Int J Comput Vis
DOI 10.1007/s11263-007-0086-4

Detailed Real-Time Urban 3D Reconstruction from Video

M. Pollefeys - D. Nistér - J.-M. Frahm - A. Akbarzadeh - P. Mordohai - B. Clipp -
C. Engels - D. Gallup - S.-J. Kim - P. Merrell - C. Salmi - S. Sinha - B. Talton -
L. Wang - Q. Yang - H. Stewénius - R. Yang - G. Welch - H. Towles

Received: 20 March 2007 / Accepted: 27 August 2007
© Springer Science+Business Media, LLC 2007

Abstract The paper presents a system for automatic, geo-
registered, real-time 3D reconstruction from video of urban
scenes. The system collects video streams, as well as GPS
and inertia measurements in order to place the reconstructed
models in geo-registered coordinates. It is designed using
current state of the art real-time modules for all processing
steps. It employs commodity graphics hardware and stan-
dard CPU’s to achieve real-time performance. We present
the main considerations in designing the system and the
steps of the processing pipeline. Our system extends exist-
ing algorithms to meet the robustness and variability neces-
sary to operate out of the lab. To account for the large dy-
namic range of outdoor videos the processing pipeline es-
timates global camera gain changes in the feature tracking

M. Pollefeys - J.-M. Frahm - P. Mordohai (<) - B. Clipp -

D. Gallup - S.-J. Kim - P. Merrell - C. Salmi - S. Sinha -

B. Talton - G. Welch - H. Towles

Department of Computer Science, University of North Carolina,
Chapel Hill, USA

e-mail: mordohai @cs.unc.edu

M. Pollefeys
e-mail: marc.pollefeys @inf.ethz.ch

J.-M. Frahm
e-mail: jmf@cs.unc.edu

G. Welch
e-mail: welch@cs.unc.edu

H. Towles
e-mail: herman@cs.unc.edu

D. Nistér - A. Akbarzadeh - C. Engels - L. Wang - Q. Yang -

H. Stewénius - R. Yang

Center for Visualization and Virtual Environments, University of
Kentucky, Lexington, USA

R. Yang
e-mail: ryang @cs.uky.edu

stage and efficiently compensates for these in stereo esti-
mation without impacting the real-time performance. The
required accuracy for many applications is achieved with
a two-step stereo reconstruction process exploiting the re-
dundancy across frames. We show results on real video se-
quences comprising hundreds of thousands of frames.

Keywords 3D reconstruction - Stereo vision - Structure
from motion - Large scale modeling - Urban
reconstruction - Plane sweeping - Depth map fusion

1 Introduction

Reconstruction of buildings and landscapes in 3D from im-
ages and videos has long been a topic of research in com-
puter vision and photogrammetry. Recently, applications
such as Google Earth and Microsoft Virtual Earth have
been very successful in delivering effective visualizations of
large scale models based on aerial and satellite imagery to
a broad audience. This has created a demand for ground-
based models as the next logical step to offer 3D visual-
izations of cities. Visualizations using such data are possi-
ble in the form of panoramic mosaics (Teller et al. 2003;
Romén et al. 2004) or simple geometric models (Cornelis et
al. 2006) which require less data to be constructed but also
limit the user’s ability to freely navigate the environment.
For totally unconstrained navigation in the virtual environ-
ment, accurate and detailed 3D models are required. Google
and Microsoft have begun acquiring ground-based videos
of primarily cities, but have not yet been able to deliver to
the public high-quality ground-based models. The massive
amounts of data pose significant challenges for the collec-
tion, processing and visualization systems.

@ Springer

Int J Comput Vis

e

e > ‘{:';',_
>4 { =
a9 ol >
r ,.,
A | S s
A\ *-'z-’-TP h ;
Y = e g) -

. R S| N S
o oy 2 i., 2 ewi? fom
] B BN
o . [£ .L“'T_ -“.‘-:
i T 4 e A

iy & ” Y 4
J; ¥ prPe :
el ! . "‘ . T
L Jaky 5 Wer §
3 = e '§
" 5 [
n'i ‘

Fig. 1 (Color online) View from above and details of reconstructed models from a 170,000 frame video

In this paper, we introduce a large-scale, 3D reconstruc-
tion system that operates at approximately 30 Hz while still
delivering detailed 3D models in the form of textured polyg-
onal meshes. The system incorporates data from a Global
Positioning System (GPS) and an Inertial Navigation Sys-
tem (INS), if available, or relies on traditional structure from
motion algorithms otherwise. Our approach uses computa-
tionally efficient components and computation strategies to
achieve real-time processing for the enormous amounts of
video data required to reconstruct entire cities. The selected
methods are particularly efficient on typical urban scenes,
while preserving the ability to perform reconstructions of
general 3D shapes. Additionally, our methods meet the high
demand for robustness in order to achieve automatic large
scale reconstructions. For image based camera pose estima-
tion we developed a novel 2D feature tracking technique
that efficiently estimates the gain of the camera while track-
ing the 2D feature points (Kim et al. 2007). Automatic gain
adaptation is essential because the dynamic range in nat-
ural scenes is far larger then the range of the camera. Ac-
cordingly, camera gain and exposure time must vary dur-
ing recording which can significantly degrade the perfor-
mance of standard tracking techniques. The camera pose
estimation and fusion with GPS and inertial measurements,
if available, is performed by a Kalman filter. Alternatively,
a vision based approach similar to (Nistér et al. 2006) is
used to estimate the camera motion. A preliminary version
of our system in which many of the components were in
early stages of development appeared in Akbarzadeh et al.
(2006). The gain-estimating feature tracker was not part of
the pipeline, while the stereo, depth map fusion and model
generation modules were at very preliminary stages. More-
over, the models shown in that paper are not geo-registered
since GPS/INS were not fused with the results of vision-
based pose estimation.

@ Springer

For dense 3D reconstruction, we developed a novel two-
stage strategy that allows us to achieve high processing
rates. By decoupling the problem into the reconstruction of
depth maps from sets of images followed by the fusion of
these depth maps, we are able to use simple fast algorithms
that can be implemented on the Graphics Processing Unit
(GPU). The depth maps are reconstructed using an extended
plane sweeping stereo technique operating on frames of a
single video-camera (Gallup et al. 2007). Plane sweeping
stereo was selected because it is ideal for efficient imple-
mentation due to its simplicity and parallelizability (Collins
1996; Yang and Pollefeys 2003). The primary operation of
the algorithm is to render images onto planes and this op-
eration can be computed quickly on the GPU. Additionally,
we incorporate priors obtained from the reconstructed sparse
points into our depth estimation. This aids in areas with little
texture and produces a smoother result. We can also signif-
icantly reduce computation time by sweeping planes only
in those regions with high prior probability according to the
obtained sparse data. Details and extensions of our work on
stereo not included here can be found in Gallup et al. (2007).

The fast multi-view stereo algorithm we utilize does not
perform a costly global optimization and the resulting er-
ror can therefore be comparatively high. The fusion step
that follows combines multiple depth maps into a consistent
depth map increasing accuracy and decreasing redundancy.
It delivers a compact and geometrically consistent represen-
tation of the 3D scene, which is especially important for long
video sequences. Figure 1 shows an aerial view of a model
reconstructed from approximately 170,000 frames, as well
as some close-up views of parts of the model. Details and
extensions of our stereo fusion algorithm are given in Mer-
rell et al. (2007).

The paper is organized as follows: Sect. 2 is an overview
of our system; Sect. 3 briefly presents related work; Sect. 4
describes our KLT tracker that also estimates the gain of the

Int J Comput Vis

camera; Sect. 5 discusses pose estimation with and without
GPS/INS data; Sect. 6 presents our approach to multiple-
view stereo; Sect. 7 describes two algorithms for depth map
fusion; Sect. 8 highlights design choices that enable our sys-
tem to run in real time; Sect. 9 contains results and Sect. 10
concludes the paper.

2 System Overview

This section is a brief overview of the system. The core al-
gorithms operate on the frames of a single video-camera as
it moves in space. The reconstructions are based on frames
captured at different time instances by the same camera
under the assumption that the scenes remain static. Mod-
els from multiple cameras can be combined at the end, but
the only multi-camera module is pose estimation using a
Kalman filter described in Sect. 5.3.

The majority of the data shown in the paper have been
collected by a video acquisition system, which consists of
eight cameras mounted on a vehicle, with a quadruple of
cameras looking to each side. Each camera has a field of
view of approximately 40° x 30°, and within a quadruple the
cameras are arranged with minimal overlap in field of view.
Three cameras are mounted in a plane to create a horizontal
field of view of approximately 120 degrees. The fourth cam-
era is tilted upward to create an overall vertical field of view
of approximately 60 degrees with the side-looking camera.
The cameras have a resolution of 1024 x 768 pixels and a
frame rate of 30 Hz. Additionally, the acquisition system
employs an INS and a GPS, which are synchronized with
the cameras, to enable geo-registration of the cameras and
the reconstructions. As the vehicle is driven through urban
environments, the captured video is stored on disk drives
in the vehicle. Timestamps are recorded with each frame to
facilitate the retrieval of the corresponding GPS/INS data.
Approximately 1 TB of raw video data is recorded per hour.
After a capture session, the drives are moved from the vehi-
cle to a computer cluster for processing. The system is set
up so that each video stream is processed by one PC node to
achieve real-time performance.

The processing pipeline for 3D reconstruction from video
consists of several computation stages (see Fig. 2):

1. Reading and preparation of the video data as well as
the GPS/INS data. This input step runs asynchronously
in a thread to improve performance. It efficiently converts
the incoming Bayer-pattern video into grayscale pyramid
data for later use in tracking and stereo.

2. 2D tracking of salient image features. This step provides
2D tracks that potentially belong to a 3D point. This mod-
ule can run on the GPU with more than 30 Hz for images
of size 1024 x 768 tracking 1000 salient features (Sinha
et al. 2007). We also propose an extension of the KLT

_ video data 'GPSIINS data

) PS/INS dat
Input thread GPS/INS data
Color image
Data reading/preparation ‘ Gray pyramid
Computing |
thread | 2D tracker (GPU) |
2D tracks
! : GPS/INS data
3D tracker/ geo-location 'G |2
= — eo-located cameras| =
Geo-located cameras °
Geo-located 3D points =
> »n
Sparse scene analysis ‘ ©
| Flanes for sweeping Image gain S
. 3D distribution | | Gray image pyramid
Multi-view stereo (GPU) | | Geo-located cameras
Depth maps

Geo-located cameras

Depth map fusion (GPU) b
Fused depth maps

Geo-located cameras
Model generation | Color image

Triangular mesh
Texture map

Textured 3D Models

Fig. 2 (Color online) Processing modules and data flow of the 3D
reconstruction system

tracker that estimates the gain of the camera (Kim et al.
2007).

3. 3D tracking/geo-location estimates the camera pose.
A Kalman filter uses the 2D correspondences and GPS/INS
data to estimate geo-located camera projection matrices.
Alternatively, in the absence of INS/GPS data, we per-
form pose estimation using structure from motion tech-
niques (Nistér 2004).

4. Sparse scene analysis examines the 3D feature points to
determine three orthogonal sweeping directions (one for
the ground and two for the facades). In addition, it exam-
ines the distribution of feature points in 3D to determine
the most likely planes of the scene. This information en-
hances the effectiveness and efficiency of our multi-way
plane sweeping stereo module.

5. Stereo depth estimation computes depth maps from the
(geo-located) camera poses and the images using a fast
GPU implementation of an advanced multi-view plane
sweeping stereo algorithm. Our algorithm has provisions
to deal with non-fronto-parallel surfaces, occlusions and
gain changes.

6. Depth map fusion combines multiple depth maps to re-
ject erroneous depth estimates and remove redundancy

@ Springer

Int J Comput Vis

from the data, resulting in a more accurate and smaller in
size set of depth maps.

7. Model generation creates a triangular mesh for each
fused depth map and determines the texture mapping. It
also removes duplicate representations of the same sur-
face and fills some of the holes.

3 Related Work

In the last few years there have been significant efforts in
large scale reconstruction, typically targeting urban envi-
ronments or archeological sites. Here, we discuss research
on urban reconstruction from ground-based imagery as it
is closely related to our work. There has also been a con-
siderable amount of work involving 3D reconstruction from
aerial images (Fischer et al. 1998; Gruen and Wang 1998;
Zhu et al. 2004).

