperplane arrangement to consist of distinct hyperplanes, i.e.
no repetitions. The polynomial QA(x) :=

∏n
i=1 (lai

(x) − ci) is called the defin-
ing polynomial of A. Combinatorial properties of hyperplane arrangements
have been studied extensively in the mathematical literature, see (Grünbaum
2003, Chapter 18).

Clearly A is a variety as in Definition 1, I(A) is a radical ideal and it is
generated by QA(x). Furthermore for any monomial ordering ≺, {QA(x)} is
a Gröbner basis for I(A).

Example 5 Let ai be the i-th unit vector and ci = 0 for i = 1, . . . , k, then
QA(x) = x1 · · ·xk and A comprises the k coordinate hyperplanes.

Example 6 Another example is the braid arrangement, which plays an im-
portant role in combinatorial studies of arrangements. It has defining polyno-
mial QA(x) =

∏

(xi − xj − 1), where the product is carried on i, j : 1 ≤ i <
j ≤ k, see Stanley (1996).
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In the arrangement generated by the k coordinate hyperplanes of Example
5 and for any monomial order, the set of standard monomials comprises all
monomials which miss at least one indeterminate, and this set does not depend
on the term ordering used. For other hyperplane arrangements, the leading
term of QA(x) may depend on the actual monomial order used. We have the
following elementary result, which we state without proof.

Lemma 2 Let A be an arrangement of n hyperplanes as in Equation (3).
Then for any monomial ordering, the total degree of LT≺(QA(x)) is n.

Lemma 2 implies that the set of standard monomials for A always contains all
monomials up to a total degree n − 1. This result can be used in conjunction
with the methodology of Section 3: an arrangement of n hyperplanes has the
potential to identify a full model of total degree n − 1.

2.3 Generalised linear designs (GLDs)

The design variety in Section 2.2 can be generalised to include unions of inter-
sections of distinct hyperplanes: Namely, V =

⋃n
i=1 Vi where Vi =

⋂ni

j=1 H(ai
j, c

i
j)

where ai
j are non-zero vectors in Rk and ci

j ∈ Rk for j = 1, . . . , ni i = 1, . . . , n
and n and n1, . . . , nn are positive integers. Consequently, the design ideal is
the intersection of sums of ideals

I(V) =
n
⋂

i=1

ni
∑

j=1

I(H(ai
j, c

i
j)).

Example 7 Let V ⊂ R3 be constructed by the union of the following eleven
affine sets: V1, . . . ,V8 are the eight hyperplanes ±x1 ± x2 ± x3 − 1 = 0, and
V9,V10,V11 are the three lines in direction of the every coordinate axis. The
varieties V1, . . . ,V8 form a hyperplane arrangement A′. The variety V9 is the
axis x1 and thus is the intersection of the hyperplanes x2 = 0 and x3 = 0, i.e
I(V9) = 〈x2, x3〉. Similarly I(V10) = 〈x1, x3〉 and I(V11) = 〈x1, x2〉. The design
is V = A′∪V9∪V10∪V11 and the design ideal is I(V) = I(A′)∩I(V9)∩I(V10)∩
I(V11). For the lexicographic monomial ordering in which x3 ≺ x2 ≺ x1, the
Gröbner basis of I(V) has three polynomials whose leading terms have total
degree ten and are x9

1x2, x
9
1x3, x

8
1x2x3 and thus

L(V) = {1, x1, x
2
1, x

3
1, x

4
1, x

5
1, x

6
1, x

7
1} ⊗

{

xi
2x

j
3 : (i, j) ∈ Z2

≥0

}

⋃

{

xj+9
1 : j ∈ Z≥0

}

⋃

{

x8
1x

j+1
2 : j ∈ Z≥0

}

⋃

{

x8
1x

j+1
3 : j ∈ Z≥0

}

⋃ {x8
1} ,
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where ⊗ denotes the Kronecker product of sets. That is, the set of exponents
of monomials in L(V) comprises the union of eight shifted copies of Z2

≥0, three
shifted copies of Z≥0 and a finite set of monomials. This finite union of disjoint
sets is an example of the Stanley decomposition of an L(V), see Stanley (1978)
and Sturmfels & White (1991).

