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INEQUALITIES OF J–P–S–F TYPE

JIAJIN WEN, CHAOBANG GAO AND WAN-LAN WANG

(Communicated by J. Pečarić)

Abstract. By means of the theory of majorization and under the proper hypotheses, the following
inequalities of Jensen-Pečarić-Svrtan-Fan (Abbreviated as J-P-S-F) type are established:
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� · · · � fk+1,n(x)
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� · · · � A( f (x))
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fk,n(x) :=
1

(n
k)

∑
1�i1<···<ik�n

f

(
xi1 + · · ·+ xik

k

)
, x ∈ [a,b]n .

1. Introduction and main results

The following notation and hypotheses in [1, 2, 3, 4] will be used throughout the
paper:

x := (x1, . . . ,xn); In := {x|xi ∈ I, i = 1, . . . ,n};
A(x) :=

x1 + · · ·+ xn

n
; G(x) := n

√
x1 · · ·xn;

f (x) := ( f (x1), . . . , f (xn)); g(x) := (g(x1), . . . ,g(xn));

fk,n(x) ≡ fk,n :=
1

(n
k)

∑
1�i1<···<ik�n

f

(
xi1 + · · ·+ xik

k

)
, k = 1, . . . ,n.

Here I ⊂ R is an interval, and n � 2.
The well-known Jensen’s inequality [6, 7, 8] with equal weights can be stated as

f (A(x)) = fn,n(x) � f1,n(x) = A( f (x)), (1)

where f : I → R is a convex function, and x ∈ In . The inequality is clearly reversed if
f : I → R is a concave function.

Since 1990s of the last century, combinatorial improvements of Jensen’s inequal-
ity have been still the heating point of research, and some investigators have enjoyed
considerable success (e.g., [9, 10, 15, 16] and the references cited therein). For exam-
ple, we can easily discover the following inequalities (2–6) are more useful and more
interesting than those in [7] if we compare them with [7]. And many refinements of
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the well-known and new inequalities can be deduced from the above (see [7, 8]). In a
word, various further refinements of Jensen’s inequality have been obtained by many
mathematicians. For example, those in [8, 9] are precisely some graceful chains of in-
equalities. Apart from a few papers [3, 4, 5] introduced below, we shall give the reader
a brief introduction about Chinese authors’ works of which seem to be more difficult to
know these better.

Pečarić, Svrtan and Volenec [3, 4, 5] established one of many interesting results
is: If f : I → R is a mid-convex function, and xi ∈ I , i = 1, . . . ,n , then for all k =
1, . . . ,n−1, the following refinement of Jensen inequality holds:

f (A(x)) = fn,n � · · · � fk+1,n � fk,n � · · · � f1,n = A( f (x)), (2)

In 2003, Tang and Wen [11] obtained the following inequalities: For all r, j,s, i :
1 � r � j � s � i � n, the following refinement holds:

fr,s,n � · · · � fr,s,i � · · · � fr,s,s � · · · � fr, j, j � · · · � fr,r,r = 0, (3)

where

fr,s,n :=
(

n
r

)(
n
s

)
( fr,n − fs,n).

The equality conditions are also considered.
In 2008, Gao and Wen [12] obtained the following results in this direction:

f (A(a))
f (A(b))

� · · · � fk+1,n(a)
fk+1,n(b)

� fk,n(a)
fk,n(b)

� · · · � A( f (a))
A( f (b))

, (4)

where

a,b ∈ In, a1 � · · · � an � bn � · · · � b1, a1 +b1 � · · · � an +bn,

f (t) > 0, f ′(t) > 0, f ′′(t) > 0, f ′′′(t) < 0, ∀t ∈ I, 1 � k � n−1.

The inequalities are reversed for

f (t) > 0, f ′(t) > 0, f ′′(t) < 0, f ′′′(t) > 0, ∀t ∈ I.

Moreover, Wen and Wang [13] considered some inequalities for linear combinations
involving fk,n .

Another type of generalization is due to Wen [14]: Let f : I → R be a twice-
differentiable function, and let whose second derivative f ′′ be a continuous, convex
function. Then, for any x ∈ In, we have

f ′′(D(x)) � 2J[ f (x)]
J[x2]

� 1
3

[
max
1�i�n

{ f ′′(xi)}+A( f ′′(x))+ f ′′(A(x))
]
, (5)

where

D(x) =
1
3

A(x3)−A3(x)
A(x2)−A2(x)

,
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J[ f (x)] = A( f (x))− f (A(x)), J[x2] = A(x2)−A2(x).

