INEQUALITIES OF J-P-S-F TYPE

Jiajin Wen, Chaobang Gao and Wan-lan Wang

(Communicated by J. Pečarić)

Abstract. By means of the theory of majorization and under the proper hypotheses, the following inequalities of Jensen-Pečarić-Svrtan-Fan (Abbreviated as J-P-S-F) type are established:

$$
\frac{f(A(x))}{g(A(x))} \leqslant \cdots \leqslant \frac{f_{k+1, n}(x)}{g_{k+1, n}(x)} \leqslant \frac{f_{k, n}(x)}{g_{k, n}(x)} \leqslant \cdots \leqslant \frac{A(f(x))}{A(g(x))}
$$

where

$$
f_{k, n}(x):=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} f\left(\frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}\right), \quad x \in[a, b]^{n} .
$$

1. Introduction and main results

The following notation and hypotheses in [1, 2, 3, 4] will be used throughout the paper:

$$
\begin{gathered}
x:=\left(x_{1}, \ldots, x_{n}\right) ; \quad I^{n}:=\left\{x \mid x_{i} \in I, i=1, \ldots, n\right\} ; \\
A(x):=\frac{x_{1}+\cdots+x_{n}}{n} ; \quad G(x):=\sqrt[n]{x_{1} \cdots x_{n}} ; \\
f(x):=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) ; \quad g(x):=\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) ; \\
f_{k, n}(x) \equiv f_{k, n}:=\frac{1}{\binom{n}{k}} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} f\left(\frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}\right), \quad k=1, \ldots, n .
\end{gathered}
$$

Here $I \subset \mathbb{R}$ is an interval, and $n \geqslant 2$.
The well-known Jensen's inequality $[6,7,8]$ with equal weights can be stated as

$$
\begin{equation*}
f(A(x))=f_{n, n}(x) \leqslant f_{1, n}(x)=A(f(x)) \tag{1}
\end{equation*}
$$

where $f: I \rightarrow \mathbb{R}$ is a convex function, and $x \in I^{n}$. The inequality is clearly reversed if $f: I \rightarrow \mathbb{R}$ is a concave function.

Since 1990s of the last century, combinatorial improvements of Jensen's inequality have been still the heating point of research, and some investigators have enjoyed considerable success (e.g., $[9,10,15,16]$ and the references cited therein). For example, we can easily discover the following inequalities (2-6) are more useful and more interesting than those in [7] if we compare them with [7]. And many refinements of

[^0]the well-known and new inequalities can be deduced from the above (see [7, 8]). In a word, various further refinements of Jensen's inequality have been obtained by many mathematicians. For example, those in [8, 9] are precisely some graceful chains of inequalities. Apart from a few papers [3, 4, 5] introduced below, we shall give the reader a brief introduction about Chinese authors' works of which seem to be more difficult to know these better.

Pečarić, Svrtan and Volenec [3, 4, 5] established one of many interesting results is: If $f: I \rightarrow \mathbb{R}$ is a mid-convex function, and $x_{i} \in I, i=1, \ldots, n$, then for all $k=$ $1, \ldots, n-1$, the following refinement of Jensen inequality holds:

$$
\begin{equation*}
f(A(x))=f_{n, n} \leqslant \cdots \leqslant f_{k+1, n} \leqslant f_{k, n} \leqslant \cdots \leqslant f_{1, n}=A(f(x)) \tag{2}
\end{equation*}
$$

In 2003, Tang and Wen [11] obtained the following inequalities: For all r, j, s, i : $1 \leqslant r \leqslant j \leqslant s \leqslant i \leqslant n$, the following refinement holds:

$$
\begin{equation*}
f_{r, s, n} \geqslant \cdots \geqslant f_{r, s, i} \geqslant \cdots \geqslant f_{r, s, s} \geqslant \cdots \geqslant f_{r, j, j} \geqslant \cdots \geqslant f_{r, r, r}=0 \tag{3}
\end{equation*}
$$

where

$$
f_{r, s, n}:=\binom{n}{r}\binom{n}{s}\left(f_{r, n}-f_{s, n}\right)
$$

The equality conditions are also considered.
In 2008, Gao and Wen [12] obtained the following results in this direction:

$$
\begin{equation*}
\frac{f(A(a))}{f(A(b))} \leqslant \cdots \leqslant \frac{f_{k+1, n}(a)}{f_{k+1, n}(b)} \leqslant \frac{f_{k, n}(a)}{f_{k, n}(b)} \leqslant \cdots \leqslant \frac{A(f(a))}{A(f(b))} \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
a, b \in I^{n}, \quad a_{1} \leqslant \cdots \leqslant a_{n} \leqslant b_{n} \leqslant \cdots \leqslant b_{1}, \quad a_{1}+b_{1} \leqslant \cdots \leqslant a_{n}+b_{n} \\
f(t)>0, \quad f^{\prime}(t)>0, \quad f^{\prime \prime}(t)>0, \quad f^{\prime \prime \prime}(t)<0, \forall t \in I, \quad 1 \leqslant k \leqslant n-1 .
\end{gathered}
$$

The inequalities are reversed for

$$
f(t)>0, \quad f^{\prime}(t)>0, \quad f^{\prime \prime}(t)<0, \quad f^{\prime \prime \prime}(t)>0, \forall t \in I
$$

Moreover, Wen and Wang [13] considered some inequalities for linear combinations involving $f_{k, n}$.