A natural choice to satisfy the requirement of modeling
the geometry and appearance is the combined use of active
range scanners and digital cameras. Friih and Zakhor (2004)
developed a system that is similar to ours since it is also
mounted on a vehicle and captures large amounts of data in
continuous mode, in contrast to the previous approaches of
Stamos and Allen (2002) and El-Hakim et al. (2003), that
scan the scene from a set of pre-specified viewpoints. The
system of Friih and Zakhor (2004) consists of two laser scan-
ners, one for map construction and registration and one for
geometry reconstruction, and a digital camera, for texture
acquisition. A system with similar configuration, but smaller
size, that also operates in continuous mode was presented by
Biber et al. (2005).

Researchers in photogrammetry and computer vision ad-
dress the problem of 3D reconstruction from images only.
Systems using passive sensors are economic in size, weight
and cost. The challenges for these systems are primarily the
well-documented inaccuracies in 3D reconstruction from
2D measurements. We also use passive sensors only, em-
ploying the work on structure from motion and shape recon-
struction within the computer vision community in the last
two decades (Faugeras 1993; Hartley and Zisserman 2000).

There has been a large amount of work on estimating
camera motion from image data and it is outside of the
scope of this paper to review this in detail. Although it
has been shown that it is possible to automatically cali-
brate cameras from videos (Faugeras et al. 1992; Polle-
feys et al. 1999), in this paper we assume the cameras
have been pre-calibrated. There are mainly two approaches
for estimating the camera motion. The first approach lever-
ages the work in multiple view geometry and typically al-
ternates between robustly estimating camera poses and 3D
point locations directly (Beardsley et al. 1997; Fitzgibbon

@ Springer

and Zisserman 1998; Nistér 2004; Nistér et al. 2006). Of-
ten bundle adjustment (American Society of Photogram-
metry 2004) is used in the process to refine the estimate.
The other approach uses an extended Kalman filter to es-
timate both camera motion and 3D point locations jointly
as the state of the filter (Azarbayejani and Pentland 1995;
Soatto et al. 1993).

Complete systems for large scale urban modeling from
images only include the 4D Atlanta project carried out by
Schindler et al. (2006, 2007), which also examines the evo-
lution of the model through time. Recently, Cornelis et al.
(2006) presented a system for near real-time city model-
ing that employs a simple model for the geometry of the
world. Specifically, they assume that the facades are ruled
surfaces consisting of lines all parallel to the gravity vector.
The ground plane is defined by the ruled surface on which
the car drives from known camera height.

In the remainder of this section we present research re-
lated to the main components of our system. The first task of
the processing pipeline is automatic tracking of salient fea-
tures in video, for which the KLT tracker (Lucas and Kanade
1981) is commonly used. Sinha et al. (2007) presented a
real-time implementation of the KLT tracker on the GPU.
The KLT tracker assumes that features do not change ap-
pearance throughout the video. The limited dynamic range
of cameras, however, is often too small to accommodate the
dynamic range of natural scenes. Accordingly, the gain of
the camera needs to change which in turn causes the appear-
ance of the features to change. Baker et al. (2003) and Jin et
al. (2001) proposed different approaches to account for the
change in appearance by the estimation of patchwise correc-
tion parameters. The gain ratio is computed for each feature
independently even though it is a global parameter for each
image. With a linear or known camera response function,
we can solve for the gain as a global parameter instead of
solving separately for each tracked patch. This is both more
efficient computationally and more stable with respect to
noise. We do not review the prolific literature on binocular or
multiple-view stereo here, since these papers, with very few
exceptions, address the cases of limited still images taken
from positions that are further apart than the typical distance
between successive frames in a video stream. Excellent sur-
veys can be found in Scharstein and Szeliski (2002); Seitz
et al. (2006). For dense geometry estimation, our system
uses an extension of the efficient plane sweeping technique,
which was introduced by Collins (1996) as a way to perform
matching across multiple images simultaneously without the
need for rectification. The approach was originally targeted
at the reconstruction of sparse features. Yang and Polle-
feys (2003) modified the plane-sweeping stereo algorithm
to achieve real-time dense depth estimation on the GPU.

For dense estimation in urban scenes, Werner and Zisser-
man (2002) proposed an approach to reconstruct buildings.

Int J Comput Vis

It uses sparse point and line correspondences to discover the
ground and facade planes. When there is insufficient infor-
mation to locate a plane, they sweep a hypothesized plane
through space to determine the position which best matches
the images. It should be noted here that this method does not
allow for any details that deviate from the selected plane.
Several stereo algorithms explicitly handle slanted surfaces.
Burt et al. (1995) advocate pre-warping the images to a ref-
erence plane, such as the ground, before performing binoc-
ular stereo. In this way, they achieve greater accuracy as
well faster computation due to the reduced disparity range.
Birchfield and Tomasi (1999) cast the problem of stereo as
image segmentation, which also accounts for affine trans-
formations. Processing iterates between segmentation and
affine parameter estimation for each segment using graph
cuts (Boykov et al. 2001). Ogale and Aloimonos (2004) pro-
posed an algorithm based on dynamic programming to ob-
tain correspondences between segments of scanlines rather
than pixels to account for occlusion. Zabulis and Daniilidis
(2004) explicitly addressed non-fronto-parallel surfaces by
performing correlation on 3D planes instead of the image
plane. Thus, correlation kernels can be aligned with the
scene surfaces, but the dimensionality of the search space is
increased from 1D (disparity) to 3D (disparity and two rota-
tion angles). In this paper, we present methods for aligning
the correlation windows with the surfaces without exhaus-
tive search for urban scenes.

Large scale systems typically generate partial reconstruc-
tions which are then merged. Conflicts and errors in the par-
tial reconstructions are identified and resolved during the
merging process. Surface fusion has received considerable
attention in the literature mostly for data produced by range
finders, where noise levels and the fraction of outliers are
typically lower than those of passive stereo. It should be
noted that many surface fusion algorithms are limited to sin-
gle objects and are not applicable to large scale scenes due
to computation and memory requirements.

Turk and Levoy (1994) proposed an algorithm for regis-
tering and merging two triangular meshes. They remove the
overlapping parts of the meshes, connect their boundaries
and then update the positions of the vertices. Soucy and Lau-
rendeau (1995) introduced a similar algorithm which first
updates the positions of the vertices and then connects them
to form the triangular mesh.A different approach was pre-
sented by Curless and Levoy (1996) who employ a volumet-
ric representation of the space and compute a cumulative
weighted distance function from the depth estimates. This
signed distance function is an implicit representation of the
surface. A volumetric approach that explicitly takes into ac-
count boundaries and holes was published by Hilton et al.
(1996). Wheeler et al. (1998) modified the method of Cur-
less and Levoy (1996) to only consider potential surfaces
in voxels that are supported by some consensus, instead of

just one range image, thus increasing robustness to outliers.
An online algorithm using a sensor based on structured light
was later introduced by Rusinkiewicz et al. (2002). It can
merge partial reconstructions in the form of point clouds
in real-time by quantizing the space in voxels and averag-
ing the points and their normals that fall in the same voxel.
A slower, more accurate algorithm was also described.

One of the first approaches for passive data was that
of Fua (1997) who adopts a particle based representation.
The positions and orientations of the particles are initial-
ized from the depth estimates and modulated according to
an image-based cost function while forces between parti-
cles enforce smoothness. Koch et al. (1998) begin by es-
tablishing binocular pixel correspondences and proceed by
linking more cameras with these correspondences. When a
correspondence is consistent with a new camera, the camera
is added to the chain. The position of the point is updated
using the wider baseline, reducing the sensitivity to noise.
Narayanan et al. (1998) compute depth maps using multi-
baseline stereo and merge them to produce viewpoint-based
visible surface models. Holes due to occlusion are filled in
from nearby depth maps.

Koch et al. (1999) presented a volumetric approach for
fusion as part of an uncalibrated 3D modeling system. Given
depth maps for all images, the depth estimates for all pixels
are projected in the voxelized 3D space. Each depth estimate
votes for a voxel in a probabilistic way and the final surfaces
are extracted by thresholding the 3D probability volume.
Sato et al. (2002) also proposed a volumetric method based
on voting. Each depth estimate votes not only for the most
likely surface but also for the presence of free space between
the camera and the surface. Morency et al. (2002) operate on
a linked voxel space to produce triangulations at high rates.
Information is fused in each voxel while connectivity infor-
mation is maintained and updated in order to produce the
final meshes. Goesele et al. (2006) presented a two-stage al-
gorithm which merges depth maps produced by a simple al-
gorithm. Normalized cross-correlation is computed for each
depth estimate between the reference view and several tar-
get views. The depth estimates are rejected if the normalized
cross-correlation is not large enough for at least two target
views. The remaining depth estimates are used for surface
reconstruction using (Curless and Levoy 1996).

The final step is the conversion of the viewpoint-based
representation in the form of depth maps to a 3D model. The
typical goals of algorithms that produce mesh from depth
maps are fidelity to the input data with as small a number of
triangles as possible and suppression of artifacts that result
from connecting vertices of different surfaces. One approach
is to construct a triangulated irregular network in which ver-
tices are placed more densely in parts of the depth map with
details and variations as in the work of Garland and Heck-
bert (1997). Morris and Kanade (2000) also consider prop-
erties of the images to refine an initially coarse triangulation

@ Springer

Int J Comput Vis

to increase its consistency with the imaged surfaces. Our ap-
proach is similar to the work of Pajarola (2002) which uses
a quadtree defined on the image grid to achieve high vertex
density where needed very efficiently.

The following sections introduce the components of our
real-time 3D urban reconstruction system in more detail.

4 Gain Estimating KLT

First, our reconstruction system detects and tracks the salient
features in the video data. Typically the KLT tracker (Lu-
cas and Kanade 1981; Shi and Tomasi 1994) is used to
compute the displacements of features (dx,dy) between
consecutive video frames. Sinha et al. (2007) presented a
real-time implementation of the KLT tracker that exploits
the parallelism provided by modern programmable graph-
ics hardware. The implementation presented here extends
that work by assuming that camera gain is not constant and
attempting to estimate it from frame to frame. The origi-
nal KLT tracker relies on constant appearance of the fea-
tures in consecutive images (image brightness constancy
constraint), which is usually achieved by keeping the expo-
sure time and gain of the camera constant. For large scale
urban reconstruction this cannot be enforced due to the large
illumination changes that are typically encountered. There-
fore, as the exposure time and gain are allowed to adapt,
the brightness constancy constraint is no longer satisfied
and the performance of the KLT tracker degrades signifi-
cantly.

We propose a variant of the KLT tracker that esti-
mates the gain change of the camera as a global parame-
ter for a linear or known camera response function. We
model the gain ratio ﬂ’+dt 1+ d,BH’dt of the images
at time ¢ and at time f + dr together with the appear-
ance:

I(x+dx,y+dy t +dt)=(1+d N (x,y,1). (1)

For the standard KLT tracker d,B“Ld’ is considered to be
zero. Assuming equal displacement for all pixels of a patch
F; around each feature i, the dlsplacement for each feature
(dxi,dy;) and the gain ratio B/ 7' are estimated by mini-
mizing the following error function:

E(dx;,dy;, dp{™") = Y (I(x+dx;,y+dyi,t +d1)

x,yeF;
—(L+dpt ™I (x, y,0)%, ()

where n is the number of features. The Taylor series expan-
sion of (2) is:

E(dx;, dy;, dpi"
Z (Ledx; + Lydy; + 1, — dp ' 1)?, 3)

x,yekF;

@ Springer

with I =1(x,y,t), I, = g)’(,l —ﬂ It_ az Since (3) is
minimized when all partial derlvatlves vanish for each fea-
ture i:

Ui w :
|: lT l:|x=|:b':| with
Wi Ai Ci
—_——

Aj
U‘—[ZFI Ix ZF, ley]
i= s
ZF,- ley ZFi I,Vz

wiz[:

bi = [_ZFi leta

“
ZF,-IXI:|)»i:Z[z
ZFI' IyI Fi

-y 5 LT,

=> I,
F;
x = [dx;, dy;,dp! """

needs to be solved. The unknown displacements (dx;, dy;)
and the global gain ratio /3’+d’ can be estimated by min-
imizing the error E(dxi,dyi,...,dx,,dy,, ,’+dt) for all
features simultaneously. Combined with (3) this leads
to:

U w b
Ax—|:wT)»j|x_|:cj|)
with

Ug 0 - 0

0 U, 0 T
U=| . . s w=[wg,...,wn]",

0 N

N

n
A=) XA, and c:Zci, b=1[bi,...,ba1",
i=1 j

x=[dxi,dyi.dx.dys,dx,, dy,.dp™"]"

Since the matrix A is sparse, we can take advantage of the
structure to find a computationally efficient solution. Then
the global gain ratio B/ 79" =1+ dp/* " is
(—wIU w4+ 0)dpt 4 = —wiU™ b+ ¢ (6)
where the inverse of U can be computed by inverting each
2 x 2 diagonal block in U separately (which is equal to the
amount of work needed for the traditional KLT tracker).
Once d,Btert is found, solving for displacements becomes
trivial. For each patch i, dx; and dy; are calculated by back-
substituting d,Bt""dZ Hence the proposed estimation adds
one additional equation (6) to solve to the original KLT
tracking equations.

