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ABSTRACT
We study a generalization of the Muddy Children puzzle by
allowing public announcements with arbitrary generalized
quantifiers. We propose a new concise logical modeling of
the puzzle based on the number triangle representation of
quantifiers. Our general aim is to discuss the possibility
of epistemic modeling that is cut for specific informational
dynamics. Moreover, we show that the puzzle is solvable
for any number of agents if and only if the quantifier in
the announcement is positively active (satisfies a form of
variety).
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I.2.4 [Computing Methodologies]: Artificial Intelli-
gence—Knowledge Representation Formalisms and Meth-
ods; I.2.6 [Computing Methodologies]: Artificial In-
telligence—Learning ; H.4 [Information Systems Appli-
cations]: Miscellaneous; F.4 [Mathematical Logic and
Formal Languages]: Miscellaneous

General Terms
Theory

Keywords
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1. INTRODUCTION
In this paper we propose a generalization of the popular

Muddy Children puzzle by allowing public announcements
with arbitrary quantifiers. We focus on the solvability is-
sue, i.e., on the possibility of the convergence to knowledge
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for all the agents. We prove that the puzzle is solvable for
any number of agents if and only if the quantifier in the an-
nouncement is positively active (satisfies a form of variety)
(see Van Benthem, 1984). For example, announcing ‘Most
of you are muddy’ always leads to the successful reasoning
while announcing ‘At most 5 of you are muddy’ does not.
Relating to that we explore a possibility of a concise logical
modeling of dynamic epistemic situations, like the Muddy
Children puzzle. Our general aim is to discuss the possibility
of epistemic modeling that is cut for specific informational
dynamics.

A considerable amount of philosophical and logical liter-
ature has been devoted to the epistemic inferences of the
Muddy Children scenario (Littlewood, 1953)1. In particu-
lar, the framework of dynamic epistemic logic allows a clear
and comprehensive explanation of the underlying phenom-
ena (see Van Ditmarsch et al., 2007; Gerbrandy, 1999; Moses
et al., 1986). Let us briefly recall the puzzle and its classi-
cal modeling. The scenario involves a father and his three
children—truthful, perfect logical reasoners. As a result of
playing outside some of the children have mud on their fore-
heads. The father says: (A1) ‘At least one of you has mud
on your forehead’. Then, he asks the children: (I) ‘Can you
tell for sure whether you have mud on your forehead? If yes,
announce your status’. Each child can see the mud on others
but cannot see his or her own forehead. Nothing happens.
The father insists—he repeats (I). Still no reaction. But af-
ter he repeats the question for the second time suddenly all
muddy children know that they have mud on their forehead.
How is that possible?

The problem is usually modeled with the help of Kripke
structures describing agents’ uncertainty. Let us call the
three children a, b and c, and assume that, in fact, all of
them are muddy. Three propositional letters ma, mb and mc

express that the corresponding child is muddy. The standard
epistemic modeling is depicted in Figure 1, with the initial
model of the situation on the left.

In the model, possible worlds correspond to the ‘distribu-
tion of mud’ on children’s foreheads, e.g., w5 : ma stands
for a being muddy and b and c being clean in world w5.
Two worlds are joined with an edge labelled with x, if the
two worlds are in the uncertainty range of agent x (i.e.,
if agent x cannot distinguish between the two worlds; for
clarity we drop the reflexive arrows for each state). The
boxed state stands for the actual world. Now, let us re-
call how the solution process can be modeled in this set-