A review is presented on recent progress in these researches as fellows: In 2011,
Horvath [20] proposed a new method to refine the discrete Jensen’s inequality for con-
vex and mid-convex functions. In fact, this is a new parameter-dependent refinement.
In the same year, Horvath and Pečarić [21] established a new refinement for these func-
tions. In 2012, Horvath, Khan and Pečarić [22] obtained the related results for operator
convex functions on a Hilbert space.

In this paper we study a kind of interesting inequalities centering about the topic
of refinements involving two functions. Our main result is:

THEOREM 1. (Inequalities of Jensen-Pečarić-Svrtan-Fan type) Let two functions

f : [a,b] → (0,∞), g : [a,b]→ (0,∞)

satisfy

sup
t∈[a,b]

{∣∣∣ g′′(t)
f ′′(t)

∣∣∣}< inf
t∈[a,b]

{ g(t)
f (t)

}
.

If f ′′(t) > 0 , ∀t ∈ [a,b], then for any x ∈ [a,b]n, we have the following inequalities:

f (A(x))
g(A(x))

� · · · � fk+1,n(x)
gk+1,n(x)

� fk,n(x)
gk,n(x)

� · · · � A( f (x))
A(g(x))

, (6)

where 1 � k � n−1. If f ′′(t) < 0 , ∀t ∈ [a,b], then the above inequalities are reversed.
In each case, the sign of the equality holding throughout if and only if x1 = · · · = xn .

2. Proof of Theorem 1

In this section, in order to simplify some expressions, let us set

α := (α1, · · · ,αn); Ωn := {α ∈ [0,1]n|α1 + · · ·+ αn = 1};

S f (α,x) :=
1
n! ∑

i1i2···in
f (α1xi1 + · · ·+ αnxin); F(α) := log

S f (α,x)
Sg(α,x)

;

ui(x) := α1xi1 + α2xi2 +
n

∑
j=3

α jxi j ; vi(x) := α1xi2 + α2xi1 +
n

∑
j=3

α jxi j .

Here and in the sequel x∈ [a,b]n, α ∈Ωn, i = (i1, · · · , in), and we let i1 · · · in and i3 . . . in
denote the possible permutations of Nn = {1, . . . ,n} and the possible permutations of
Nn\{i1, i2} , respectively.
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LEMMA 1. Under the hypotheses of Theorem 1, there exist ξi and ξ ∗
i between

ui(x) and vi(x) such that

(α1 −α2)
(

∂F
∂α1

− ∂F
∂α2

)
=

1
n! ∑

i3···in
∑

1�i1<i2�n

f ′′(ξi)(ui(x)− vi(x))2

S f (α,x)

×
(

1− g′′(ξ ∗
i )

f ′′(ξ ∗
i )

· S f (α,x)
Sg(α,x)

)
. (7)

Proof. Note the following identities:

S f (α,x) =
1
n! ∑

i3···in
∑

1�i1 
=i2�n

f (α1xi1 + · · ·+ αnxin)

=
1
n! ∑

i3···in
∑

1�i1<i2�n

[ f (ui(x))+ f (vi(x))] ;

Sg(α,x) =
1
n! ∑

i3···in
∑

1�i1<i2�n

[g(ui(x))+g(vi(x))] ;

∂
∂α1

[ f (ui(x))+ f (vi(x))]− ∂
∂α2

[ f (ui(x))+ f (vi(x))]

= [xi1 f ′(ui(x))+ xi2 f ′(vi(x))]− [xi2 f ′(ui(x))+ xi1 f ′(vi(x))]
= [ f ′(ui(x))− f ′(vi(x))](xi1 − xi2);

∂
∂α1

[g(ui(x))+g(vi(x))]− ∂
∂α2

[g(ui(x))+g(vi(x))]

= [g′(ui(x))−g′(vi(x))](xi1 − xi2).