Int J Comput Vis

gain ratio [}

0.94 [— gain reported by the camera]
=== gain adaptive KLT estimate
patch-based estimate

0.92 : - . :
0 50 100 150 200

frame number

Fig. 3 (Color online) Estimated gain for the video sequence and ex-
ample images

4.1 Gain Estimation Results

In this section, we discuss the evaluation of our proposed
tracker on real image sequences, captured by a 1024 x 768
resolution Point Grey Flea camera with a 40 degree field of
view and a linear response function. The camera operated
at 30 fps and all camera settings were held fixed except for
automatic gain control to account for the large variation in
illumination of the scene. The camera was mounted on a ve-
hicle moving at roughly 10 km/h during video capture. This
particular camera also featured the ability to embed the au-
tomatically selected gain factor in the image data. We used
this information to verify the gain estimation of our KLT
tracker. The change of the gain for the sequence of 400 im-
ages was computed with the proposed tracker and is com-
pared to the gain reported by the camera in Fig. 3. The av-
erage error is 0.3%, the standard deviation of the error is
also about 0.3% and the maximal observed error is 1.88%
with respect to the reported camera gain. Our performance
is better than that of the implementation of Birchfield which
is available at http://www.ces.clemson.edu/"stb/klt/. In this
case the global gain was obtained by averaging the gain for
all the tracked features. It achieves an average error of 0.4%,
a standard deviation of 0.7% and maximum error of 4.7%.

5 Camera Pose Estimation

After tracking the salient 2D features and estimating the
camera gain, the next step in our reconstruction system is

to estimate the camera poses from the 2D feature tracks.
Our system provides two estimation methods for the cam-
era: one based purely on visual inputs (Nistér 2004; Nistér
et al. 2006) and an extended Kalman filter based approach
that fuses visual data with GPS/INS data, if they are avail-
able. The former method can only provide the camera poses
up to scale. Moreover, as Nistér et al. (2006) showed, this es-
timation is reliable only if the system includes a stereo rig,
that is at least two cameras with common field of view. The
baseline of the stereo rig provides an immediate estimate for
the scale. Since this is not true for our system, vision-only
pose estimation is especially challenging and susceptible to
large drift. We have been able, however, to estimate the pose
of the camera for relatively long sequences. The inability to
estimate scale does not allow us to combine models made
using different cameras since registering them is not trivial.
The GPS/INS measurements provide a means of maintain-
ing globally accurate estimates of position, orientation and
scale. On the other hand, vision-based tracking allows us to
make small refinements and reduce the reprojection errors.
The Kalman filter fuses these two types of estimates to max-
imize the benefits.

5.1 Visual Odometry

Our system uses an efficient implementation of Nistér
(2004) to estimate the pose of a moving calibrated cam-
era using images only. It initializes the camera tracker with
the relative pose of three views, given 2D feature correspon-
dences in them. This is followed by a preemptive RANSAC
and a local iterative refinement step for robustness (Nistér
2003). The correct correspondences are triangulated using
the computed camera poses and the optimal method of Hart-
ley and Sturm (1997). Additional poses are computed with
RANSAC and hypothesis-generation using constraints from
2D feature to 3D world point correspondences. New world
points are re-triangulated using new views as they become
available. To provide robustness and isolate the system from
instabilities that can occur in the structure and motion com-
putations, the system is periodically re-initialized with a new
set of three views. We stitch the new poses into the old coor-
dinate system exploiting the constraints of one overlapping
camera. The remaining degree of freedom is the scale of the
old and the new coordinate system. It is estimated using cor-
responding triangulated points in both coordinate frames.
While this approach works well for relatively short im-
age sequences, it is difficult to reliably estimate the cam-
era motion over long distances using video only, especially
when using monocular structure from motion (Nistér et al.
2006). The scale of the reconstruction is particularly hard
to estimate consistently over longer distances. Even though
our system has multiple cameras, the absence of significant
overlap prohibits the use of stereo motion estimation al-
gorithms. It is should theoretically be possible to estimate

@ Springer

Int J Comput Vis

the absolute scale using a generalized camera model for the
multi-camera setup (Stewénius et al. 2005), our configura-
tion of two clusters of cameras, however, is degenerate in
this respect.

5.2 Geo-Located Pose Estimation

The purely image-based visual odometry approach delivers
the camera poses only up to scale in an arbitrary coordinate
system defined by the first camera. Our system, however,
aims at a geo-registered 3D model. Therefore, whenever
GPS/INS data are available we use an extended Kalman fil-
ter to fuse the vision based measurements and the GPS/INS
data to obtain geo-located camera poses. Our collection sys-
tem uses eight minimally-overlapping video cameras and
a GPS/INS to acquire these data. The knowledge of the
lever-arm between the GPS/INS and the cameras, provides
the necessary constraints to estimate geo-registered camera
poses. Using this information, reconstructed models from
different cameras are automatically generated in the same
coordinate system and can be viewed together.

The use of a Kalman filter in structure and motion esti-
mation is a well known technique in vision (Azarbayejani
and Pentland 1995; Soatto et al. 1993). For a detailed intro-
duction to Kalman filtering (Grewal and Andrews 2001) is
suggested. We use an extended Kalman filter to estimate the
pose of the data collection platform and subsequently the
cameras. The state of the extended Kalman filter consists of
the data collection platform’s translation, rotation, velocity
and rotation rate as well as estimates of the 3D locations
of the tracked salient features in all cameras, in an orthogo-
nal, earth-centered, earth-fixed coordinate system Universal
Transverse Mercator (UTM).

The process model of the extended Kalman filter is a
smooth motion model, assuming constant velocity in trans-
lation and rotation, to model the change in the data collec-
tion platform’s pose over time. We assume that we observe
a static scene and so the 3D features are stationary with re-
spect to the earth. For the GPS/INS measurement model, the
state’s position and orientation map directly to the position
and orientation of the GPS/INS. The measurement model of
a 3D feature estimate is the projection of the 3D feature X
into the camera that is tracking it.

R —RIC
x=P,-X=Tp,-[01’ ;’ ”]X, @)

The camera’s projection matrix P; is generated by left mul-
tiplying the matrix P, of the camera platform by the lever-
arm transformation matrix for camerai.

A typical Kalman filter implementation of camera track-
ing would have a covariance matrix with the camera motion
parameters and all of the 3D features and their relationships

@ Springer

to each other. In a multi-camera system, with each cam-
era tracking possibly several hundred features, the covari-
ance matrix is too large to work with efficiently. Assuming
the tracked salient features do not move with respect to the
earth, the features are statistically independent. The feature-
to-feature covariances are therefore zero and the influence
of their measurements can be incorporated into the filter’s
state estimate sequentially rather than as a block (Brown and
Hwang 1997). In our current filter implementation, 3D fea-
tures only exist in memory so long as their corresponding 2D
features are being tracked. This makes loop completion im-
possible and would result in significant drift over time with-
out the constraints imposed by the GPS/INS system.

5.3 Pose Estimation Results

The GPS/INS system we use, the Applanix POS LV 420,
provides highly accurate estimates of the poses, but they can
still be improved upon. In the Kalman filter, the difference
between the reprojected 3D features and their measurements
are used to correct the pose of the data collection system.
This correction provides a 10% improvement in reprojec-
tion error compared to when the 3D features are estimated
but do not correct the data collection system pose. The me-
dian improvement is 0.05 pixels which appears small but
is approximately one half of the standard deviation of the
GPS/INS measurement uncertainty. Under normal operating
conditions, the feature estimates’ contribution to reconstruc-
tion accuracy is relatively minor. However, incorporating 3D
feature estimates into the pose estimation makes the recon-
struction system robust to failures in the GPS/INS system.
Robustness is critical when reconstructing large urban envi-
ronments as is demonstrated in the following example.
Figure 4 shows the delivered GPS/INS altitude measure-
ments and filter estimates while the collection system ve-
hicle approaches a stoplight, stops and then proceeds. The
estimated altitude varies within +1 standard deviation of
the GPS/INS measurements before the four second mark in
the plot. This shows that the GPS/INS measurements tend
to drive the large scale system motion while the feature

3D Feature Estimates Compensate for Incorrect GPSANS Measuraments
015 T T T T T

Filter Estimate
==+ GPSINS Measuremant

Wertical Displacernant (Meters)

005 I L i I I
0

Time (Seconds)

Fig. 4 (Color online) Above: Errant vertical motion measured by the
INS/GPS and the Kalman filter estimated vertical motion

Int J Comput Vis

tracks and smooth motion model compensate for errors in
the GPS/INS measurements. From four seconds to approxi-
mately eleven seconds the GPS/INS incorrectly measures a
10 cm upward motion while the vehicle is stationary. By de-
tecting that the salient features do not move in the images,
the filter is able to compensate for the errant GPS/INS mea-
surements. Robust reconstruction is made possible by fus-
ing multiple complementary measurement sources to over-
come a failure in a single sensor. While its main functional-
ity in our system is to protect against intermittent GPS/INS
failures, the Kalman filter fusing vision/INS/GPS becomes
more valuable with a less accurate INS or with GPS only.

In addition to accuracy, speed is paramount to recon-
structing large urban scenes. The Kalman filter based 3D
tracker was tested over a sequence of 1000 frames captured
with four synchronized cameras along with GPS/INS mea-
surements. The filter ran at 31.1 Hz with reprojection errors
of the tracked salient features of 0.4 pixels. To achieve this
speed the total number of tracked 3D salient features was
kept around 120. Even with only 120 features, the filter is
able to compensate for failures in the GPS/INS system as
demonstrated above.

6 Plane Sweeping Stereo with Multiple Sweeping
Directions

In the previous sections, we discussed 2D feature tracking
and camera pose estimation. The next step of our system is
to compute the depth of the scene using stereo (Gallup et
al. 2007). As mentioned in Sect. 2, the cameras in our sys-
tem have minimal overlap and their purpose is to provide a
wider field of view. Thus, stereo is performed on consecu-
tive frames of a single camera as it moves. To achieve real-
time performance, we select plane sweeping stereo (Collins
1996) which naturally maps to the graphics processor of
commodity graphics cards (Yang and Pollefeys 2003). Tra-
ditional plane sweeping stereo is biased towards fronto-
parallel surfaces. Since in urban scenes the cameras gener-
ally observe some of the facades and the ground at oblique
viewing angles, we extend plane sweeping stereo to use
multiple plane orientations aligned with the facades and
the ground. The expected orientations are automatically ex-
tracted from the positions of the salient 3D features, which
are computed during the camera pose estimation. Addition-
ally, we incorporate priors from these sparse point corre-
spondences into our depth estimation. We can significantly
reduce computation time by sweeping planes only in regions
with high prior probability.

6.1 Sparse Scene Analysis: Identifying Sweeping
Directions

In accordance to many other researchers, we use the ab-
solute intensity difference as the dissimilarity or cost mea-

S

Fig. 5 (Color online) Implications of cost aggregation over a win-
dow. Left: Slanted surfaces with fronto-parallel plane-sweeping. Not all
points over the window are in correspondence. Right: Surface-aligned
sweeping plane to handle slanted surfaces correctly

sure. Since the measurement at a single pixel is in general
very sensitive to noise, several measurements from neigh-
boring pixels are combined by summing the absolute inten-
sity differences in a window centered at the pixel under con-
sideration. This reduces sensitivity to noise but introduces
an additional requirement for the stereo system: in order to
detect the best correspondence for the current pixel, all pix-
els in the window need to be in correspondence. This is not
always the case in many stereo algorithms that use windows
of constant disparity since these are optimal only for fronto-
parallel surfaces, which are parallel to the image plane. In
plane sweeping stereo, the alignment between the actual and
the hypothesized surface can be accomplished by modify-
ing the direction of the sweep and thus the normal of the
planes. Figure 5 shows the problems caused by sweeping
fronto-parallel planes when the scene contains non-fronto-
parallel surfaces and our proposed solution. In the remainder
of this section, we discuss methods of detecting the appro-
priate sweeping directions.