1Actually the ancestor version of the puzzle is mentioned
already in (Rabelais, 1839).
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Figure 1: The Classical Muddy Children Modelling

ting. The first public announcement has the following form:
(1′) ma∨mb∨mc, and after the announcement (1′) becomes
common knowledge among children. As a result the children
perform an update, i.e., they eliminate world w8 in which
(1′) is false. The result is depicted in the second part of
Figure 1. Then the father asks for the first time, who of
them knows his status (I). The agents’ reasoning can be as
follows. In world w6 agent c knows that he is dirty (there
is no uncertainty of agent c between this world and another
in which he is clean). Therefore, if the actual world was w6,
agent c would know his state and announce it. The situation
is similar for a and b in w5 and w7, respectively. The silence
of the children may also be interpreted as the announce-
ment that none of them know whether they are muddy:
¬(Kama∨Ka¬ma)∧¬(Kbmb∨Kb¬mb)∧¬(Kcmc∨Kc¬mc).
Hence, all agents eliminate those worlds that do not make
such announcement true: w5, w6, w7. The epistemic model
of the next stage is smaller by three worlds. Then it is again
clear that if one of the w2, w3, or w4 was the actual state,
the respective agents would have announced their knowl-
edge. The children still do not respond so, in the next round,
everyone knows that the actual situation cannot be any of
w2, w3, and w4. Hence, they all eliminate the three states,
which leaves them with just one possibility, w1. All uncer-
tainty disappears and they all know that they are dirty at
the same time.

One of the features that make the Muddy Children puz-
zle surprising is that a very simple quantitative public an-
nouncement carries powerful qualitative information; agents
must reason about their properties on the basis of some gen-
eral quantitative statement. It seems that the possibility of
convergence to knowledge depends somehow on the trade-
off between the internal structure of the epistemic scenario
and the amount of information provided by the public an-
nouncement. For instance, the truthful announcement ‘At
least one of you has mud on your forehead’ allows epistemic
reasoning that solves the puzzle for any configuration, while
announcing ‘An even number of you have mud on your fore-
head’ leads to an immediate one-step solution that does not
involve any epistemic reasoning. In what follows we investi-

gate those phenomena.

2. GENERALIZED MUDDY CHILDREN
Father’s first announcement has the following form:

A1 At least one of you has mud on your forehead.

Sentence (A1) can be seen as a background assumption that
makes the epistemic multi-agent inferential process possi-
ble. The quantifier announcement prepares the ground for
epistemic reasoning, and enforces some structure on the sit-
uation. The natural question is: Does every announcement
trigger the successful reasoning?

A simple but crucial observation is that the information
provided by the father has the following form:

Q of you have mud on your forehead,

where Q may be substituted by various quantifiers, like ‘At
least one’, ‘An even number’, ‘One third’ and so on. As
expected, the informational power of an announcement de-
pends on the quantifier. To see this, let us think of the
Muddy Children situation as M = (U,A), where U is the
set of children and A ⊆ U is the set of children that are
muddy.2 Of course, after father’s announcement some mod-
els are no longer possible. Only those satisfying the quan-
tifier sentence, i.e., M |= QU (A), should be still considered.
Therefore, the model of a given Muddy Children scenario
consists of the structures satisfying the quantifier sentence.
The agent’s goal is to pinpoint one of them—the actual
world. To explain this idea in more detail let us start with
introducing the notion of generalized quantifiers.

Definition 1 (Mostowski 1957). A generalized
quantifier Q of type (1) is a class of structures of the
form M = (U,A), where A is a subset of U . Additionally,
Q is closed under isomorphism, i.e., if M and M ′ are
isomorphic, then (M ∈ Q ⇐⇒ M ′ ∈ Q).

Now, the classical Muddy Children puzzle with the father
saying ‘At least one of you has mud on your forehead’ in-
volves the existential generalized quantifier: ∃ = {(U,A) :
A ⊆ U & A 6= ∅}. The variations with the father using
different quantifiers may lead to other classes of possible sit-
uations, e.g., Most = {(U,A) : A ⊆ U & |A| > |U −A|}.

Isomorphism closure gives rise to the number triangle rep-
resentation of quantifiers proposed by Van Benthem (1986).
Every model belonging to a generalized quantifier of type
(1) may be represented as a pair of natural numbers (k, n),
where k = |U − A| and n = |A|. In other words, the first
number stands for the cardinality of the complement of A
and the second number stands for the cardinality of A. The
following definition gives a formal counterpart of this notion.