Thus

(α1 −α2)
(

∂S f (α,x)
∂α1

− ∂S f (α,x)
∂α2

)
=

1
n! ∑

i3···in
∑

1�i1<i2�n

[ f ′(ui(x))− f ′(vi(x))](α1 −α2)(xi1 − xi2)

=
1
n! ∑

i3···in
∑

1�i1<i2�n

[ f ′(ui(x))− f ′(vi(x))](ui(x)− vi(x));

(α1 −α2)
(

∂Sg(α,x)
∂α1

− ∂Sg(α,x)
∂α2

)
=

1
n! ∑

i3···in
∑

1�i1<i2�n

[g′(ui(x))−g′(vi(x))](ui(x)− vi(x)).
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Based on the above facts, we have

(α1 −α2)
(

∂F
∂α1

− ∂F
∂α2

)

= (α1 −α2)

⎛
⎝ ∂S f (α ,x)

∂α1
− ∂S f (α ,x)

∂α2

S f (α,x)
−

∂Sg(α ,x)
∂α1

− ∂Sg(α ,x)
∂α2

Sg(α,x)

⎞
⎠

=
1
n! ∑

i3···in
∑

1�i1<i2�n

{
[ f ′(ui(x))− f ′(vi(x))](ui(x)− vi(x))

S f (α,x)

− [g′(ui(x))−g′(vi(x))](ui(x)− vi(x))
Sg(α,x)

}

=
1
n! ∑

i3···in
∑

1�i1<i2�n

[ f ′(ui(x))− f ′(vi(x))](ui(x)− vi(x))
S f (α,x)

×
(

1− g′(ui(x))−g′(vi(x))
f ′(ui(x))− f ′(vi(x))

· S f (α,x)
Sg(α,x)

)
.

By Lagrange’s mean-value theorem, there exists ξi between ui(x) and vi(x) such that

f ′(ui(x))− f ′(vi(x)) = f ′′(ξi)(ui(x)− vi(x)).

By Cauchy’s mean-value theorem, there exists ξ ∗
i between ui(x) and vi(x) such that

g′(ui(x))−g′(vi(x))
f ′(ui(x))− f ′(vi(x))

=
g′′(ξ ∗

i )
f ′′(ξ ∗

i )
.

Finally one has

(α1 −α2)
(

∂F
∂α1

− ∂F
∂α2

)

=
1
n! ∑

i3···in
∑

1�i1<i2�n

[ f ′(ui(x))− f ′(vi(x))](ui(x)− vi(x))
S f (α,x)

×
(

1− g′(ui(x))−g′(vi(x))
f ′(ui(x))− f ′(vi(x))

· S f (α,x)
Sg(α,x)

)

=
1
n! ∑

i3···in
∑

1�i1<i2�n

f ′′(ξi)(ui(x)− vi(x))
2

S f (α,x)

(
1− g′′(ξ ∗

i )
f ′′(ξ ∗

i )
· S f (α,x)
Sg(α,x)

)
.

The proof of Lemma 1 has been finished. �

LEMMA 2. Let the conditions of Theorem 1 be satisfied.
(I) If f ′′(t) > 0 , ∀t ∈ [a,b], then F(α) is a Schur-convex function on Ωn .
(II) If f ′′(t) < 0 , ∀t ∈ [a,b], then F(α) is a Schur-concave function on Ωn .
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Proof. We first affirm that Case (I) is true as follow.
One can easily see that Ωn is a symmetric convex set, and F(α) is a symmetric

function on Ωn and it has continuous partial derivatives. By [1, 2], we need to prove
that F satisfies the Schur condition:

(α1 −α2)
(

∂F
∂α1

− ∂F
∂α2

)
� 0. (8)

Equality is valid if and only if α1 = α2 or x1 = · · · = xn .
In the following, we shall apply the identity (7) in Lemma 1.
Note that x ∈ [a,b]n,α ∈ Ωn , for any i = (i1, . . . , in) , we have

ui(x) = α1xi1 + · · ·+ αnxin ∈ [a,b];

f (α1xi1 + . . .+ αnxin)
g(α1xi1 + . . .+ αnxin)

=
f (ui(x))
g(ui(x))

� sup
t∈[a,b]

{
f (t)
g(t)

}
;

S f (α,x) =
1
n! ∑

i1···in
f (α1xi1 + . . .+ αnxin)

=
1
n! ∑

i1···in

f (α1xi1 + . . .+ αnxin)
g(α1xi1 + . . .+ αnxin)

·g(α1xi1 + . . .+ αnxin)

� 1
n! ∑

i1···in
sup

t∈[a,b]

{
f (t)
g(t)

}
g(α1xi1 + . . .+ αnxin)

= sup
t∈[a,b]

{
f (t)
g(t)

}
Sg(α,x),

or, equivalently,

Sg(α,x)
S f (α,x)

�
[

sup
t∈[a,b]

{
f (t)
g(t)