Another type of generalization is due to Wen [14]: Let $f: I \rightarrow \mathbb{R}$ be a twicedifferentiable function, and let whose second derivative $f^{\prime \prime}$ be a continuous, convex function. Then, for any $x \in I^{n}$, we have

$$
\begin{equation*}
f^{\prime \prime}(D(x)) \leqslant \frac{2 J[f(x)]}{J\left[x^{2}\right]} \leqslant \frac{1}{3}\left[\max _{1 \leqslant i \leqslant n}\left\{f^{\prime \prime}\left(x_{i}\right)\right\}+A\left(f^{\prime \prime}(x)\right)+f^{\prime \prime}(A(x))\right] \tag{5}
\end{equation*}
$$

where

$$
D(x)=\frac{1}{3} \frac{A\left(x^{3}\right)-A^{3}(x)}{A\left(x^{2}\right)-A^{2}(x)}
$$

$$
J[f(x)]=A(f(x))-f(A(x)), \quad J\left[x^{2}\right]=A\left(x^{2}\right)-A^{2}(x) .
$$

A review is presented on recent progress in these researches as fellows: In 2011, Horvath [20] proposed a new method to refine the discrete Jensen's inequality for convex and mid-convex functions. In fact, this is a new parameter-dependent refinement. In the same year, Horvath and Pečarić [21] established a new refinement for these functions. In 2012, Horvath, Khan and Pečarić [22] obtained the related results for operator convex functions on a Hilbert space.

In this paper we study a kind of interesting inequalities centering about the topic of refinements involving two functions. Our main result is:

THEOREM 1. (Inequalities of Jensen-Pečarić-Svrtan-Fan type) Let two functions

$$
f:[a, b] \rightarrow(0, \infty), \quad g:[a, b] \rightarrow(0, \infty)
$$

satisfy

$$
\sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\}<\inf _{t \in[a, b]}\left\{\frac{g(t)}{f(t)}\right\}
$$

If $f^{\prime \prime}(t)>0, \forall t \in[a, b]$, then for any $x \in[a, b]^{n}$, we have the following inequalities:

$$
\begin{equation*}
\frac{f(A(x))}{g(A(x))} \leqslant \cdots \leqslant \frac{f_{k+1, n}(x)}{g_{k+1, n}(x)} \leqslant \frac{f_{k, n}(x)}{g_{k, n}(x)} \leqslant \cdots \leqslant \frac{A(f(x))}{A(g(x))} \tag{6}
\end{equation*}
$$

where $1 \leqslant k \leqslant n-1$. If $f^{\prime \prime}(t)<0, \forall t \in[a, b]$, then the above inequalities are reversed. In each case, the sign of the equality holding throughout if and only if $x_{1}=\cdots=x_{n}$.

2. Proof of Theorem 1

In this section, in order to simplify some expressions, let us set

$$
\begin{gathered}
\alpha:=\left(\alpha_{1}, \cdots, \alpha_{n}\right) ; \quad \Omega_{n}:=\left\{\alpha \in[0,1]^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right\} \\
S_{f}(\alpha, x):=\frac{1}{n!} \sum_{i_{1} i_{2} \cdots i_{n}} f\left(\alpha_{1} x_{i_{1}}+\cdots+\alpha_{n} x_{i_{n}}\right) ; \quad F(\alpha):=\log \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)} \\
u_{i}(x):=\alpha_{1} x_{i_{1}}+\alpha_{2} x_{i_{2}}+\sum_{j=3}^{n} \alpha_{j} x_{i_{j}} ; \quad v_{i}(x):=\alpha_{1} x_{i_{2}}+\alpha_{2} x_{i_{1}}+\sum_{j=3}^{n} \alpha_{j} x_{i_{j}} .
\end{gathered}
$$

Here and in the sequel $x \in[a, b]^{n}, \alpha \in \Omega_{n}, i=\left(i_{1}, \cdots, i_{n}\right)$, and we let $i_{1} \cdots i_{n}$ and $i_{3} \ldots i_{n}$ denote the possible permutations of $\mathbb{N}_{n}=\{1, \ldots, n\}$ and the possible permutations of $\mathbb{N}_{n} \backslash\left\{i_{1}, i_{2}\right\}$, respectively.