Definition 2. Let Q be a type (1) generalized quantifier.
For any numbers k, n ∈ N we define a quantifier relation:
Q(k, n) iff there are U,A ⊆ U such that |U | = n+k, |A| = n,
and QU (A).

Proposition 1. If Q is a type (1) generalized quantifier,
then for all U and all A ⊆ U we have: QU (A) iff Q(|U −
A|, |A|).3

2In this paper we will restrict ourselves to finite models.
3For the proof see, e.g., (Peters and Westerst̊ahl, 2006, p.96).
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As we restrict ourselves to finite universes, we can repre-
sent all that is relevant for type (1) generalized quantifiers in
the structure called number triangle, which simply enumer-
ates all finite models of type (1). The node labeled (k, n)
stands for a model in which |U −A| = k and |A| = n. Now,
every generalized quantifier of type (1) can be represented
by putting ‘+’ at those (k, n) that belong to Q and ‘–’ at the
rest. For example, the quantifier ‘At least one’ in number
triangle representation is shown in Figure 2. Number trian-
gle plays a crucial role in Generalized Quantifier Theory and
it also comes handy in our study, as we can now interpret
the pairs (k, n) as possible worlds.

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

—

– +

– + +

– + + +

– + + + +

Figure 2: Number triangle and the representation
of ‘At least 1’

3. EPISTEMIC MODELING BASED ON
NUMBER TRIANGLE

How can we combine all introduced elements into an epis-
temic modeling in order to characterize the solvability of
generalized Muddy Children puzzle? To answer that ques-
tion let us analyze a concrete Muddy Children scenario. As
before, we take agents a, b, and c. All possibilities with
respect to the size of the set of muddy children are enumer-
ated in the third level of the number triangle. Let us also
assume at this point that the actual situation is that agents
a, b are muddy and c is clean. Therefore, with respect to our
representation the real world is (1, 2), one child is clean and
two are muddy:

(3,0) (2,1) (1,2) (0,3)

Now, let us focus on what the agents observe. Agent a
sees one muddy child and one clean child. The same holds
for agent b, in this sense they are perfectly symmetric. Their
observational state can be encoded as (1,1). Accordingly, the
observational state of c is (0,2). In general, if the number
of agents is n, each agent can observe n − 1 agents. As a
result what agents observe is encoded in the second level of
the number triangle.

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b a,b c c

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b a,b c c

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b c c

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

a,b c

Figure 3: The Number-Triangle Muddy Children
Modelling; the labelled arrows indicate that agents
a, b are in the observational state (1,1), and agent c
is in (0,2).

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

The question that each of the agents is facing is whether he
is muddy. For example, agent a has to decide whether he
should extend his observation state, (1, 1), to the left state
(2, 1) (a decides that he is clean) or to the right state (1, 2)
(a decides that he is muddy). The same holds for agent b.
The situation of agent c is similar, his observational state is
(0, 2) and it has two potential extensions (1, 2) and (0, 3). In
general, note that every observational state has two possible
successors.

Given this representation, we can now analyze what hap-
pens in the Muddy Children scenario. Figure 3 represents
the process, with the initial model at the top. First, the
announcement is given: ‘At least one of you is muddy’.
According to the number triangle representation (see Figure
2 on the right), this allows eliminating those factual states
representing finite models that are not in the quantifier. In
this case it is (3, 0). The resulting model is the second from
the top. Then the father asks: ‘Can you tell for sure whether
or not you have mud on your forehead?’ In our graph, this
question means: ‘Does any of you have only one successor?’
All agents know that (3, 0) has just been eliminated. Agent
a considers it possible that the actual state is (2, 1), i.e., that
two agents are clean and one is muddy, so that he himself
would have to be clean. But then he knows that there would
have to be an agent whose observational state is (2, 0)—there
has to be a muddy agent that observes two clean ones. For
this hypothetical agent the uncertainty disappeared just af-
ter the quantifier announcement (for (2, 0) there is only one
successor left). So, when it becomes clear that no one knows
and the father asks the question again, the world (2, 1) gets
eliminated and the only possibility for agent a is now (1, 2)
via the right successor, and this indicates that he has to be
muddy. Agent b is in exactly the same situation. They both
can announce that they know. And since c witnessed the
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whole process he knows that the only way for them to know
was to be in (1, 1) and decides on (1, 2).