}]−1

= inf
t∈[a,b]

{
g(t)
f (t)

}
. (9)

Combining (9) with the following inequality

0 �
∣∣∣∣ g′′i (ξ ∗

i )
f ′′i (ξ ∗

i )

∣∣∣∣� sup
t∈[a,b]

{∣∣∣∣ g′′(t)f ′′(t)

∣∣∣∣
}

(10)

and the hypotheses of Theorem 1, we obtain that

1− g′′(ξ ∗
i )

f ′′(ξ ∗
i )

· S f (α,x)
Sg(α,x)

� 1−
∣∣∣∣g′′(ξ ∗

i )
f ′′(ξ ∗

i )

∣∣∣∣ · S f (α,x)
Sg(α,x)

� 1− sup
t∈[a,b]

{∣∣∣∣ g′′(t)f ′′(t)

∣∣∣∣
}/ Sg(α,x)

S f (α,x)

� 1− sup
t∈[a,b]

{∣∣∣∣ g′′(t)f ′′(t)

∣∣∣∣
}/

inf
t∈[a,b]

{
g(t)
f (t)

}
> 0.

(11)
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By the identity (7), the inequality (11) and given f ′′(t) > 0, ∀t ∈ [a,b] , the Schur
condition (8) can be satisfied. So F(α) is a Schur-convex function on Ωn .

Let us now turn to the conclusion (II) of our lemma.
From above argument for (I) we know that the inequalities (9–11) hold still. Using

(7), (11) and f ′′(t) < 0, ∀t ∈ [a,b], the converse of (8) can be obtained. Thus, F(α) is
a Schur-concave function on Ωn . From the argument, we obtain that equality is valid
if and only if α1 = α2 or x1 = · · · = xn .

This completes the proof of Lemma 2. �

Proof of Theorem 1. We only prove the first assertion, that is, the inequalities
(6) hold for f ′′(t) > 0, ∀t ∈ [a,b], because we also prove the second assertion for
f ′′(t) < 0, ∀t ∈ [a,b] by an analogous procedure. Define

α[k] := (k−1, . . . ,k−1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

), k = 1, . . . ,n.

Clearly, α[k] ∈ Ωn, k = 1, . . . ,n , and

α[k+1]≺ α[k], k = 1, . . . ,n−1.

By Lemma 2, for any x ∈ [a,b]n , F(α) is a Schur-convex function on Ωn (see [1, 2]).
Using the definition of Schur-convex function, we have

F (α[k+1]) � F (α[k]) , k = 1, . . . ,n−1.

Combining this result with the definition of F(α) , it follows that the inequalities (6)
hold. By the argument of Lemma 2 and the fact of which α[k] strictly majorizes α[k+
1] , the sign of equality holding throughout if and only if x1 = · · · = xn .

Theorem 1 is thus proved. �

3. Applications

Let x ∈ (0,∞)n . The Dresher mean of order k of x, where 1 � k � n, is defined
by

[Dp,q(x)]k,n :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
k

[
∑1�i1<···<ik�n

(
∑k

j=1 xi j

)p

∑1�i1<···<ik�n

(
∑k

j=1 xi j

)q

]1/(p−q)

, if p 
= q,

1
k exp

[
∑1�i1<···<ik�n

(
∑k

j=1 xi j

)p
log
(

∑k
j=1 xi j

)
∑1�i1<···<ik�n

(
∑k

j=1 xi j

)p

]
, if p = q.

Especially,

Dp,q(x) := [Dp,q(x)]1,n
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is the Dresher mean of x (see [18]), and

[D0,0(x)]k,n =

(
∏

1�i1<···<ik�n

xi1 + · · ·+ xik

k

)1/(nk)

= [GA;x]k,n,

[D1,1(x)]k,n =

⎡
⎣ ∏

1�i1<···<ik�n

(
xi1 + · · ·+ xik

k

) xi1
+···+xik

k

⎤
⎦1/[(nk)A(x)]

,

[D1,1(x)]1,n = (xx1
1 · · ·xxn

n )1/(x1+···+xn),

[D0,0(x)]1,n = G(x),
[Dp,q(x)]n,n = A(x).

Write

D(p,q) :=

⎧⎨
⎩
[ p(1−p)

q(1−q)

]1/(p−q)
, if p 
= q,

exp 1−2p
p(1−p) , if p = q.

Theorem 1 implies the following three corollaries.