3 Subsampling from a variety: “fill-up”

Varieties give a taxonomy which informs experimentation. Indeed, suppose
that, for fixed V, we take a finite sample of design points D from V, i.e.
D ⊂ V. We have the following inclusion between the quotient rings as real
vector spaces

R[x1, . . . , xk]/〈LT (I(D))〉 ⊂ R[x1, . . . , xk]/〈LT (I(V))〉. (4)

That is, the basis for the quotient ring R[x1, . . . , xk]/I(V) provides an indi-
cation of the capability of models we can fit over D by setting the design D
to lie on the affine variety V. In particular, the set of standard monomials for
interpolating over D and over V satisfy L≺(D) ⊂ L≺(V). A question of interest
is: given any finite subset L′ ⊂ L≺(V), can we find a set of points D ⊂ V so
that L′ ⊆ L≺(D)?

An interesting case is the circle. Can we “achieve” a given L′ from some
finite design of points on the circle? The authors are able, in fact, to answer
affirmatively with a sufficiently large equally spaced design around the circle,
and a little help from discrete Fourier analysis. For instance set LT(x2

1 + x2
2 −

1) = x2
2 and thus L = {1, x2}⊗{xj

1 : j ∈ Z≥0} and let L′ ⊂ L be the finite sub-

basis. For i = 0, . . . , n−1 let (xi, yi) =
(

cos
(

2πi
n

)

, sin
(

2πi
n

))

. For n sufficiently

large, the design matrix X = [xu
i y

v
i ](u,v)∈L′,i=0,...,n−1 has full rank |L′|. Indeed

we can explicitly compute the non zero determinant of XT X using Fourier
formulæ.

The general case is stated as a conjecture.

Conjecture 3 Let V be a design variety with set of standard monomials
L≺(V). Then, for any model with finite support on L′ ⊂ L≺(V), there is a
finite design with points on the real part of V such that the model is identifi-
able.

This conjecture can be proven when the design V is in the class of generalised
linear designs (GLD) of Section 2.3. We believe that the construction may be
of some use in the important inverse problem: finding a design which allows
identification of a given model.
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Proof. Let V =
⋃n

i=1 Vi be a GLD, where the irreducible components are the
Vi =

⋂ni

j=1 H(ai
j, c

i
j). Take a finite set of monomials L′ ⊂ L(V) and consider a

polynomial in this basis:

p(x) =
∑

α∈L′

θαxα,

i.e. p(x) is a polynomial with monomials in L′ and real coefficients. Select a Vi

and consider the values of p(x) on this variety. Suppose dim(Vi) = ki, then by
a linear coordinatisation of the variety we can reduce the design problem on
the variety to the identification of a model of a particular order on Rki . But
using the “design of points” theory and because L′ is finite, with a sufficiently
large design Di ⊂ Vi we can carry out this identification and therefore can
completely determine the value of p(x) on the variety Vi. Carrying out such
a construction for each variety gives the design D =

⋃n
i=1 Di. Then the values

of p(x) are then completely known on each variety and the normal form over
V recaptures p(x), which completes the proof. A shorthand version is: fix a
polynomial model on each Vi and the normal form (remainder) is fixed. The
normal form of p(x) with respect to I(D) must agree with the normal forms of
p(x) with respect to I(Di), for all i, otherwise a contradiction can be shown.
This is enough to shown that p(x) can be reconstructed on V from D.

This points to a sequential algorithms in which we “fix” the values on V1,
reduce the dimension of the model as a result, fix the reduced model on V2

and so on. Further research is needed to turn such algorithms into a charac-
terization of designs satisfying Conjecture 3 and minimal sample size for the
existence of such designs. The following example shows heuristically how such
an algorithm might work.

Example 8 Take k = 2 and the design V to be the GLD of four lines x1 =
±1, x2 = ±1. A Gröbner basis for I(V) is {(x2

1 − 1)(x2
2 − 1)} with leading term

x2
1x

2
2 and

L(V) = {x2
2, x1x

2
2} ⊗ {xj

2 : j ∈ Z≥0}
⋃{x2

1, x
2
1x2} ⊗ {xj

1 : j ∈ Z≥0}
⋃{1, x1, x2, x1x2}

Take the model with all terms of degree three or less, which has ten terms,
see the dashed triangle on the right hand in Figure 1. On x1 = 1 the model
is cubic in x2 so that four distinct points are enough to fix it. Thus any
design with four distinct points on each line is enough. The design D =
{(±1,±1), (±1,±2), (±2,±1)} in Figure 1 satisfies our needs.
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Fig. 1. GLDs V and D of Example 8 (left) and exponents α = (α1, α2) for monomials
in L(V) (right). The symbol △ corresponds to the leading term x2

1x
2
2, while the

shaded area contains monomials not in L(V).