Instead of exhaustively sampling the set of all surface
orientations, we attempt to identify a much smaller set of
likely surface normals by analyzing the sparse data that
have been computed before stereo. For example, the motion
of vehicle-mounted and even hand-held cameras is gener-
ally constrained to be parallel to the ground plane. Also, a
scene’s planar structure can be determined by sparse fea-
tures such as lines and points. This is especially true in ur-
ban environments where, by examining lines in a single im-
age, vanishing points can be recovered which in turn can
be combined to give estimates of plane normals. Addition-
ally, these 3D point or line features are computed as a by-
product of the camera pose estimation and are often not
utilized in other stereo approaches. Many techniques have
been explored to recover planar surfaces from point and line
correspondences and vanishing points (Werner and Zisser-
man 2002; Bosse et al. 2003; Schindler and Dellaert 2004;
Hoiem et al. 2006).

We present an effective technique for recovering planar
structure in urban environments using 3D point features ob-
tained from structure from motion. We first find the vertical
direction or gravity vector, which is either given by an INS

@ Springer

Int J Comput Vis

system or can be computed from vanishing points. Since
most facades are vertical, the vanishing point correspond-
ing to the gravity vector is quite prominent in urban scenes.
By assuming the ground plane has zero slope in the direc-
tion perpendicular to the computed camera motion, we can
obtain a good estimate for the ground plane normal as:

(\7><1\71)><1\71

é:ﬁ
[(V x M) x M|

(®)
where V is the gravity vector, and M is the camera motion
direction. Obtaining the ground normal is particularly im-
portant, since the ground is imaged at a large angle.

To compute the facade normals, we assume that they are
perpendicular to the gravity vector, and are therefore deter-
mined by a rotation about the gravity vector. By assuming
the facades are orthogonal to one another, only one rotation
determines their normals. We recover this remaining rota-
tion of the facades as follows. We first compute the orthogo-
nal projection of each 3D point in the direction of gravity to
obtain a set of 2D points. Note that 3D points on a common
vertical facade project to a line. We then evenly sample the
space of in-plane rotations between 0 and 90 degrees and
test each rotation. For each rotation R = [u v]”, we rotate
the set of 2D points, and construct two histograms H, and
H,. Each bin in H,, (resp. H,) counts the number of points
with a similar u (resp. v) component. The histogram pair
with the lowest entropy represents the optimal plane orien-
tation (see Fig. 6(a) and (b)).

6.2 Plane Selection

Plane-sweeping stereo (Algorithm 1) tests a family of plane
hypotheses and records for each pixel in a reference view the
best plane using some dissimilarity measure. The algorithm
works with any number of cameras, and images need not be
rectified. The inputs to the algorithm are M 3D planes for the
depth tests, N + 1 images at different camera positions (we
assume images have been corrected for known radial distor-
tion), and their respective camera projection matrices Py:

P. = Ki[Rf —RI'C] withk=1,...,N, 9)

where K is the camera calibration matrix, and Ry and Cy
are the rotation and translation of camera Py with respect
to a selected reference camera Pref. The reference camera is
assumed to be the origin of the coordinate system and so its
projection matrix is Pref = Kref[[3x3 0].

M, =[nl —d,] form=1,....,M, (10)

where n,, is the unit length normal of the plane and d,,, is the
distance of the plane to the origin which is set at the center
of the reference camera. The normal nl, =[00 1] is typ-
ically used for the sweeping planes. This assumes that the

@ Springer

surfaces are parallel to the image plane (fronto-parallel). To
account for non-fronto-parallel surfaces such as the ground
and facades in urban scenes, our approach performs several
plane-sweeps each with a different plane normals selected
by the technique of Sect. 6.1.

Once the sweeping directions have been computed, we
generate a family of planes for each. Each family is para-
meterized by the distance of the plane to the origin d,,. The
range [dnear, drar] can be determined either by examining the
points obtained from structure from motion or by applying
useful heuristics. For example, in outdoor environments, it
is usually not useful for the ground plane family to extend
above the camera center. The spacing of the planes in the
range can be uniform, as in Zabulis and Daniilidis (2004).
However, it is best to place the planes to account for image
sampling (pixels). Ideally, when comparing the respective
image warpings induced by consecutive planes, the amount
of pixel motion should be less than or equal to one (Szeliski
and Scharstein 2004). This is particularly important when
matching surfaces that exhibit high-frequency texture.

We ensure that the planes are properly spaced by com-
puting the maximum disparity change between consecutive
planes in a family. The planar mapping from the image plane
of the reference camera Pt to the image plane of the cam-
era Py can be described by the homography Hp,,, p, induced
by the plane I7,,:

-1
K. (11)

RICinl
dp,

Hm,, p = K <R1<T +

The location (x, yx) in image I; of the mapped reference
pixel (x, y) is computed by:

(¥ 3 wi'=Hp, plx y 117

with x¢ = X/, vk = 3/. (12)

We define the disparity change between two planes I7,,
and IT,,4 to be the maximum displacement in all images.

AD(I_[ma Hm+l)

— max max \/xm _xm-‘rl 2+ m __ m+1 2
k=0,....N—1(x,y)el} (k k) (yk Yk)
(13)

where (x}", y;") (resp. (x,’f“, y,i"“)) are obtained by (12).
To avoid orientation inversions we do not use planes that in-
tersect the convex hull of the camera centers. Typically the
greatest displacement occurs at the boundaries of the most
distant images. Thus, to compute the disparity, we warp the
boundaries of image I; with the planar homography Hp,, p,
into the reference view I.r. We then compute the disparity
change of the vertices of the common region. Since only
those planes that do not intersect the convex hull of the
camera center are used, the common region is guaranteed

Int J Comput Vis

-

»-‘.".
S 5

, gl
S N e :
L . 3

bl it

(a) Arbitrary rotation

"

(b) Minimum entropy

Fig. 6 (Color online) Minimum entropy optimization. The 3D points
are projected in the direction of gravity. Then they are rotated into the
basis formed by « and v and histograms are generated. The histograms
of a have more entropy than those of b. b corresponds to the correct

(d) Best-cost labels

(¢) Input frame

surface normals. ¢ image from original viewpoint. d Best cost selection
(ground points are labeled green, and facade points are labeled red or
blue)

Algorithm 1 Plane Sweeping Stereo

1: A plane is swept through space in steps along a predefined direction.
2: For each plane I1,,, all images (I;) are projected on the plane and rendered in the reference view (/if), and the matching

cost is calculated for the left and right set of cameras as:

CLOx, ¥, M) =) re(x,) — Blopli (¥, 1)

k<ref

CROX, Y,) = Y 1rei(x, y) — Blogli (i, 30|

k>ref

(14)

5)

where I; are the projected views, (xi, yx) are obtained by applying the homography Hyz,, p, as shown in (12) and /Brkef is
the gain ratio between image k and the reference image. The minimum of these two costs:

C()C, y7 Hm) = min{CL(.x, ya Hm)’ CR(-X’ yv Hm)}

is assigned in the cost volume as the cost for the pixel (x, y) to be on I7,, as in Kang et al. (2001). The dimensions of the
cost volume are the image width times height times the number of planes.
3: Under the local smoothness assumption, a boxcar filter is applied on the slices of the cost volume. (Each slice of the cost

volume corresponds to a plane.)

Ca(x’y,nm)z Z C(xi’}’i’nm),

(xi,yi))eW(x,y)

(16)

where W (x, y) is a square window centered around (x, y) in the reference image and C%(x, y, I1,,) is the aggregated cost

for the pixel.

4: Depth values for each pixel are computed by selecting the plane that corresponds to the minimum aggregated cost:

Cx,y) = min{C*(x, y, ITy)},

I (x,y) = argming {C°(x,y, ITy)}

a7

(18)

where C(x, y) is the best cost for the pixel and I7 is the corresponding plane.

to be convex, and thus the maximum disparity change is
bounded by the maximum disparity change of its vertices.
The family of planes is then constructed so that the dispar-
ity change of consecutive planes differs in magnitude by no
more than one.

6.3 Plane Sweeping Stereo

In order to test the plane hypothesis IT,, for a given pixel
(x, ¥) in the reference view Irf, the pixel is projected into
the other images k =1, ..., N according to (11) and (12). If

@ Springer

Int J Comput Vis

the plane is close to the surface that projects to pixel (x, y) in
the reference view and assuming the surface is Lambertian,
the colors of I (xg, yr) and If(x, y) are similar. We use
the absolute intensity difference as the dissimilarity measure
and aggregate several measurements in a window W(x, y)
centered at the pixel (x, y). To increase robustness against
occlusion, we adopt an algorithm proposed by Kang et al.
(2001). For each pixel we compute the cost for each plane
using the left and right subset of the cameras and select the
minimum as the cost of the pixel. This scheme is very ef-
fective against occlusions, since typically the visibility of a
pixel changes at most once in a sequence of images. There-
fore, the pixel should be visible in either the entire left of
right set of cameras.

Once the cost function (16) for all pixels has been com-
puted, the depth map may be extracted. Algorithm 1 illus-
trates the steps for a single sweeping direction. The same
process is repeated for each direction. Although our algo-
rithm can be generalized to any number of sweeping di-
rections, for simplicity we describe it in terms of three
sweeping directions labeled L = {l, [7, [1, }. Each direction
also has an associated surface normal n’ and a cost volume
C!(x, y). The first step is to select the best plane [T’ of every
sweeping direction according to (17) and (18) at each pixel
in the reference view. The plane of minimum cost over all
sweeping directions is selected as the depth estimate for the
pixel.

[(x, y) =argminC'(x, y, IT"). (19)
Il

I(x, y) is also called the best-cost or winner-takes-all solu-
tion. For a given plane IT,, = [nm! — d,y] the coordinates
of the 3D point that corresponds to a pixel (x,y) can be
computed by the intersection of I, and the ray through the
pixel’s center. For instance, the Z-coordinate of the 3D point
is given by:

. (20)

Z(x,y)=—"—>=—-
[x y 11K of nm

6.4 Incorporating Plane Priors

The minimum-entropy histograms computed in Sect. 6.1 are
used to find the location of the facades. They can also be
used as a prior in a Bayesian formulation when selecting I7".
The posterior probability of a plane 17,§1 at pixel (x, y) is:

P(Cl(x,)T PUT,)

P(IT},|C! (x, y)) = TR

21

where P(I'[,ln) is the prior probability of the surface being at
plane 1T}, and P(C!(x, y)|IT.,) indicates the likelihood of
the correct plane having matching cost C! (x, y). P(C'(x, y))
is the marginal likelihood of the cost. The prior is obtained

@ Springer

by sampling the normalized histogram of the 3D feature
points at the location of the plane. For a plane H,ln chosen
from sweeping direction /, the location in the histogram H;
is given by the plane depth d,ln. The prior is:

H(d)
> HIG)

The cost likelihood depends on image noise, camera pose
error, the surface texture, and the alignment of the plane
normal n!, with the surface normal. This is extremely dif-
ficult to model correctly. Instead, we choose an exponential
distribution:

P(IT},) = (22)

—cl.y)

PC(x,)II,)=e" @ (23)

where o is determined empirically. The exponential is self-
similar, and so it does not rely on assumptions about the
minimum cost, which is often difficult to determine before-
hand.

Since we are only interested in the maximum likelihood
solution we ignore P(C(x, y)) and modify the plane selec-
tion equation (19) as follows:

- —Clay i
IT'(x,y) =argmaxe™ o P(I1,). 24)
m,

Maximizing this likelihood is equivalent to minimizing its
negative logarithm:

~ . =Clx.y) !
II'(x,y) = argmin{—loge ™ = P(IT,,)}
1,
= argmin{Cl (x,y) —olog P(H,;)}. (25)
It

m

Surfaces with little or no texture exhibit low matching
costs over a range of planes. The minimum of the cost may
be determined more by noise than by true correspondence.
The depth prior P(I'[,ln) helps to eliminate such ambiguities
and to produce a smoother surface. To incorporate it in the
depth selection we modify the cost function Ci(x, y) to:

Ci(x,y) =C(x, y, [i(x, y)) — o log P(IT;(x, y)). (26)

This additional computation comes at little cost, but con-
tributes significantly to the results.

We can also use the prior to significantly reduce our com-
putation time by not testing plane hypotheses with a low
prior probability. A scene typically requires hundreds of
planes for each direction to adequately sample the dispar-
ity range. While our algorithm is able to compute that many
plane hypotheses at several frames per second, we have
found that it is possible to obtain quality reconstructions
almost an order of magnitude faster by testing only a few
dozen planes. The selected planes are those with the high-
est prior probability. This is only effective when sweeping

Int J Comput Vis

Fig. 7 (Color online)
lustration of the effectiveness
of the prior term in stereo. Top:
reference image and matching
costs with and without the prior
(in red and blue respectively)
for the pixel in the white circle.
Bottom: without the prior,
matching costs are ambiguous
and the reconstruction is noisy;
the prior correctly
disambiguates the cost function
on the right

in multiple directions. For example, if the sweeping direc-
tion were not aligned to the ground and were instead fronto-
parallel, it would require many plane hypotheses to recon-
struct the ground. However, having determined the ground’s
surface normal and predicted its location from the prior, we
can reconstruct it with only a few plane hypotheses.