COROLLARY 1. (Inequalities of Pečarić-Svrtan-Dresher type, see [5], [19]) Let

x ∈ (0,∞)n,
max{x}
min{x} < D(p,q).

(I) If p > 0 , q > 0 , p+q < 1 , then

A(x) = [Dp,q(x)]n,n � · · · � [Dp,q(x)]k+1,n � [Dp,q(x)]k,n
� · · · � [Dp,q(x)]1,n = Dp,q(x) � G(x).

(12)

(II) If p > 1 , q > 1 , then

A(x) = [Dp,q(x)]n,n � · · · � [Dp,q(x)]k+1,n � [Dp,q(x)]k,n
� · · · � [Dp,q(x)]1,n = Dp,q(x).

(13)

In each case, the sign of equality holds throughout if and only if x1 = · · · = xn .

Proof. We only prove the case (I), that is, the inequalities (13) hold, because we
also prove the case (II) with the same method. Since

[Dp,q(x)]k,n = [Dq, p(x)]k,n

is continuous of (p,q) , we can assume that 0 < q < p < 1. Now we take

[a,b] = [min{x},max{x}], f : [a,b] → (0,∞), f (t) = t p,

and
g : [a,b]→ (0,∞), g(t) = tq.
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We verify that the conditions of Theorem 1 can be satisfied below.
Firstly, we notice that

sup
t∈[a,b]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣
}

= sup
t∈[a,b]

{∣∣∣∣ q(q−1)tq−2

p(p−1)t p−2

∣∣∣∣
}

= sup
t∈[a,b]

{
q(1−q)
p(1− p)

tq−p
}

=
q(1−q)
p(1− p)

aq−p,

inf
t∈[a,b]

{
g(t)
f (t)

}
= inf

t∈[a,b]
{tq−p} = bq−p.

By

0 < q < p < 1, p+q < 1, p(1− p)−q(1−q)= (p−q)(1− p−q)> 0,

we have

D(p,q) =
[ p(1− p)

q(1−q)

]1/(p−q)
> 1,

sup
t∈[a,b]

{∣∣∣∣ g′′(t)f ′′(t)

∣∣∣∣
}

=
q(1−q)
p(1− p)

aq−p < bq−p = inf
t∈[a,b]

{
g(t)
f (t)

}
⇔ max{x}

min{x} < D{p,q},

f ′′(t) = p(p−1)t p−2 < 0, ∀t ∈ [a,b].

Thus, by Theorem 1, the reverse (6) holds. In other words, we have

A(x) = [Dp,q(x)]n,n � · · · � [Dp,q(x)]k+1,n � [Dp,q(x)]k,n
� · · · � [Dp,q(x)]1,n = Dp,q(x).

(14)

Secondly, using the results of [19]:

Dp,q(x) � Dr,s(x) ⇔ max{p,q} � max{r,s} and min{p,q} � min{r,s},
and p > 0, q > 0, we get

Dp,q(x) � D0,0(x) = G(x). (15)

From (14) and (15) we get (12).
The proof is therefore complete. �

REMARK 1. From Corollary 1 and

lim
p→0+,q→0+

D(p,q) = lim
p→1+,q→1+

D(p,q) = ∞,

we can obtain some interesting inequalities (see [5]) : If x ∈ (0,∞)n , then

A(x) � · · · � [GA;x]k+1,n � [GA;x]k,n � · · · � G(x), (16)
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and
A(x) � · · · � [D1,1(x)]k+1,n � [D1,1(x)]k,n � · · · � [D1,1(x)]1,n. (17)

The sign of equality holds throughout if and only if x1 = · · · = xn.

REMARK 2. Since (12) implies the following inequality

A(x) � Dp,q(x) =
[
A(xp)
A(xq)

]1/(p−q)

� G(x), ∀p,q : p > 0, q > 0, p+q < 1,

by Corollary 1 and the definition of Riemann integral, we know that: If p > 0, q > 0,
p 
= q , p + q < 1, the function f : [α,β ] → (0,∞) is continuous, and it satisfies the
condition

maxt∈[α ,β ]{ f (t)}
mint∈[α ,β ]{ f (t)} < D(p,q),

then we have

∫ β
α fdt

β −α
�
(∫ β

α f pdt∫ β
α f qdt

)1/(p−q)

� exp

(∫ β
α ln fdt
β −α

)
. (18)

One of the integral analogues of the inequalities (6) is the following inequality
(19).