This epistemic reasoning took two steps. If the actual
world was (2, 1) some agent’s observation would be (2, 0),
and this agent would know his status after the first an-
nouncement, and the rest of the agents would follow. Ac-
cordingly, for (0, 3) this would have taken three steps. This
can be summed up in the following way: the quantifier
breaks the perfect ‘uncertainty structure’ of the model, and
the farther the actual state is from this break, the longer
it takes to solve the puzzle (as will become clear in Section
5.1).

In general, if there are n agents, we take the nth level of
the triangle, i.e., finite models with |U | = n, enumerating
all possible settings (up to isomorphism). This level will be
called the factual level and it always consists of n+1 states.
It is an analogue of the initial uncertainty domain of the
children in the classical modeling. Moreover, in the puzzle
every child sees all other children, but not himself, so every
possible observation consists of n − 1 children. Therefore,
level n − 1 of the number triangle can be interpreted as
enumerating every possible observation of the agents. We
will call it the observational level. Each observation can be
extended to one of the two factual states that are the closest
below—to the left if the observer in question is clean or to
the right if he is muddy.

4. RELATING TO KRIPKE EPISTEMIC
MODELS

Let us now focus on clarifying the relation of our approach
to the standard epistemic modeling via Kripke structures.
First of all, note that every agent is in one of the two groups:
either among the muddy children or among the clean ones.
Moreover, in any situation there are at most two possible
observational states that the agents might be distributed
among. Every clean child observes the same quantitative
situation as other clean children, and every muddy child ob-
serves quantitatively the same situation as all other muddy
children.

Fact 1. Every agent’s observation is encoded by one of
at most two states in the observational level. Those two are
neighboring states.

Proof. For the first part. Assume that the total number
of children is n, the number of muddy children is m. Let us
pick an agent and call him a. There are two possibilities,
either a is muddy, then a’s observational state is (n−m,m−
1), or a is clean, then a’s observational state is ((n −m) −
1,m). The two states neighbor each other in the model
because they are the only two states that can be extended
to the actual state (n−m,m).

Moreover, it is easy to notice that the actual world deter-
mines the number of agents perceiving the same situation.

Observation 1. Given a certain situation (c,m), where
c,m > 0, there are c children that are in the observational
state (c− 1,m) and m children in the observational state of
(c,m − 1). In case m = 0 all children are in the observa-
tional state (c − 1, 0). In case c = 0 all children are in the
observational state (0,m− 1).

Therefore, it is possible to formalize our structures in the
following way.

Definition 3. Muddy Children model for n children is
a quadruple MMC

n = (So, Sf , Rm, Rm̄), where:

• So = {(c,m) | c+m = n−1} (the observational states),

• Sf = {(c,m) | c+m = n} (the factual states),

• Rm ⊆ So × Sf , such that Rm((c1,m1), (c2,m2)) iff
m2 = m1 + 1,

• Rm̄ ⊆ So × Sf , such that Rm̄((c1,m1), (c2,m2)) iff
c2 = c1 + 1.

In other words, our model is a two-row fragment of the
number triangle with a double successor relation. An agent
having access from an observational state (c,m) to the fac-
tual state (c,m + 1) corresponds to the possibility that he
is muddy. Every such two states are in the relation Rm.
The analogous situation holds for (c,m), (c+1,m) and Rm̄.
Therefore, it is easy to observe that the size of such models
is linear with respect to the number of children:

Observation 2. If n ∈ N is the number of children, then
the Muddy Children model has 2n+ 1 states.

This is a significant improvement with respect to the classi-
cal modeling, which requires an exponential number of states
(cf. Van Ditmarsch et al., 2007; Fagin et al., 1995).