4 Interpolation over varieties

Let V = ∪n
i=1Vi with Vi irreducible real affine variety and assume that the Vi’s

do not intersect i.e. Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ n. Then the polynomial ideal
driving an interpolation on V can be constructed as the intersection of the n
polynomial ideals, each one driving interpolation on a separate Vi. We discuss
this approach with an example.

Let z1, . . . , z4 be real values observed at design points (±1,±1) ∈ R2. Suppose
we are able to observe a function over the variety defined by a circle with radius√

3 and center at the origin and for simplicity, suppose that we observe the
zero function on the circle. We want a polynomial function that interpolates
both the values zi over the factorial points and takes the value zero over the
circle. Note that the design V is the union of five varieties: one for each point,
plus the circle. Start by constructing an ideal Ii ⊂ R[x1, x2, y] for every point
di, e.g. I1 = 〈y − z1, x1 − 1, x2 − 1〉. A similar approach for the circle gives:
IC = 〈y, x2

1 + x2
2 − 3〉. Then intersect all the ideals I∗ = I1 ∩ · · · ∩ I4 ∩ IC . The

ideal I∗ contains all the restrictions imposed by all the varieties as well as the
restrictions imposed by the observed functions. Then, for a monomial order
xα ≺ yβ, the desired interpolator is NF(y, I∗) ∈ R[x1, . . . , xk]. In our current
example we have NF(y, I∗) = g(x1, x2)(x

2
1 + x2

2 − 3)/4, where

g(x1, x2) = −(z1 + z2 + z3 + z4) + (z2 + z4 − z1 − z3)x1

+(z3 + z4 − z1 − z2)x2 + (z2 + z3 − z1 − z4)x1x2

is the interpolator for the four points, adjusted with a negative sign to com-
pensate for the inclusion of x2

1 +x2
2−3. This is the standard formula appearing

in books of design of experiments.
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The monomial ordering used above is called a blocked ordering; for an applica-
tion of such type of orders in algebraic statistics see Pistone et al. (2000). This
method works well in a number of cases for which the varieties do not intersect,
and when the functions defined on each variety are polynomial functions. If
the varieties that compose the design intersect, then the methodology needs to
ensure compatibility between the observed functions at the intersections. For
example, consider again observing the zero function over the circle with radius√

3; and the function f(x1, x2) = 1 over the line x1 +x2 −1 = 0. The observed
functions are not compatible at the two intersection points between the circle
and the line, which is reflected on the fact that NF(y, I∗) = y /∈ R[x1, x2].

5 Becker-Weispfenning interpolation

Becker & Weispfenning (1991) define a technique for interpolation on varieties.
It develops a polynomial interpolator for a set of pre-specified polynomial
functions defined on a set of varieties in Rk.

For a design variety V =
⋃n

i=1 Vi with Vi irreducible, the ideal of Vi is gen-
erated in parametric form and a pre-specified polynomial function is deter-
mined for each variety. For every variety Vi, let gi1, . . . , gik ∈ R[z1, . . . , zm]
be the set of parametric generators for the ideal of the variety I(Vi) so that
I(Vi) = 〈x1 − gi1, . . . , xk − gik〉 ⊂ R[x1, . . . , xk, z1, . . . , zm]. Also, for every va-
riety Vi, a polynomial function fi(z) ∈ R[z1, . . . , zm] is pre-specified. Now for
indeterminates w1, . . . , wn, let I∗ be the ideal generated by the set of polyno-
mials

n
⋃

i=1

{wi (x1 − gi1) , . . . , wi (xk − gik)}
⋃

{

n
∑

i=1

wi − 1

}

(5)

We have I∗ ⊂ R[x1, . . . , xk, w1, . . . , wn, z1, . . . , zm]. The technique of introduc-
ing dummy variables wi is familiar from the specification of point ideals: when
any wi 6= 0 we must have xj−gij = 0 for j = 1, . . . , k, that is, we automatically
select the i-th variety ideal. The statement

∑n
i=1 wi − 1 = 0 prevents all the

wi being zero at the same time. If several wi are non-zero, the corresponding
intersection of Vi is active. Consistency of the parametrization is, as Becker
and Weispfenning point out, a necessary, but not sufficient, condition for the
method to work.

Let ≺ be a block monomial order for which xα ≺ wβzγ . Set
f ∗ =

∑m
i=1 wifi(z) and let f ′ = NF(f ∗, I∗). The interpolation problem has a so-

lution if the normal form of f ∗ depends only on x, that is if f ′ ∈ R[x1, . . . , xk].
Although the solution does not always exist, an advantage of the approach is

12



the freedom to parametrise each variety separately from a functional point of
view, but using a common parameter z.