COROLLARY 2. Under the hypotheses of Theorem 1, let E ⊂ R
m be a bounded

closed domain with measure (m-dimensional volume) |E| = 1 , and let φ : E → [a,b]
be a Riemann integrable function. If f ′′(t) > 0 , ∀t ∈ [a,b] , then

f (
∫
E φ)

g(
∫
E φ)

�
∫
E f ◦φ∫
E g ◦φ

, (19)

where f ◦φ = f (φ) , g◦φ = g(φ) , and
∫
E is Riemann integral. If f ′′(t) < 0 , ∀t ∈ [a,b] ,

then the inequality (19) is reversed.

Proof. On the one hand, the hypotheses of Corollary 2 imply that the functions

φ : E → R, f ◦φ : E → R, g ◦φ : E → R

are integrable. On the other hand, Theorem 1 implies the inequality

f (A(x,w))
g(A(x,w))

� A( f (x),w)
A(g(x),w)

, ∀x ∈ [a,b]n, (20)

where

w ∈ (0,1)n,
n

∑
i=1

wi = 1,A(x,w) =
n

∑
i=1

wixi.

Let
T = {ΔE1, · · · ,ΔEn}
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be a partition of E, and let

‖T‖ = max
1�i�n

max
X ,Y∈ΔEi

{‖ X −Y ‖}

be the ‘norm’ of the partition T, where ‖X −Y‖ is the length of the vector X −Y . Pick
any

ξ ∈ ΔE1×·· ·×ΔEn,

by (20) we get

f (
∫
E φ)

g(
∫
E φ)

= lim
‖T‖→0

f (A(φ(ξ ),w))
g(A(φ(ξ ),w))

� lim
‖T‖→0

A( f (φ(ξ )),w)
A(g(φ(ξ )),w)

=
∫
E f ◦φ∫
E g ◦φ

, (21)

where

w = (|ΔE1|, · · · , |ΔEn|) ∈ (0,1)n,
n

∑
i=1

|ΔEi| = 1, φ(ξ ) ∈ [a,b]n.

Therefore the inequality (16) holds from (21). This ends the proof. �

COROLLARY 3. (Inequalities of Fan type, see[8]) If x ∈ (0, 1
2

]n
, then

A(x)
A(1− x)

� · · · � [GA;x]k+1,n

[GA;1− x]k+1,n
� [GA;x]k,n

[GA;1− x]k,n
� · · · � G(x)

G(1− x)
, (22)

where
1− x = (1− x1, . . . ,1− xn), 1 � k � n−1,

and the sign of equality holding throughout if and only if x1 = · · · = xn .

Proof. It goes without saying that, for each x ∈ (0, 1
2

]n
, we can always find a ∈(

0, 1
2

)
such that x ∈ [a, 1

2

]n
. In Theorem 1, we take

f :

[
a,

1
2

]
→ (0,∞), f (t) = tγ , 0 < γ < 1;

g :

[
a,

1
2

]
→ (0,∞), g(t) = (1− t)γ , 0 < γ < 1.

We verify that the conditions of Theorem 1 can be satisfied as follows.

sup
t∈[a,1/2]

{∣∣∣∣ g′′(t)f ′′(t)

∣∣∣∣
}

= sup
t∈[a,1/2]

{∣∣∣∣γ(γ −1)(1− t)γ−2

γ(γ −1)tγ−2

∣∣∣∣
}

= sup
t∈[a,1/2]

{(1
t
−1

)γ−2
}

= 1,



224 J. WEN, C. GAO AND W.-LAN WANG

inf
t∈[a,1/2]

{ g(t)
f (t)

}
= inf

t∈[a,1/2]

{(
1
t
−1

)γ}
= 1.

From the above we have

sup
t∈[a,1/2]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣
}

� inf
t∈[a,1/2]

{
g(t)
f (t)

}
.

It is easy to see that

f ′′(t) = γ(γ −1)tγ−2 < 0, ∀t ∈
[
a,

1
2

]
.

By now, our verification procedure has been finished. Thus the inverse inequalities (6)
are true, that is, we have[

fk+1,n(x)
fk+1,n(1− x)

]1/γ
�
[

fk,n(x)
fk,n(1− x)

]1/γ
, k = 1, . . . ,n−1. (23)

Passing the limit as γ → 0 in (23), we can obtain (22). By the same argument as in
Theorem 1, we can derive the sign of equality in (22) holding throughout if and only if
x1 = · · · = xn .

This completes the proof of Corollary 3. �
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