In our setting generalized quantifiers can be interpreted as
propositional letters evaluated over the factual states of the
Muddy Children model. For any generalized quantifier of
type (1) we take a propositional letter q. Now, let MMC

n =
(So, Sf , Rm, Rm̄) be a Muddy Children model, and (c,m) ∈
Sf , then the semantics of q can be defined in the following
way:

MMC
n , (c,m) |= q iff (c,m) ∈ Q.

The quantifier cuts the initial uncertainty range. This cut is
in fact an update of the factual level of the Muddy Children
model with a corresponding ‘quantifier’ letter q. Below we
define what happens to the general Muddy Children model
when a quantifier is introduced.

Definition 4. Having the Muddy Children model
MMC

n = (So, Sf , Rm, Rm̄) and a generalized quantifier Q of
type (1), we define the quantifier update of MMC

n with the
quantifier Q as resulting in the Q-Muddy Children model
MMC

n |q = (S′o, S
′
f , R

′
m, R

′
m̄) in the following way:

• S′o = {(c,m) | (c,m) ∈ So & (Q(c + 1,m) ∨ Q(c,m +
1))},
• S′f = {(c,m) | (c,m) ∈ Sf & Q(c,m)},
• R′m = Rm� (S′o × S′f ),

• R′m̄ = Rm̄� (S′o × S′f ).

Now, the epistemic information can be expressed with for-
mulae evaluated in the observational states. We can say
that an agent in an observational state (c,m) knows that
ϕm (that he is muddy) if and only if the only successor of
(c,m) is (c,m + 1). Moreover, if an epistemic announce-
ment eliminates an observational state it also eliminates all
its successors. As our modeling is Muddy-Children specific,
we do not give here a full epistemic language.

As we have seen, our model is significantly smaller then
the representation needed for the classical modeling. Why
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is that? Does it imply some different kind of epistemic rea-
soning for achieving the solution? The trick is that in our
modeling we make a heavy use of three facts.

First of all, the only thing that an agent needs to be able
to decide at every round, except the knowledge of his own
status, is if other agents know whether they are muddy.

Secondly, provided the information that each agent pos-
sesses in the Muddy Children scenario, explicitly represent-
ing the specific information about the distribution of mud-
diness is not necessary. To see this in full light, let n ∈ N
be the number of agents. For each i, 0 ≤ i ≤ n we define
mi := ‘Exactly i of the children are muddy’. It is easy to
verify that for each agent a it is the case that at any state
of the classical epistemic model Kam0∨Kam1∨ . . .∨Kamn

is true if and only if Kama ∨K¬ma.
Thirdly, within certain group (the group of muddy chil-

dren or the group of clean ones) all the agents converge to
knowledge in the same way and simultaneously. To make
it more specific, take a pointed epistemic muddy children
model (M,w) for n agents. Note, that w determines two
groups of agents those that are muddy, and those that
are clean. Then, for any two agents a, b from one of the
two groups it is the case that if Kama ∨ Ka¬ma then
Kbmb ∨Kb¬mb.

This three observations lead to the following epistemic
representation:

t0 : m0 t1 : m1 t2 : m2 . . . tn : mn
0 1 0 n-1 mod 2

The choice of the actual world tk determines the distribu-
tion of the agents among the two relations R0 and R1 in the
following way, for i, j ∈ {0, 1} such that i 6= j: if Ri(tk, tk+1)
or Rj(ti, ti−1) then Ri := Rm̄ and Rj := Rm. The intuition
is that Rm (resp. Rm̄) reflects the relevant uncertainty of
all muddy (resp. clean) children. The above structure does
not represent all epistemic facts of the classical modeling,
but it gives all that is relevant for the convergence to knowl-
edge for all the agents. Looking at the above model, one can
observe a striking similarity to the dynamic epistemic logic
modeling of the Consecutive Numbers puzzle (see e.g. Van
Ditmarsch et al., 2007; Parikh, 1991).