6.5 Confidence of Stereo Matches

The depth with the lowest cost may not be the true depth
because of noise, occlusion, lack of texture, surfaces not
aligned with the chosen plane families, and many other fac-
tors. Parts of the image that have little texture are difficult to
accurately reconstruct using stereo. To evaluate confidence,
a measure of the accuracy of the depth of each pixel is im-
portant. We use a heuristic and assume that the cost is per-
turbed by a Gaussian distribution. Let C(x, y, IT,) be the
matching cost for plane [T, at pixel (x, y). We wish to es-
timate the likelihood that the depth with the lowest cost,
which corresponds to plane I7, no longer has the lowest cost
after the cost is perturbed. It is proportional to:

o~ €Oy M) ~Clx,y.) /o? 27)

for o from (23) that depends on the strength of the noise.
Then, the confidence c(x, y) is defined as the inverse of the
sum of these probabilities for all possible depths:

~ -1
c(x,y):(3 e—(C(x,y,nm)—6<x,y,n)>2/02) ’ (28)

T, 1T

which produces a high confidence when the cost has a single
sharp minimum and a low confidence when the cost has a
shallow minimum or several low minima. The confidence is
used in the depth map fusion process.

:

neg. log-likelihood
(=]

—with plane prior
—without plane prior

6.6 Plane Sweeping Stereo on the GPU

To achieve real-time performance, we use the graphics
processing unit (GPU) for the plane sweeping technique. In
Algorithm 1, we gain performance by executing steps 2, 3
and 4 on the GPU. We discuss the implementation of these
steps in more detail below.

Plane sweeping stereo assumes that the images are cor-
rected for radial distortion. Images typically contain radial
distortion that needs to be corrected. In our processing sys-
tem the only step that requires the radially undistorted im-
ages is stereo. Accordingly, we decided to compensate for
it only in stereo processing. The input to the stereo module
is a stream of images with known poses. Each new image is
loaded on the GPU for stereo processing in a ring buffer of
size equal to the number of images used in stereo. The first
step that is performed on the GPU after loading is the radial
undistortion of the incoming image through a vertex shader
that performs a non-linear mapping with bilinear interpola-
tion that essentially moves the pixels to the positions they
would have in a pinhole camera. We now have images with-
out radial distortion and all the following operations can be
performed linearly.

In step 2 of Algorithm 1, for each view, for each plane
I, all views I are projectively mapped with hardware sup-
port to the reference view Irer by the homography Hp,, p,
that corresponds to the plane I7,. In addition, since the
graphics hardware is most efficient at processing 4-channel
(RGB + alpha) color images, it allows us to compute four
depth hypotheses at once. Once the projective mapping is
completed, we use the pixel shader to calculate the gain cor-
rected absolute differences of the projected views and the
reference view according to (14) and (15), the minimum
of which is written to an output texture. Since the speed is
bound by the projective texture mapping operations (mostly

@ Springer

Int J Comput Vis

Fig. 8 (Color online) On the
right are the indices of the

Tex_0(i), i= 0

textures, on the left textures that Tex_1(i),i= 0 1T
are used to save the aggregation f.{-—f-‘f_i_
results +))
Tex_2(i), i= l
l/ .‘.\'_
&)
Tex_3(i}, i= é

Fig.9 (Color online) Comparison to fronto-parallel plane sweep. Left:
the original viewpoint. Middle: The depth map triangulated into a
polygonal mesh viewed from an elevated viewpoint. Right: A cross-

memory access), gain correction does not add a measurable
overhead. One may observe that by delaying gain correc-
tion until after image warping we must perform the per-
pixel multiplication for every plane hypothesis. The image
could be normalized before warping, thus saving computa-
tion time. However, this would require higher precision for
image storage to account for the possible dynamic range of
natural scenes and higher memory bandwidth. To avoid this
overhead intensity values are stored as 8-bit integers and
only converted to higher precision floating point numbers
during the computation of the dissimilarity. In our imple-
mentation, we have verified that there is no observable time
penalty for applying gain correction.

Cost aggregation is performed in step 3. We implement
a GPU boxcar filter with multiple passes. In the first pass,
we take advantage of the graphics card’s bilinear texture in-
terpolation to compute the output of a 2 x 2 boxcar filter.
For a given pixel (x, y) we access the cost image C (the
slice corresponding to I7,,) at address (x + 0.5,y + 0.5).
The graphics card’s built-in bilinear interpolation returns
the average of four pixel costs, (C"(x,y) +C"(x + 1, y) +
C"(x,y+1)+C"™(x+ 1,y + 1))/4, which we then mul-
tiply by 4 before storing the result in an 8-bit texture. This
avoids losing precision to discretization for low-cost regions
while the potential saturation in high-cost regions has no
impact on the best cost result. The result is written to an
output texture C; which stores the 2 x 2 boxcar result. In
each subsequent pass, the results from previous boxcars are
combined to produce a boxcar result of twice the size in
each dimension. Thus in pass i for pixel (x,y), we com-
pute the 2/ x 2! boxcar result C; from the previous result
as Cim1(x,y) + Cim1(x + 271 y) + Cimi e,y +27h +

@ Springer

| basic algorithm
i —our algorithm

y [m]

3 [m]

section of the surface. Please note the scale. The standard deviation of
the surface from the best-fit line was 1.31 cm for the fronto-parallel
sweep and 0.61 cm for our algorithm

Ci—1(x +21~1,y 4+ 2/=1), Figure 8 summarizes the algo-
rithm. The advantage of this approach is that the memory
access is continuous. Although more texture memory ac-
cesses are required, this approach is faster than alternative
approaches.

6.7 Stereo Results

In this section, we first demonstrate our novel plane sweep-
ing algorithm on several video sequences captured by a cam-
era mounted on a vehicle moving through streets in an urban
environment. Then, we evaluate our stereo algorithm on a
hand-held video sequence. We compute the three sweeping
directions as described in Sect. 6.1, and then compute depth
maps from 11 grayscale 512 x 384 images. We processed the
data on a PC with an NVIDIA GeForce 8800 GTX graphics
card.

First, we compare our algorithm with the basic fronto-
parallel sweep. The scene in Fig. 9 is a flat brick wall which
is viewed obliquely. We reconstruct the scene using 144
plane hypotheses for both algorithms. For our algorithm we
selected the depths from the multiple sweeping directions
using best-cost, and achieved a processing rate of at 6.33 Hz.
Figure 9 compares a scan-line of the depth maps result-
ing from the fronto-parallel sweep algorithm and our algo-
rithm. The surface from our algorithm is much smoother and
better approximates the planar facade. For both algorithms
we compute sub-pixel matches by parabolic fitting of the
best cost. Even when using this parabolic fitting, the fronto-
parallel sweep is unable to compute a smooth surface due
to the cost aggregation window. Since only a fraction of the
points in the aggregation window actually have the correct

Int J Comput Vis

Fig. 10 (Color online) Left: two video frames, middle: gain corrected stereo, right: standard stereo

(a) Reference image

Fig. 11 (Color online) Evaluation of the use of priors. The dotted
black curve is the cumulative histogram of the sparse points for the
image of a. The x-axis for the dotted black curve refers to the planes
sorted in descending order with respect to the number of points they
contain. The solid blue curve is a similar histogram for the dense re-

depth, the matching costs to which the polynomial is fit are
less indicative of the depth of the surface.

We also evaluated our stereo algorithm using the gain
provided by the proposed 2D tracker from Sect. 4 on the
same scene. For this evaluation, we selected a part of the
same wall in which the cumulative gain ratio over the set
of images used for stereo is ,Bfef = 1.44. This change is
caused by capturing first in bright sunlight and afterwards
in shadow. In Fig. 10, we see that our system is able to cor-
rectly handle the large change in gain during stereo and pro-
duce an accurate depth map. The gain-corrected depth map
has 1.9 cm average error. Without accounting for gain, the
depth map produced has severe errors: 37.4 cm on average.

In Fig. 11, we demonstrate the ability to compute accu-
rate depth maps with only a small number of plane hypothe-
ses. By testing only the planes with highest prior probabil-
ity, we produced quality reconstructions with just 48 plane
hypotheses per frame. This increases the speed of our algo-
rithm to 33.7 Hz. Although we assume the presence of pla-
nar surfaces in the scene, our algorithm is a general stereo
matcher, and we are still able to reconstruct non-planar ob-
jects such as bushes. A quantitative analysis can be found in
Fig. 11(c), which shows a comparison between a regular ex-
ecution of the algorithm using 144 planes (48 in each of the
three directions) and a run that uses the 48 planes with the
highest prior selected among the three families of planes.
The dotted black curve in Fig. 11(c) is a cumulative his-

(b) Part of the reconstruction

e e
" sparse
[=== denio wil spirag

% poirts on planes

planes

(¢) Cumulative histograms

constructed points, with the x-axis in this case corresponding to the
planes sorted by the number of dense points they contain. The dashed
red curve is a cumulative histogram of the dense points using the or-
dering of planes according to the sparse points they contain. See the
text for more details

togram of the sparse points in which the x-axis indexes the
planes sorted in descending order with respect to the number
of sparse points each of them contains. A similar histogram
is shown by the solid blue curve for the dense reconstructed
points after stereo, where the planes on the x-axis have been
sorted according to the number of dense points they contain.
Finally, the dashed red curve is a cumulative histogram of
the dense points but with respect to the planes sorted accord-
ing to the number of sparse points they contain. The sweep
using the priors represents 77.8% of the dense points with
only a third of the planes and the computational cost.

Finally, we present the reconstruction of a scene captured
by a hand-held camera. We computed the direction of the
gravity vector from vertical vanishing points and computed
the sweeping directions as described in Sect. 6.1. The recon-
struction of the scene is shown in Fig. 12.

7 Depth Map Fusion

Due to the speed of the algorithm, the raw stereo depth maps
contain errors and do not completely agree with each other.
These conflicts and errors are identified and resolved in the
fusion stage. In this step, a set of depth maps from neighbor-
ing camera positions are combined into a single fused depth
map for one of the views. Among the advantages of the fu-
sion step is that it produces a more compact representation

@ Springer

Int J Comput Vis

(b) Best-cost labels

(a) Input Frame

(c) View of the reconstruction

Fig. 12 (Color online) Reconstruction of a video captured by a hand-held camera (this figure is best viewed in color)

of the data because the number of fused depth maps that are
outputted is a small fraction of the original number of depth
maps. Much of the information in the original depth maps is
redundant since many nearby viewpoints observe the same
surface. We opted for this type of viewpoint-based approach
since its computational complexity has a fixed upper-bound,
for a given Q, regardless of the size of the scene to be mod-
eled. Many of the surface fusion algorithms reported in the
literature are limited to single objects and are not applica-
ble to our datasets due to computation and memory require-
ments.

After fusion, a polygonal model is constructed by a sim-
ple module that produces a multi-resolution triangular mesh
using a simplified version of the quad-tree approach of Pa-
jarola (2002). The same module also detects and merges
overlapping surfaces between consecutive fused depth maps
and fills holes.

7.1 Visibility-Based Depth Map Fusion

The input to the fusion step is a set of Q depth maps denoted
by Di(x), D2(x), ..., Dg(x) which record the estimated
depth of pixel x ! of the Q images. Each depth map has an
associated confidence map labeled ¢ (x), c2(X), ..., co(X)
computed according to (28). One of the viewpoints, typi-
cally the central one, is selected as the reference viewpoint.
We seek a depth estimate for each pixel of the reference
view. The current estimate of the 3D point seen at pixel
x of the reference view is called F (x). R;(X) is the dis-
tance between the center of projection of viewpoint i and
the 3D point X. To simplify the notation, we define the term
f x) = Rref(ﬁ (x)) which is the distance of the current depth
estimate F (x) for the reference camera.

The first step of fusion is to render each depth map into
the reference view. When multiple depth values project onto
the same pixel, the nearest depth is kept. Let Dl?ef be the
depth map D; rendered into the reference view and cfef be
the confidence map rendered in the reference view. Given a
3D point X, we need a notation to describe the value of the

Ix is used in this section instead of (x, y) to denote pixel coordinates

in order to simplify the notation.