Example 9 (Becker & Weispfenning 1991, Example 3.1) We consider interpo-
lation over V = V1∪V2∪V3 ⊂ R2 The first variety is the parabola x2 = x2

1 + 1,
defined through the parameter z by g11 = z, g12 = z2 + 1.

The second and third varieties are the axes x1 and x2 and therefore g21 = z, g22 = 0
and g31 = 0, g32 = z. The prescribed functions over the varieties are f1 =
z2, f2 = 1 and f3 = z+1. The ideal I∗ is constructed using the set in Equation
(5) and we set f ∗ = w1f1 + w2f2 + w3f3. For a block lexicographic monomial
order ≺ in which xα ≺ wβzγ , we compute the normal form of f ∗ with respect
to I∗ and obtain f ′ = x2 + 1.

A variation of the technique of this Section leads to an extension of Hermite
interpolation, i.e. when derivative values over Vi are known and a polynomial
interpolator is sought. The intuition behind this approach is simple: a multi-
variate Taylor polynomial fi is constructed for every variety Vi and the algebra
is used to obtain the polynomial interpolator. If the varieties Vi intersect then
the Taylor polynomials need to be compatible at intersections, see details in
Becker & Weispfenning (1991).

Example 10 Consider interpolating the values 3/5, 1, 3 and derivative values
9/25, 1, 9 at the design points −2/3, 0, 2/3. The design points are the varieties
V1,V2,V3, and the Taylor polynomials are f1 = 3/5 + 9/25 ∗ (x + 2/3), f2 =
1 + x and f3 = 3 + 9 ∗ (x − 2/3), respectively. The general interpolator is
f ′ = 1 + x + (9/25)(x2 + x3) + 81/25(x4 + x5) which coincides with the given
values and derivatives at the design points.

6 Reduction of power series by ideals

Let us revisit the basic theory. A polynomial f ∈ R[x] can be reduced by the
ideal I(V) ⊂ R[x] to an equivalent polynomial f ′ such that f = f ′ on the
affine variety V. By Theorem 1, the reduced expression is f ′ = NF(f,V) and
clearly f − f ′ ∈ I(V).

Example 11 Consider the hyperplane arrangement V given by the lines x1 =
x2 and x1 = −x2. We have I(V) = 〈x2

1 − x2
2〉. Now for i = 1, 2, . . ., consider

the polynomial fi = (x1 + x2)
i. For a monomial ordering in which x2 ≺ x1,

we have that NF(fi,V) = 2i−1(x1 + x2)x
i−1
2 , for instance NF((x1 + x2)

5,V) =
16(x1 + x2)x

4
2 = 16x1x

4
2 + 16x5

2.

13



A convergent series of the form

f(x) =
∞
∑

i=0

αix
αi ,

can be written on the variety V as

NF(f,V) =
∞
∑

i=0

αiNF(xαi ,V). (6)

See Apel et al. (1996) for a discussion of conditions for the validity of Equation
(6).

We may also take the normal form of convergent power series with respect to
the ideal of an affine variety in C. For example by substituting x3 = 1 in the
expansion for ex we obtain

NF(ex, 〈x3 − 1〉)= 1 +
1

3!
+

1

6!
+

1

9!
+ . . . + x

(

1 +
1

4!
+

1

7!
+

1

10!
+ . . .

)

+x2
(

1

2!
+

1

5!
+

1

8!
+ . . .

)

=
1

3
e +

2

3
e−

1

2 cos

(√
3

2

)

+ x

(

1

3
e − 1

3
e−

1

2 cos

(√
3

2

)

+
1

3
e

1

2 sin

(√
3

2

))

+ x2

(

1

3
e − 1

3
e−

1

2 cos

(√
3

2

)

− 1

3
e

1

2 sin

(√
3

2

))

The relation NF(ex, 〈x3 − 1〉) = ex holds at the roots d1, d2, d3 of x3 − 1 = 0,
with d1 the only real root. Note that the above series is not the same as the
Taylor expansion at, say 0.

Example 12 Consider the ideal I = 〈x3
1 + x3

2 − 3x1x2〉. The variety V that
corresponds to I is the Descartes’ folium. For a monomial ordering in which
x2 ≺ x1, the leading term of the ideal is x3

1. Now consider the function f(x) =
sin(x1 + x2), whose Taylor expansion is

f(x) = (x1 + x2) −
1

3!
(x1 + x2)

3 +
1

5!
(x1 + x2)

5 + . . . (7)

The coefficients for every term of Equation (7) which is divisible by x3
1 is

absorbed into the coefficient of some of the monomials in L(V). For the second
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term in the summation we have the following remainder

NF

(

−(x1 + x2)
3

3!
,V
)

= −1

2

(

x2
1x2 + x1x

2
2 + x1x2

)

.