Intuitively, the way in which we obtain the above con-
cise model from the classical epistemic representation is by
grouping the agents with respect to their informational simi-
larity and introducing a new set of propositions that express
the cardinality of the set of muddy children. Moreover, the
states in our model merge the isomorphic worlds in the clas-
sical model. This leads to a conclusion that our modeling is
in fact obtained by means of a merge applied to the classical
Kripke model.4

5. MUDDY CHILDREN SOLVABILITY
4Our transformation is similar to abstraction-refinement
techniques that have been developed for model-checking in
temporal logics, modal transition systems (Godefroid et al.,
2001). We are also aware of the similar attempts formulated
in (Cohen et al., 2009). Recently abstraction-refinement
techniques have been applied to dynamic epistemic logic
(Wang, 2010). However, the above model does not comply
to the rules of the abstraction-refinement technique defined
in the latter. In fact, in line of Wang (2010) a similar model
can be obtained, but it makes use of 3-valued Public An-
nouncement Logic.

In this section, applying the epistemic modeling described
above, we answer our initial question. Namely, we charac-
terize the solvability of the generalized Muddy Children puz-
zle by determining the number of reasoning steps needed to
reach the solution in a concrete setting. In particular, we
characterize public announcements with arbitrary general-
ized quantifiers that trigger successful epistemic reasoning.

5.1 Number of epistemic iterations
By reinterpreting the Muddy Children puzzle within the

semantics of quantifiers we can associate every finite model
with the number of steps needed to solve the puzzle, if it is
solvable at all.

Definition 5. An epistemic quantifier is a pair QMC =
(Q, fQ), where Q is a quantifier and fQ : Q→ N is a func-
tion that assigns to a pair of numbers representing M ∈ Q
the number of steps needed to solve an epistemic situation
with quantifier Q (in particular, the Muddy Children puzzle
with the background assumption containing quantifier Q).

Now, we need to know how to determine values of fQ for a
given quantifier.

Proposition 2. Let Q be a generalized quantifier, and n
be the number of children. Then the corresponding epistemic
quantifier is QMC = (Q, fQ), where the partial function fQ :
Q ⇀ N is defined in the following way.

fQ((n−m,m)) =

min(µx≤n−m (n−m−x,m+x) 6∈ Q, µy≤m (n−m+y,m−y) 6∈ Q),

where function µx ϕ(x) finds the smallest x that satisfies ϕ.

Proof. Observe that the function assigns a value x to
(u−k, k) in the level u of the number triangle if (u−k, k) ∈ Q
and there is (u− `, `) in the level u such that (u− `, `) 6∈ Q.
Moreover, the value x encodes the distance from the nearest
(u − `, `) such that (u − `, `) 6∈ Q. The proposition now
follows from the merged modeling in Section 4.

Concerning the assignment of the number of steps needed
for solving the puzzle, we can also ask what is the struc-
ture of those steps. Namely, we can characterize situations
in which some agents infer their status from the announce-
ments of other agents, in contrast to the cases in which
it happens simultaneously (we use ‘+’-superscripts to iden-
tify those situations). The definition of the partial function
f+

Q : Q ⇀ {+} can be then given in the following way.

f+
Q ((n−m,m)) = + iff:

(1) fQ((n−m,m)) is defined, and

(2) m 6= 0 and m 6= n and some agent considers two
factual worlds possible.

For shaping the intuitions, let us give a few examples of
epistemic quantifiers in the number triangle representation.
First let us consider the quantifier ‘At least k’. It is easy to
observe that increasing k causes the downward triangle to
move down along the (0, 0)–(0, n) axis.

This quantifier allows solving the Muddy Children puz-
zle for any configuration of ‘muddiness’. However, within a
certain level, the farther from a minus the longer it takes.

Now let us have a look at the quantifier ‘At most k’.
The question-marks occur in place of models that sat-

isfy the quantifier, but for which it is impossible to solve
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– 1

– 1+ 2

– 1+ 2+ 3

– 1+ 2+ 3+ 4

—

– –

– – 1

– – 1+ 2

– – 1+ 2+ 3

Figure 4: Increasing muddy-quantifiers ‘At least 1’
and ‘At least 2’

the Muddy Children puzzle. For example, if one child is
clean and one child is muddy (the actual world is (1, 1)) the
Muddy Children situation does not lead to a solution if the
announcement is: ‘At most two of you are muddy’. Again,
the farther from a minus the longer it takes to solve the
puzzle.