@ Springer

depth map D; at the location where X projects into view i.
Let P;(X) be the image coordinates of the 3D point X pro-
jected into view i. To simplify the notation, the following
definition is used D; (X) = D; (P;(X)). D;(X) is likely to be
different from R;(X) which is the distance between X and
the camera center.

Our approach considers three types of visibility relation-
ships between hypothesized depths in the reference view and
computed depths in the other views. These relations are il-
lustrated in Fig. 13(a). The point A’ observed in view i is
behind the point A observed in the reference view. There is
a conflict between the measurement and the hypothesized
depth since view i would not be able to observe A’ if there
truly was a surface at A. We say that A violates the free
space of A”. This occurs when R;(A) < D;(A).

In Fig. 13(a), B’ is in agreement with B since they are in

the same location. In practice, we define points B and B’ as

|Rref(g)_(§r§f(3/)| <e.
ref
The point C’ observed in view i is in front of the point C

observed in the reference view. There is a conflict between
these two measurements since it would be impossible to ob-
serve C if there truly was a surface at C’. We say that C’
occludes C. This occurs when D{ef(C’) < f (C) = Dpef(C).

Note that operations for a pixel are not performed on a
single ray, but on rays from all cameras. Occlusions are de-
fined on the rays of the reference view, but free space vio-
lations are defined on the rays of the other depth maps. The
reverse depth relations (such as A behind A’ or C in front of
C’) do not represent visibility conflicts.

The raw stereo depth maps give different estimates of the
depth at a given pixel in the reference view. We first present
a method that tests each of these estimates and selects the
most likely candidate by exhaustively considering all occlu-
sions and free-space constraints. We then present an alter-
native approach that selects a likely candidate upfront based
on the confidence and then verifies that this estimate agrees
with most of the remaining data. The type of computations
required in both approaches are quite similar. Most of the
computation time is spent rendering a depth map seen in
one viewpoint into another viewpoint. These computations
can be performed efficiently on the GPU.

being in agreement when

Int J Comput Vis

D(F(x))

View 1

View i —
View 2

Reference

Reference
View View

(b) Stability calculation

(a) Visibility relations

Fig. 13 (Color online) a Visibility relations between points. The point
A’ seen in view i has its free space violated by A seen in the reference
view. B’ supports B. C seen in the reference view is occluded by C’.
b Stability Calculation. In this example, there are two occlusions which

Fig. 14 A few raw depth maps
and the fused depth map (far
right) using confidence-based
fusion. 11 total depth maps were
used for this computation

7.2 Algorithm 1: Stability-Based Fusion

If a depth map occludes a depth hypothesis F(x), this indi-
cates that the hypothesis is too far away from the reference
view. If the current depth hypothesis violates a free-space
constraint, this indicates the hypothesis is too close to the
reference view. The stability of a point S(x) is defined as the
number of depth maps that occlude F (x) minus the number
of free-space violations. Stability measures the balance be-
tween these two types of visibility violations. If the stability
is negative, then most of the depth maps indicate that F(x)
is too close to the camera to be correct. If the stability is pos-
itive then at least half of the depth maps indicate that F(x) is
far enough away from the reference camera. Stability gener-
ally increases as the point moves further away from the cam-
era. The final fused depth is selected to be the closest depth
to the camera for which stability is non-negative. This depth
is not the median depth along the viewing ray since free-
space violations are defined on rays that do not come from
the reference view. This depth is balanced in the sense that
the amount of evidence that indicates it is too close is equal
to the amount of evidence that indicates it is too far away.
With this goal in mind, we construct an algorithm to find
the closest stable depth. To begin, all of the depth maps are
rendered into the reference view. In the example shown in
Fig. 13(b), five depth maps are rendered into the reference
view. The closest depth is selected as the initial estimate. In
the example, the closest depth is Dief(x) and so its stability
is evaluated first. The point is tested against each depth map

F(x)=D(x)

D(F(x) D(F(x)

View 1

View §

View 4

Reference
View

(¢c) Support estimation

raise stability and one free-space violations which lowers it. The sta-
bility is +1. ¢ Support calculation. Three measurements are close to the
current estimate and add support to it. Outside the support region, there
is one occlusion and one free-space violation which lower the support

to determine if the depth map occludes it or if it violates the
depth map’s free space. If the depth estimate is found to be
unstable, we move onto the next closest depth. Since there
are Q possible choices, the proper depth estimate is guaran-
teed to be found after Q — 1 iterations. The total number of
depth map renderings is bound by O(Q?). In the example,
the closest two depths D{ef(x) and Dgef(x) were tested first.
Figure 13(b) shows the test being performed on the third
closest depth Dgef(x). A free-space violation and two oc-
clusions are found and thus the stability is positive. In this
example, Dgef(x) is the closest stable depth.

The final step is to compute a confidence value for the es-
timated depth. The distance to the selected depth R; (I3 (x))
is compared with the estimate in depth map i given by
D,-(ﬁ (x)). If these values are within €, the depth map sup-
ports the final estimate. The confidences of all the estimates
that support the selected estimate are added. The resulting
fused confidence map is passed on to the mesh generation
module. An example of a few input depth maps and the re-
sulting fused depth map can be seen in Fig. 14.

7.3 Algorithm 2: Confidence-Based Fusion

Stability-based fusion tests up to Q — 1 different depth hy-
potheses. In practice, most of these depth hypotheses are
close to one another, since the true surface is likely to be
visible and correctly reconstructed in several depth maps.
Instead of testing so many depth estimates, an alternative
approach is to combine multiple close depth estimates into

@ Springer

Int J Comput Vis

a single estimate and then perform only one test. Because
there is only one hypothesis to test, there are only O(Q)
renderings to compute. This approach is typically faster than
stability-based fusion which tests O — 1 hypotheses and
computes O (Q?) renderings, but the early commitment may
cause additional errors.

Combining Consistent Estimates Confidence-based fusion
also begins by rendering all the depth maps into the refer-
ence view. The depth estimate with the highest confidence is
selected as the initial estimate for each pixel. At each pixel
x, we keep track of two quantities which are updated iter-
atively: the current depth estimate and its level of support.
Let fo (x) and ¢o(x) be the initial depth estimate and its con-
fidence value. fk(x) and ¢y (x) are the depth estimate and its
support at iteration k, while F(x) is the corresponding 3D
point.

If another depth map D{ef(x) produces a depth estimate
within € of the initial depth estimate fo (x), it is very likely
that the two viewpoints have correctly reconstructed the
same surface. In the example of Fig. 13(c), the estimates
D3(I3 (x)) and D5(1:" (x)) are close to the initial estimate.
These close observations are averaged into a single estimate.
Each observation is weighted by its confidence according to
the following equations:

. A& + DI x)c; (x)
= Cr(X) + ¢i(x)
Ge1 (%) = & (x) + ¢ (). (30)

) (29)

The result is a combined depth estimate fk (x) at each
pixel of the reference image and a support level ¢ (x) mea-
suring how well the depth maps agree with the depth esti-
mate. The next step is to find how many of the depth maps
contradict fk(x) in order to verify its correctness.

Conflict Detection The total amount of support for each
depth estimate must be above the threshold cyes Or else
it is discarded as an outlier and is not processed any fur-
ther. The remaining points are checked using visibility con-
straints. Figure 13 shows that Dl(ﬁ (x)) and Dg(ﬁ (x)) oc-
clude F (x). However, D3(I:“ (x)) is close enough (within €)
to F(x) to be within its support region and so this occlusion
does not count against the current estimate. D1 (ﬁ (x)) is oc-
cluding F (x) outside the support region and thus contradicts
the current estimate. When such an occlusion takes place the
support of the current estimate is decreased by:

Erp1 (%) = & (X) — 7 (x). 31

When a free-space violation occurs outside the support
region, as shown with the depth D4(F (x)) in Fig. 13, the

@ Springer

confidence of the conflicting depth estimate is subtracted
from the support according to:

Gk (%) = G (%) — ¢ (P (F (X)) (32)

We have now added the confidence of all the depth maps
that support the current depth estimate and subtracted the
confidence of all those that contradict it. If the support is
positive, the majority of the evidence supports the depth es-
timate and it is kept. If the support is negative, the depth
estimate is discarded as an outlier. The fused depth map at
this stage contains estimates with high confidence and holes
where the estimates have been rejected.

Hole Filling in Fused Depth Map After discarding the out-
liers, there are holes in the fused depth map. In practice, the
depth maps of most real-world scenes are piecewise smooth
and we assume that any small missing parts of the depth map
are most likely to have a depth close to their neighbors. To
fill in the gaps, we find all inliers within a w x w window
centered at the pixel we wish to estimate. If there are enough
inliers to make a good estimate, we assign the median of the
inliers as the depth of the pixel. If there are only a few neigh-
boring inliers, the depth map is left blank. Essentially, this
is a median filter that ignores the outliers. In the final step,
a median filter with a smaller window wy is used to smooth
out the inliers.

7.4 Model Generation from the Depth Maps

We have presented two algorithms for generating fused
depth maps. In this section we show how to convert this
viewpoint-based representation into a 3D model. Consec-
utive fused depth maps partially overlap one another and
the overlapping surfaces are unlikely to be aligned perfectly.
The desired output of our system, is a smooth and consistent
model of the scene without artifacts in the form of small
gaps that are caused by this misalignment. To this end, con-
sistency between consecutive fused depth maps is enforced
in the final model. Each fused depth map is compared with
the previous fused depth map as it is being generated. If a
new estimate violates the free space of the previous fused
depth maps, the new estimate is rejected. If a new depth
estimate is within € of the previous fused depth map, the
two estimates are merged into one vertex which is gener-
ated only once in the output. Thus redundancy is removed
along with any gaps in the model where two representations
of the same surface are not connected. More than one previ-
ous fused depth map should be kept in memory to properly
handle surfaces that disappear and become visible again. In
most cases, two previous fused depth maps are sufficient.
After duplicate surface representations have been merged,
a mesh is constructed taking into account the corresponding

Int J Comput Vis

Fig. 15 (Color online) Left:
Input image. Right: Illustration
of multi-resolution triangular
mesh

Fig. 16 (Color online) Duplicate surface removal for the circled area
of the model in a, which consists of six sub-models, three each from
the side and upward cameras. b shows the overlapping meshes as wire-

confidence map to suppress any remaining outliers. By us-
ing the image plane as a reference both for geometry and
for appearance, we can construct the triangular mesh very
quickly. We employ a multi-resolution quad-tree algorithm
in order to minimize the number of triangles while main-
taining geometric accuracy as in Pajarola (2002). We use
a top-down approach rather than a bottom-up approach to
lower the number of triangles that need to be constructed
and processed. Starting from a coarse resolution, we form
triangles and test if the triangles correspond to nonplanar
parts of the depth map, if they bridge depth discontinuities
or if points with low confidence (below cnres) are included in
them. If any of these events occur, the quad, which is formed
out of two adjacent triangles, is subdivided. The process is
repeated on the subdivided quads up to the finest resolution.
A part of a multi-resolution mesh can be seen in Fig. 15.
We use the following simple planarity test proposed by
Pajarola et al. (2002) for each vertex of each triangle:

i-1—20 20 — 21
-1 <1

<ft. (33)

Where zg is the z-coordinate, in the camera coordinate sys-
tem, of the vertex being tested and ¢ is a threshold. z_;
and z; are the z-coordinates of the two neighboring vertices
of the current vertex on an image row. (The distance be-
tween the corresponding pixels of two neighboring vertices
is equal to the size of the quad’s edges.) The same test is

'3
P

2

i
NS ¥

ates

frames. Triangles in red are generated by the side camera and the ones
is blue by the upward camera. The results of duplicate surface removal
are shown in ¢

repeated along an image column. If either the vertical or the
horizontal tests fails for any of the vertices of the triangle,
the triangle is rejected since it is not part of a planar surface
and the quad is subdivided. For these tests, we have found
that 3D coordinates are more effective than disparity values.
Since we do not require a manifold mesh and are interested
in fast processing speeds, we do not maintain a restricted
quad-tree (Pajarola 2002).

An illustration of the duplicate surface removal process
can be seen in Fig. 16. The model shown in Fig. 16(a)
was reconstructed using the side and upward camera. Since
the cameras are synchronized an the relative transforma-
tion from one coordinate system to the other are known, we
can register the partial reconstructions in the same coordi-
nate system. Figure 16(b) shows the overlapping meshes that
are generated for different fused depth maps from the same
video stream, as well as from different video streams. Our
scheme is able to remove most of the duplicate representa-
tions and produce a simpler mesh shown in Fig. 16(c).