Note that different terms of the Taylor series may have normal forms with
common terms. For instance the normal form for the third term in the sum-
mation is

NF

(

(x1 + x2)
5

5!
,V
)

=
3

40
x2

1x
3
2 −

3

40
x5

2 +
1

8
x2

1x
2
2 +

1

4
x1x

3
2 −

1

40
x4

2 +
3

40
x1x

2
2.

The sum of the normal forms for first ten terms of Equation (7) is

f̃(x) =x2 + x1 −
1

2
x1x2 −

17

40
x1x

2
2 −

1

2
x2

1x2 −
1

40
x4

2 +
137

560
x1x

3
2

+
1

8
x2

1x
2
2 −

41

560
x5

2 −
167

4480
x1x

4
2 +

1

16
x2

1x
3
2 +

167

13440
x6

2

− 4843

492800
x1x

5
2 −

17

896
x2

1x
4
2 +

2201

492800
x7

2 +
197343

25625600
x1x

6
2

+
89

44800
x2

1x
5
2 −

65783

76876800
x8

2 −
4628269

5381376000
x1x

7
2 +

1999

5913600
x2

1x
6
2

+
118301

1793792000
x9

2 −
305525333

1463734272000
x1x

8
2 −

308387

1076275200
x2

1x
7
2 + . . .

The equality f̃(x) = sin(x1 + x2) is achieved over V by summing the normal
forms for all terms in Equation (7): f̃(x) interpolates sin(x1 + x2) over V.

7 Discussion and further work

In this paper we consider the extension of the theory of interpolation over
points to interpolation over varieties. We associate to the design variety a
radical ideal and the quotient ring induced by this variety ideal is a useful
source of terms which can be used to form the basis for a model. In particular,
knowledge of the quotient ring for the whole variety can be a useful guide to
models which can be identified with a set of points selected from the variety.

If the design variety is not a GLD, the technique still can be applied. As
an example consider the structure V consisting of a circle with a cross, see
Figure 2. For any monomial ordering, the polynomial g = x1x2(x

2
1 +x2

2 − 2) =
x3

1x2 + x1x
3
2 − 2x1x2 is a Gröbner basis for I(V). Now, for a monomial order

in which x2 ≺ x1, we have LT≺(g) = x3
1x2 and L(D) = {x2, x1x2, x

2
1x2}⊗{xj

2 :
j ∈ Z≥0}

⋃{x3+j
1 : j ∈ Z≥0}

⋃{1, x1, x
2
1} see Figure 2. If we are interested in

L′ = {1, x1, x2, x
2
1, x1x2, x

2
2} then a good subset of V which estimates L′ is
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bc bc bc bc bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

ut

α1

α2

Fig. 2. Variety for the ideal 〈x1x2(x
2
1 + x2

2 − 2)〉 (left) and exponents α = (α1, α2)
for monomials in L(V) (right). The symbol △ in the right diagram corresponds to
the leading term x3

1x2, while the shaded area contains monomials not in L(V).

D = {(±1,±1)} ∪ {(0,±
√

2), (±
√

2, 0)} ∪ {(0, 0)}. This is the classic central
composite design of response surface methodology.

We have not discussed the issue of statistical variation in interpolation, that
is, when observations come with error. In the case of selecting points from V
of Section 3, standard models can be used, but when an observation is a whole
function as in Sections 4 and 5, a full statistical theory awaits development. It
is likely that such a theory would involve random functions, that is stochastic
processes on each variety Vi.

Finally, we note that elsewhere in this volume there is emphasis on probability
models defined on discrete sets. Typically the set may be a product set which
allows independence and conditional independence statements. A simple ap-
proach but with deep consequences is to consider not interpolation of data
(y-values) in a variety, but log p where p is a probability. It is a challenge,
therefore, to consider log p models on varieties, that is, distributions on vari-
eties. One may count occurrences rather than observe real continuous y-values.
With counts we may be able to reconstruct a distribution on the transect as
in Example 1. Again the issue would be to reconstruct the full distribution
both on and off the transect. This points to a theory of exponential families
anchored by prescribing the value in varieties. We trust that the development
of such a theory would be in the spirit of this volume and the very valuable
work of its dedicatee.
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