Parity quantifiers in the Muddy Children setting do not
involve much inference—every situation is solvable in one
step (see Figure 6) and all answers are given simultaneously
by all the agents.

5.2 Characterization
The above discussion leads to the observation that solving

the Muddy Children Puzzle is possible if the announcement
of the quantifier leaves one observational state with just one
successor. Therefore the solvability of the particular Muddy
Children scenario can be characterized in the following way:

Theorem 1 (Muddy Children Solvability). Let n
be the number of children, m ≤ n the number of muddy
children, and Q be the background assumption. A Muddy
Children situation is solvable iff (n −m,m) ∈ Q and there
is an ` ≤ n such that (n− `, `) 6∈ Q.

Proof. Let us fix n—the number of children and m ≤
n—the number of muddy children, Q is the quantifier back-
ground assumption.

For left to right. Assume that the scenario ends
successfully—all agents arrive to knowledge about their sta-
tus. Assume towards contradiction that it is not the case
that (n−m,m) ∈ Q or it is not the case that there is ` ≤ n
such that (n− `, `) /∈ Q.

• if (n −m,m) /∈ Q then the father’s announcement is
not truthful. Contradiction.

• if for all ` ≤ n it is the case that (n − `, `) ∈ Q, then
the public announcement of Q does not eliminate any
world an thus the iterated epistemic reasoning is im-
possible and the convergence to knowledge fails for all
the agents. Contradiction.

—

? ?

2 1+ –

2 1+ – –

2 1+ – – –

—

? ?

? ? ?

3 2+ 1+ –

3 2+ 1+ – –

Figure 5: Decreasing muddy-quantifiers ‘At most 1’
and ‘At most 2’

For the other direction, assume that (n−m,m) ∈ Q and
there is ` ≤ n such that (m−`, `) /∈ Q. Then by Proposition
2 fQ((n−m,m)) is defined and hence the puzzle is solvable
in fQ((n−m,m)) steps.

In fact, the solvability issue coincides with a known and
very important property of generalized quantifiers.

Definition 6 (Van Benthem (1984)). A quantifier
Q is active (alternatively: Q satisfies variety, VAR) iff for
every non-empty set U , there exists A ⊆ U such that QU (A)
but there is also B ⊆ U such that it is not the case that
QU (B).

Note that VAR can be viewed as a conjunction of two
weaker conditions5, VAR+ and VAR−.

Definition 7.

VAR+ A quantifier Q is positively active (alternatively: Q
satisfies VAR+) iff for every non-empty set U if there
exists A ⊆ U such that QU (A), then there is also B ⊆
U such that it is not the case that QU (B).

VAR− A quantifier Q is negatively active (alternatively: Q
satisfies VAR−) iff for every non-empty set U if there
exists A ⊆ U such that it is not the case that QU (A),
then there is also B ⊆ U such that QU (B).

Now, we can characterize the general Muddy Children
Solvability in the following way:

Corollary 1 (Muddy Children Solvability).
A Muddy Children situation with Q as the background
assumption is solvable for any number of children and any
distribution of muddiness iff Q is positively active.

5Our focus on such forms of VAR is consistent with the
usefulness of weaker variability assumptions in Generalized
Quantifier Theory Van Benthem (1984).