Despite its simplicity, this scheme is effective when the
camera maintains a dominant direction of motion. It does
not handle, however, the case of a part of the scene being
revisited in a later pass, since the entire reconstructed model
cannot be kept in memory. A more efficient representation
for parts of the model potentially in the form of a set of
bounding boxes is among our future research directions.

@ Springer

Int J Comput Vis

(a) Model with sky artifacts

(b) Same model after sky detection

(c) Detail

Fig. 17 (Color online) Sky detection and removal to improve the visual quality of the models. Notice that no parts of the building, ground and

trees have been removed

Fig. 18 (Color online) Example of hole-filling. Left: screen-
shot or original reconstruction. Right: the windows that are not
photo-consistent have been filled-in by our algorithm

7.5 Model Clean-Up and Hole-Filling

In this section we present techniques for improving the vi-
sual quality of the models. The first technique aims at re-
moving visually annoying artifacts. A typical artifact of
stereo reconstruction is the “foreground fattening” effect.
The extent of textured foreground surfaces is often over-
estimated when uniform parts of the image, that are partially
occluded in some of the views, appear next to them. This
occurs in our reconstruction where the sky often appears to
be attached to the edges of buildings. We designed a simple
module that learns the color distribution of the sky offline
via k-means clustering and then suppresses pixels that are
most likely sky from the final model (Fig. 17). To improve
processing speed, sky detection is performed during image
input and pixels marked as sky are not processed further by
any other module.

After surface merging and sky removal, most of the re-
maining artifacts are holes in the facades. These typically
occur in parts of the surfaces that were not photo-consistent
such as windows and other reflective materials. We have
developed a technique to detect surfaces with holes and
fill them with planes after verifying geometric constraints.
These ensure that the surface is added in a planar hole, which
is completely enclosed by surfaces. The normal of the added
plane has to be consistent with the normals of the surfaces
it abuts and within 45° of the viewing ray from the camera.
An example in which two windows are filled in can be seen
in Fig. 18.

@ Springer

8 Real-Time Implementation

In this section we describe a real-time implementation of
our system that operates on 512 x 384 video streams col-
lected at 30 frames per second. Please refer to Fig. 2 for a
flowchart of the processing pipeline. In order to maximize
throughput, we take the following steps on a high-end PC
featuring a dual-core AMD Opteron processor at 2.4 GHz
and an NVidia GeForce 8800 series GPU:

e We use the GPS/INS data exclusively for pose estimation,
thus saving the computational cost for 2D and 3D track-
ing and image flow based frame decimation. Unless rare
failures of the GPS/INS system occur, this provides pose
estimates of adequate quality for stereo. As mentioned in
Sect. 5.3, the improvement in reprojection error caused by
the Kalman filter is in general a small fraction of a pixel.

e Reading the images from the disk is performed by a sep-
arate thread, while frames with no or very little motion
according to the GPS/INS data are not read at all. The
thread also constructs a single level of the grayscale pyra-
mid on which stereo is performed. This thread causes no
delays to the main thread.

e Stereo is performed using 7 images and 48 fronto-parallel
planes. No scene analysis is performed since sparse data
are not computed. A depth map is computed for every
frame in 24 ms.

e Depth map fusion is performed on 17 half-resolution
depth maps every 16 frames. Each computation takes
78 ms, or 4.88 ms per frame.

e Model generation is performed for each fused depth map
and takes 30 ms, or 1.88 ms per frame. The JPEG image
used for texture mapping is written by a separate thread.

The other parameters were set to the following values: the
stereo window size to 16 x 16, the threshold for the planarity
test of (33) to t = 0.05, the maximum quad size for mesh
construction to 16 x 16 pixels and the minimum to 2 x 2 pix-
els. Using these settings, our pipeline achieves 32.5 Hz. In
practice, several frames are decimated due to small motion
of the vehicle and the throughput can be even higher, espe-
cially when the vehicle velocity does not exceed 30 km/h.
The size of the model is approximately 5.5 MB, includ-
ing both geometry and images for texture-mapping, per 100
frames of video of an urban area using the above settings.

Int J Comput Vis

9 Results

To evaluate the ability of our method to reconstruct urban
environments, a 3,000 frame video of the exterior of a Fire-
stone store was captured with two cameras to obtain a more
complete reconstruction. One of the cameras was horizon-
tal and the other was pointed up 30°. The videos from each
camera were processed separately. The Firestone building
was surveyed to an accuracy of 6 mm and the reconstructed
model (Fig. 19(b)) was directly compared with the surveyed
model (Fig. 19(a)). There are several objects such as parked
cars that are visible in the video, but were not surveyed.
Several of the doors of the building were left open caus-
ing some of the interior of the building to be reconstructed.
The ground which slopes away from the building also was
not surveyed. Since accurate measurements of all of these
reconstructed objects were unavailable they are manually
removed from the evaluation. To measure the accuracy of
each reconstructed vertex, the distance from the vertex to the
nearest triangle of the ground truth model is calculated. The
error measurements for each part of a reconstruction after
fusion are displayed in Fig. 19(c). Completeness measures
how much of the building was reconstructed and is defined

in a way similar to (Seitz et al. 2006). Sample points are cho-
sen at random on the surface of the ground truth model in a
way that ensures that there are 50 sample points per square
meter of surface area. The distance from each sample point
to the nearest reconstructed point is measured. A visualiza-
tion of these distances are shown for one of the reconstruc-
tions in Fig. 19(d).

We performed a quantitative evaluation between raw
stereo depth maps and the results of the fusion algorithm.
For the results labeled as stereo-reference, we evaluate the
raw depth maps from each of the reference views. For the re-
sults labeled stereo-exhaustive, we evaluated the depth maps
from all images as the representation of the scene. Table 1
contains the median and mean error values for each method
as well as the completeness achieved on the Firestone build-
ing using the horizontal and upward-facing cameras.

We also conducted an experiment using different levels
of compression for the input videos. The option to compress
the data on-board the capturing platform is intriguing since
it can significantly reduce the storage space and bandwidth
requirements of the collection and processing systems. We
repeated the evaluation procedure on fused depth maps gen-
erated using inputs that were compressed either according

(c) Visualization of the accuracy evaluation, where (d) Completeness of the Firestone building. The
white indicates parts of the model that have not color coding is the same as in (c). Red areas mostly
been surveyed and blue, green and red indicate er- correspond to unobserved or untextured areas.

rors of Ocm, 30cm and 60cm or above, respectively.

Fig. 19 (Color online) Firestone building accuracy and completeness evaluation

Algorithm 1 Accuracy and

Completeness for different Fusion Method Stereo-exhaustive Stereo-reference Confidence Stability

fusion methods using the default

parameters (both cameras) Median Error (cm) 4.87 4.19 2.60 2.19
Mean Error (cm) 40.61 39.20 6.60 4.79
Completeness 94% 83% 73% 66%

@ Springer

Int J Comput Vis

(b) View from above and details of large scale reconstruction

Fig. 20 (Color online) Screenshots of 3D models. All models are produced by more than one camera using GPS/INS data, except the one at the

top left which is a vision-only reconstruction from a single camera

to the JPEG standard to file sizes up to 12 times smaller
than the uncompressed data or using the MPEG-4 standard
to file sizes up to 100 times smaller than the original. The
evaluation results were very similar compared to those on
uncompressed data while the appearance of the models was
virtually indistinguishable.

Our methods were applied on several videos of urban en-
vironments. Screenshots of reconstructed models are shown
in Fig. 20. The model at the lower left was created from a
single camera using the vision-only version of the process-
ing pipeline. The other models are geo-registered recon-
structions from multiple video inputs. A very long 170,000
frame video was used to reconstruct a large model shown in
Fig. 1. These videos can be processed at 32.5 Hz using the
settings of Sect. 8. Even if we tune parameters such as the

@ Springer

number of planes for stereo in order to maximize quality, the
processing rate of our system remains in the range of several
frames per second.

10 Discussion

We have presented a real-time system for 3D reconstruction
from video. It produces dense, geo-registered, 3D models
from video captured by a multi-camera system in conjunc-
tion with INS/GPS measurements. Our approach is aimed at
reconstructing ground-based 3D models of complete cities
which yields a number of significant challenges, including
the shear size of the video data to be processed, the large
variability of illumination, the varying distance and orienta-
tion of the observed scene and the presence of objects that

Int J Comput Vis

are hard to model, such as trees and windows. Despite these
challenges, we think that we have achieved reconstructions
that provide effective visualization of the environment.

The real-time processing rate was achieved by strict se-
lection of the algorithms used and by leveraging the process-
ing power of modern commodity graphics cards. Instead of
trying to achieve the best possible results from a minimum
set of data, we prefer to focus our effort on leveraging the
redundancy of data (each surface element is typically seen
in tens of views) to obtain consensus results supported by
a lot of data fast. We have shown in this paper that our
two-stage approach to recover dense surface reconstructions
from multi-view stereo followed by depth map fusion was
very effective both in terms of speed and accuracy. Exper-
iments with ground-truth data show that our real-time ap-
proach is able to recover the surfaces of large scale buildings
with an accuracy of a few centimeters.

Another important aspect of our work was to develop al-
gorithms that could effectively deal with the large bright-
ness variation of outdoor scenes. Our approach consists of
using auto-exposure to guarantee good image quality. Our
2D tracker was adapted to track gain changes throughout
the video sequences and the multi-view stereo was adapted
to compensate for gain changes. Care was taken to allow a
maximum of flexibility without impacting performance.

While urban scenes typically contain a lot of structure,
they also contain a lot of unstructured elements. In the past
some approaches have sought to enforce strong priors on
the reconstructed scene, sacrificing generality. In contrast,
while the approach proposed in this paper was optimized for
both performance and quality on urban structures, we also
made sure it would provide results similar to more generic
approaches on other parts of the scene such as trees. In fact,
trees are a major challenge in urban scenes, not only because
they are hard to model, but because they occlude the facades
of buildings. In our approach this problem is attenuated by
the redundancy of video data. We can still reconstruct a sur-
face behind a tree if it is visible in at least a few views even
if it is occluded in the majority of views.

A challenge related to the visualization of the models
has been their size. A fixed, limited number of frames is
processed by the different modules at each step allowing us
to generate models using up to hundreds of thousands of
frames as input without any special considerations in terms
of processing time per frame or memory requirements. Vi-
sualizing a model of this size, however, is not as straight-
forward since rendering millions of polygons stretches the
limits even of high-end computers and graphics adapters.
A side-effect of processing in sliding windows is that the
output consists of several sub-models which can be viewed
as a tiling of the scene and can be loaded and unloaded from
the 3D model viewer’s memory as the user navigates. This
does not eliminate the problem of displaying zoomed out

views of very large models, since we currently do not pro-
vide levels of detail for the representation. Both the issue of
loading and unloading partial models and the generation of
levels of detail should be addressed in future work.

Future challenges include a scheme for better utilization
of the multiple video streams to improve the quality of pose
estimation and to reconstruct each surface under the optimal
viewing conditions, while reducing the redundancy of the
overall model. We also intend to improve the visual qual-
ity of our models by better handling surfaces with complex
view-dependent appearance, like windows, and moving ob-
jects in the scene. Note that by incorporating plane priors
based on the sparse structure we were able to provide a par-
tial solution to the problem of untextured surfaces.

Along a different axis, we intend to investigate ways of
decreasing the cost and size of our system by further explor-
ing implementations that use low-end INS and GPS systems
or even only GPS instead of the current system which is
very accurate but also expensive and cumbersome. Beyond
this, a challenging but exciting area of further research is in
the area of large-scale structure from motion. Wide-baseline
feature matching techniques can potentially be used to effi-
ciently identify when the same part of the scene is revisited
and would thus allow to close the loop and remove drift.
This problem is also related to the Simultaneous Localiza-
tion and Mapping (SLAM) problem in robotics. The same
matching techniques could potentially also be used to pro-
vide geo-location in the absence of GPS by registering the
current reconstruction with a database of geo-located im-
ages. Beyond the problem of matching across imagery, large
scale datasets also pose other challenges such as the efficient
solution of the non-linear least-squares structure and motion
refinement aka bundle adjustment.

Potential longer term directions are change detection and
the capability to perform incremental model updates using
video acquired at different times.

Acknowledgements We gratefully acknowledge the support of the
DARPA UrbanScape project as well as the support of the DTO VACE
project “3D Content Extraction from Video Streams”.

References

Akbarzadeh, A., Frahm, J.-M., Mordohai, P., Clipp, B., Engels, C.,
Gallup, D., et al. (2006). Towards urban 3D reconstruction from
video. In Proceedings of international symposium on 3D data,
processing, visualization and transmission.

American Society of Photogrammetry. (2004). Manual of photogram-
metry (5th ed.). Asprs Pubns.

Azarbayejani, A., & Pentland, A. P. (1995). Recursive estimation of
motion, structure, and focal length. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(6), 562-575.

Baker, S., Gross, R., Matthews, 1., & Ishikawa, T. (2003). Lucas—
Kanade 20 years on: a unifying framework: part 2 (Technical
Report CMU-RI-TR-03-01). Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, February 2003.

@ Springer

Int J Comput Vis

Beardsley, P., Zisserman, A., & Murray, D. (1997). Sequential updat-
ing of projective and affine structure from motion. International
Journal of Computer Vision, 23(3), 235-259.

Biber, P., Fleck, S., Staneker, D., Wand, M., & Strasser, W. (2005).
First experiences with a mobile platform for flexible 3d model
acquisition in indoor and outdoor environments—the waggle. In
ISPRS working group V/4: 3D-ARCH.

Birchfield, S., & Tomasi, C. (1999). Multiway cut for stereo and motion
with slanted surfaces. In International conference on computer
vision (pp. 489—495).

Bosse, M., Rikoski, R., Leonard, J., & Teller, S. (2003). Vanishing
points and 3d lines from omnidirectional video. The Visual Com-
puter, 19(6), 417-430.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11), 1222-1239.

Brown, R. G., & Hwang, P. Y. C. (1997). Introduction to random sig-
nals and applied Kalman filtering (3rd ed.). New York: Wiley.

Burt, P,, Wixson, L., & Salgian, G. (1995). Electronically directed
“focal” stereo. In International conference on computer vision
(pp- 94-101).

Collins, R. T. (1996). A space-sweep approach to true multi-image
matching. In International conference on computer vision and
pattern recognition (pp. 358-363).

Cornelis, N., Cornelis, K., & Van Gool, L. (2006). Fast compact city
modeling for navigation pre-visualization. In International con-
ference on computer vision and pattern recognition.

Curless, B., & Levoy, M. (1996). A volumetric method for building
complex models from range images. In SIGGRAPH (Vol. 30,
pp. 303-312).

El-Hakim, S. F., Beraldin, J.-A., Picard, M., & Vettore, A. (2003). Ef-
fective 3d modeling of heritage sites. In 4th international confer-
ence of 3D imaging and modeling (pp. 302-309).

Faugeras, O. D. (1993). Three-dimensional computer vision: a geomet-
ric viewpoint. Cambridge: MIT Press.

Faugeras, O., Luong, Q.-T., & Maybank, S. (1992). Camera self-
calibration: theory and experiments. In European conference on
computer vision (pp. 321-334). Berlin: Springer.

Fischer, A., Kolbe, T. H., Lang, F., Cremers, A. B., Forstner, W.,
Pliimer, L., & Steinhage, V. (1998). Extracting buildings from aer-
ial images using hierarchical aggregation in 2D and 3D. Computer
Vision and Image Understanding, 72(2), 185-203.

Fitzgibbon, A., & Zisserman, A. (1998). Automatic camera recovery
for closed or open image sequences. In European conference on
computer vision (pp. 311-326).

Friih, C., & Zakhor, A. (2004). An automated method for large-scale,
ground-based city model acquisition. International Journal of
Computer Vision, 60(1), 5-24.

Fua, P. V. (1997). From multiple stereo views to multiple 3-D surfaces.
International Journal of Computer Vision, 24(1), 19-35.

Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., & Pollefeys, M.
(2007). Real-time plane-sweeping stereo with multiple sweeping
directions. In International conference on computer vision and
pattern recognition.

Garland, M., & Heckbert, P. S. (1997). Surface simplification using
quadric error metrics. In SIGGRAPH ’97 (pp. 209-216).

Goesele, M., Curless, B., & Seitz, S. M. (2006). Multi-view stereo re-
visited. Computer Vision and Pattern Recognition, 2, 2402-2409.

Grewal, M. S., & Andrews, A. P. (2001). Kalman filtering theory and
practice using MATLAB (2nd ed.). New York: Wiley.

Gruen, A., & Wang, X. (1998). Cc-modeler: a topology generator for
3-D city models. ISPRS Journal of Photogrammetry & Remote
Sensing, 53(5), 286-295.

Hartley, R. 1., & Sturm, P. (1997). Triangulation. Computer Vision and
Image Understanding, 68(2), 146-157.

Hartley, R., & Zisserman, A. (2000). Multiple view geometry in com-
puter vision. Cambridge: Cambridge University Press.

@ Springer

Hilton, A., Stoddart, A. J., Illingworth, J., & Windeatt, T. (1996). Reli-
able surface reconstruction from multiple range images. In Euro-
pean conference on computer vision (pp. 117-126).

Hoiem, D., Efros, A. A., & Hebert, M. (2006). Putting objects in per-
spective. In International conference on computer vision and pat-
tern recognition (pp. 2137-2144).

Jin, H., Favaro, P., & Soatto, S. (2001). Real-time feature tracking and
outlier rejection with changes in illumination. In International
conference on computer vision (pp. 684—689).

Kang, S. B., Szeliski, R., & Chai, J. (2001). Handling occlusions in
dense multi-view stereo. In International conference on computer
vision and pattern recognition (pp. 103—110).

Kim, S. J., Gallup, D., Frahm, J.-M., Akbarzadeh, A., Yang, Q., Yang,
R., Nistér, D., & Pollefeys, M. (2007). Gain adaptive real-time
stereo streaming. In International conference on vision systems.

Koch, R., Pollefeys, M., & Van Gool, L. J. (1998). Multi viewpoint
stereo from uncalibrated video sequences. In European confer-
ence on computer vision (Vol. I, pp. 55-71).

Koch, R., Pollefeys, M., & Van Gool, L. (1999). Robust calibration
and 3D geometric modeling from large collections of uncalibrated
images. In DAGM (pp. 413-420).

Lucas, B. D., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In International joint
conference on artificial intelligence (pp. 674-679).

Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-M.,
Nister, D., & Pollefeys, M. (2007). Real-time visibility-based fu-
sion of depth maps. In Proceedings of international conference on
computer vision.

Morency, L. P., Rahimi, A., & Darrell, T. J. (2002). Fast 3D model ac-
quisition from stereo images. In 3D data processing, visualization
and transmission (pp. 172—176).

Morris, D. D., & Kanade, T. (2000). Image-consistent surface triangu-
lation. In International conference on computer vision and pattern
recognition (Vol. I, pp. 332-338).

Narayanan, P. J., Rander, P. W., & Kanade, T. (1998). Constructing
virtual worlds using dense stereo. In International conference on
computer vision (pp. 3—10).

Nistér, D. (2003). Preemptive RANSAC for live structure and mo-
tion estimation. In International conference on computer vision
(Vol. 1, pp. 199-206).

Nistér, D. (2004). An efficient solution to the five-point relative pose
problem. [EEE Transactions on Pattern Analysis and Machine In-
telligence, 26(6), 756-771.

Nistér, D., Naroditsky, O., & Bergen, J. (2006). Visual odometry for
ground vehicle applications. Journal of Field Robotics, 23(1), 3—
20.

Ogale, A. S., & Aloimonos, Y. (2004). Stereo correspondence with
slanted surfaces: critical implications of horizontal slant. In Inter-
national conference on computer vision and pattern recognition
(pp. 568-573).

Pajarola, R. (2002) Overview of quadtree-based terrain triangulation
and visualization (Technical Report UCI-ICS-02-01). Informa-
tion & Computer Science, University of California Irvine.

Pajarola, R., Meng, Y., & Sainz, M. (2002). Fast depth-image meshing
and warping (Technical Report UCI-ECE-02-02). Information &
Computer Science, University of California Irvine.

Pollefeys, M., Koch, R., & Van Gool, L. (1999). Self-calibration and
metric reconstruction inspite of varying and unknown intrinsic
camera parameters. International Journal of Computer Vision,
32(1), 7-25.

Romin, A., Garg, G., & Levoy, M. (2004). Interactive design of multi-
perspective images for visualizing urban landscapes. In IEEE vi-
sualization (pp. 537-544).

Rusinkiewicz, S., Hall-Holt, O., & Levoy, M. (2002). Real-time 3D
model acquisition. ACM Transactions on Graphics, 21(3), 438—
446.

Int J Comput Vis

Sato, T., Kanbara, M., Yokoya, N., & Takemura, H. (2002). Dense 3-D
reconstruction of an outdoor scene by hundreds-baseline stereo
using a hand-held video camera. International Journal of Com-
puter Vision, 47(1-3), 119-129.

Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International
Journal of Computer Vision, 47(1-3), 7-42.

Schindler, G., & Dellaert, F. (2004). Atlanta world: an expectation
maximization framework for simultaneous low-level edge group-
ing and camera calibration in complex man-made environments.
In International conference on computer vision and pattern recog-
nition (pp. 203-209).

Schindler, G., Krishnamurthy, P., & Dellaert, F. (2006). Line-based
structure from motion for urban environments. In 3DPVT.

Schindler, G., Dellaert, F., & Kang, S. B. (2007). Inferring temporal
order of images from 3D structure. In International conference
on computer vision and pattern recognition.

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R.
(2006). A comparison and evaluation of multi-view stereo recon-
struction algorithms. In International conference on computer vi-
sion and pattern recognition (pp. 519-528).

Shi, J., & Tomasi, C. (1994). Good features to track. In International
conference on computer vision and pattern recognition (pp. 593—
600).

Sinha, S., Frahm, J.-M., Pollefeys, M., & Genc, Y. (2007). Feature
tracking and matching in video using programmable graphics
hardware. Machine Vision and Applications.

Soatto, S., Perona, P., Frezza, R., & Picci, G. (1993). Recursive motion
and structure estimation with complete error characterization. In
International conference on computer vision and pattern recogni-
tion (pp. 428-433).

Soucy, M., & Laurendeau, D. (1995). A general surface approach to the
integration of a set of range views. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(4), 344-358.

Stamos, 1., & Allen, P. K. (2002). Geometry and texture recovery of
scenes of large scale. Computer Vision and Image Understanding,
88(2), 94-118.

Stewénius, H., Nistér, D., Oskarsson, M., & Astrt’)m, K. (2005). Solu-
tions to minimal generalized relative pose problems. In Workshop
on omnidirectional vision, Beijing, China, October 2005.

Szeliski, R., & Scharstein, D. (2004). Sampling the disparity space im-
age. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(3), 419-425.

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., &
Master, N. (2003). Calibrated, registered images of an extended
urban area. International Journal of Computer Vision, 53(1), 93—
107.

Turk, G., & Levoy, M. (1994). Zippered polygon meshes from range
images. In SIGGRAPH (pp. 311-318).

Werner, T., & Zisserman, A. (2002). New techniques for automated
architectural reconstruction from photographs. In European con-
ference on computer vision (pp. 541-555).

Wheeler, M. D, Sato, Y., & Ikeuchi, K. (1998). Consensus surfaces for
modeling 3D objects from multiple range images. In International
conference on computer vision (pp. 917-924).

Yang, R., & Pollefeys, M. (2003). Multi-resolution real-time stereo
on commodity graphics hardware. In International conference on
computer vision and pattern recognition (pp. 211-217).

Zabulis, X., & Daniilidis, K. (2004). Multi-camera reconstruction
based on surface normal estimation and best viewpoint selection.
In 3DPVT.

Zhu,Z.,Hanson, A. R., & Riseman, E. M. (2004). Generalized parallel-
perspective stereo mosaics from airborne video. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(2), 226—
237.

@ Springer

	Detailed Real-Time Urban 3D Reconstruction from Video
	Abstract
	Introduction
	System Overview
	Related Work
	Gain Estimating KLT
	Gain Estimation Results

	Camera Pose Estimation
	Visual Odometry
	Geo-Located Pose Estimation
	Pose Estimation Results

	Plane Sweeping Stereo with Multiple Sweeping Directions
	Sparse Scene Analysis: Identifying Sweeping Directions
	Plane Selection
	Plane Sweeping Stereo
	Incorporating Plane Priors
	Confidence of Stereo Matches
	Plane Sweeping Stereo on the GPU
	Stereo Results

	Depth Map Fusion
	Visibility-Based Depth Map Fusion
	Algorithm 1: Stability-Based Fusion
	Algorithm 2: Confidence-Based Fusion
	Combining Consistent Estimates
	Conflict Detection
	Hole Filling in Fused Depth Map

	Model Generation from the Depth Maps
	Model Clean-Up and Hole-Filling

	Real-Time Implementation
	Results
	Discussion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