262



—

1 –

1 – 1

1 – 1 –

1 – 1 – 1

1 – 1 – 1 –

—

1 –

1 – –

1 – – 1

1 – – 1 –

1 – – 1 – –

Figure 6: Muddy-quantifiers ‘Divisible by 2’ and
‘Divisible by 3’

6. CONCLUSIONS AND PERSPECTIVES
In this paper we introduced a new kind of logical modeling

of the puzzle based on the idea of the number triangle which
is similar, in perspective, to the standard modeling of the
Consecutive Numbers puzzle. In our approach the represen-
tation of the problem is exponentially smaller than in other
models based on dynamic epistemic logic. In this sense, our
work might be viewed as searching for more concise models
that utilize some symmetry features as, for example, the re-
cent work of Wang (2010). Our abstraction preserves prop-
erties guaranteeing that the results of the reasoning are in
some sense equivalent to the ones we obtain in the concrete
model. In our case the similarity is defined by achieving
the same epistemic (cognitive) outcome. We observed that
from agents local perspective solving the puzzle might be
viewed as counting the number of muddy children, so we
compressed our model by merging isomorphic states. As
a result, we came up with concise modeling that may be
attractive in all those applications where an agent’s inter-
nal representation of the problem is crucial, like cognitive
science or designing multi-agent systems in the domain of
artificial intelligence. Moreover, the counting-like structure
of the new model shows that Muddy Children puzzle might
be in a way reducible to other problems, like Consecutive
Numbers puzzle. This indicates that, perhaps, equivalence
classes on the domain of epistemic processes could be defined
and in this way their dynamics-oriented complexity could be
captured.

The domain of the classical epistemic model can be par-
titioned by an equivalence relation, and the efficiency of the
announcements depends on their ‘compatibility’ with this
partition. In other words, all assertions that are used in
the scenario either remove or retain whole partition cells.
In that case, clearly, the update process will terminate with
a number of steps measured by the number of equivalence
classes, and not with the size of the actual model. In partic-
ular, in the Muddy Children puzzle the equivalence classes
are given by permutations of individuals, and all relevant as-
sertions, both the father’s announcement and the children’s

subsequent ‘silence’, respect that equivalence relation. This
perspective on the generic assertions of the Muddy Chil-
dren puzzle can be linked to the common assumption that
information structures are partition based (see e.g. Aumann,
1999; Fagin et al., 1995) and, furthermore, to the rationality
assertions of game solution procedures (see Van Benthem,
2007). Another interesting interpretation of the partition is
the one with the notion of issue in dynamic epistemic logic
of questions (Van Benthem and Minica, 2010): by choosing
an optimal issue, we can speed up the learning processes
dramatically.

There are many further methodological questions concern-
ing our logical modeling. First is that of the generality of our
approach. Even though our framework is clearly compati-
ble with the one of dynamic epistemic logic in terms of (the
structure and the number of) steps needed for completion
of epistemic reasoning we still wonder if it can be extended
in a way that allows epistemic logic flexibility. A possible
direction would be to associate explicitly our local repre-
sentations with computational procedures, e.g., by viewing
the representation in terms of automata theory (cf. Van der
Meyden, 1996). Secondly, our work includes extension of
public announcements to arbitrary generalized quantifiers.
This in itself leads to a number of important issues, e.g.,
what is the epistemic logic of quantifier public announce-
ments?

In section 5 we characterize solvability of the Muddy Chil-
dren puzzle with arbitrary generalized quantifier announce-
ments using a formal counterpart of the intuitive condition of
announcements’ non-voidance. The characterization shows
how general, independent from particular settings, proper-
ties of announcements influence convergence to knowledge.
Similar properties of quantifiers have been widely studied in
logic, linguistics and cognitive science. The present link to
the multi-agent approach leads to a significant extension of
the existing approach.

Our work generates many directions of follow-up research.
For instance, we could consider combinatorially interesting
situations with many predicates (e.g., children having spots
of different colors on their foreheads), manipulate the ob-
servational power of the children or restrict their abilities to
infer higher-order epistemic states to account for well-known
processing bottlenecks (see, e.g., Verbrugge, 2009). Finally,
distinguishing between factual and observational states in
the proposed epistemic modeling can be used to investigate
other types of epistemic inferences and puzzles, for exam-
ple Russian Cards or the Top-Hat puzzle. In general, we
hope that this fresh view on the old puzzle will motivate
new developments in the study of agents’ local perspective
in multi-agent intelligent interaction.
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