Lemma 1. Under the hypotheses of Theorem 1, there exist ξ_{i} and ξ_{i}^{*} between $u_{i}(x)$ and $v_{i}(x)$ such that

$$
\begin{align*}
\left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial F}{\partial \alpha_{1}}-\frac{\partial F}{\partial \alpha_{2}}\right)= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \frac{f^{\prime \prime}\left(\xi_{i}\right)\left(u_{i}(x)-v_{i}(x)\right)^{2}}{S_{f}(\alpha, x)} \\
& \times\left(1-\frac{g^{\prime \prime}\left(\xi_{i}^{*}\right)}{f^{\prime \prime}\left(\xi_{i}^{*}\right)} \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)}\right) \tag{7}
\end{align*}
$$

Proof. Note the following identities:

$$
\begin{aligned}
& S_{f}(\alpha, x)= \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1} \neq i_{2} \leqslant n} f\left(\alpha_{1} x_{i_{1}}+\cdots+\alpha_{n} x_{i_{n}}\right) \\
&=\frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left[f\left(u_{i}(x)\right)+f\left(v_{i}(x)\right)\right] ; \\
& S_{g}(\alpha, x)=\frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left[g\left(u_{i}(x)\right)+g\left(v_{i}(x)\right)\right] ; \\
&= \frac{\partial}{\partial \alpha_{1}}\left[f\left(u_{i}(x)\right)+f\left(v_{i}(x)\right)\right]-\frac{\partial}{\partial \alpha_{2}}\left[f\left(u_{i}(x)\right)+f\left(v_{i}(x)\right)\right] \\
&= {\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(x_{i_{1}}-x_{i_{2}}\right) ; } \\
& \frac{\partial}{\partial \alpha_{1}}\left[g\left(u_{i}(x)\right)+g\left(v_{i}(x)\right)\right]-\frac{\partial}{\partial \alpha_{2}}\left[g\left(u_{i}(x)\right)+g\left(v_{i}(x)\right)\right] \\
&= {\left[g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)\right]\left(x_{i_{1}}-x_{i_{2}}\right) . }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial S_{f}(\alpha, x)}{\partial \alpha_{1}}-\frac{\partial S_{f}(\alpha, x)}{\partial \alpha_{2}}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(\alpha_{1}-\alpha_{2}\right)\left(x_{i_{1}}-x_{i_{2}}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right) ; \\
& \left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial S_{g}(\alpha, x)}{\partial \alpha_{1}}-\frac{\partial S_{g}(\alpha, x)}{\partial \alpha_{2}}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left[g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right) .
\end{aligned}
$$

Based on the above facts, we have

$$
\begin{aligned}
& \left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial F}{\partial \alpha_{1}}-\frac{\partial F}{\partial \alpha_{2}}\right) \\
= & \left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\frac{\partial S_{f}(\alpha, x)}{\partial \alpha_{1}}-\frac{\partial S_{f}(\alpha, x)}{\partial \alpha_{2}}}{S_{f}(\alpha, x)}-\frac{\frac{\partial S_{g}(\alpha, x)}{\partial \alpha_{1}}-\frac{\partial S_{g}(\alpha, x)}{\partial \alpha_{2}}}{S_{g}(\alpha, x)}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left\{\frac{\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right)}{S_{f}(\alpha, x)}\right. \\
& \left.-\frac{\left[g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right)}{S_{g}(\alpha, x)}\right\} \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \frac{\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right)}{S_{f}(\alpha, x)} \\
& \times\left(1-\frac{g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)}{f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)} \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)}\right) .
\end{aligned}
$$

By Lagrange's mean-value theorem, there exists ξ_{i} between $u_{i}(x)$ and $v_{i}(x)$ such that

$$
f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)=f^{\prime \prime}\left(\xi_{i}\right)\left(u_{i}(x)-v_{i}(x)\right)
$$

By Cauchy's mean-value theorem, there exists ξ_{i}^{*} between $u_{i}(x)$ and $v_{i}(x)$ such that

$$
\frac{g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)}{f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)}=\frac{g^{\prime \prime}\left(\xi_{i}^{*}\right)}{f^{\prime \prime}\left(\xi_{i}^{*}\right)}
$$

Finally one has

$$
\begin{aligned}
& \left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial F}{\partial \alpha_{1}}-\frac{\partial F}{\partial \alpha_{2}}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \frac{\left[f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)\right]\left(u_{i}(x)-v_{i}(x)\right)}{S_{f}(\alpha, x)} \\
& \times\left(1-\frac{g^{\prime}\left(u_{i}(x)\right)-g^{\prime}\left(v_{i}(x)\right)}{f^{\prime}\left(u_{i}(x)\right)-f^{\prime}\left(v_{i}(x)\right)} \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)}\right) \\
= & \frac{1}{n!} \sum_{i_{3} \cdots i_{n}} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \frac{f^{\prime \prime}\left(\xi_{i}\right)\left(u_{i}(x)-v_{i}(x)\right)^{2}}{S_{f}(\alpha, x)}\left(1-\frac{g^{\prime \prime}\left(\xi_{i}^{*}\right)}{f^{\prime \prime}\left(\xi_{i}^{*}\right)} \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)}\right) .
\end{aligned}
$$

The proof of Lemma 1 has been finished.

Lemma 2. Let the conditions of Theorem 1 be satisfied.
(I) If $f^{\prime \prime}(t)>0, \forall t \in[a, b]$, then $F(\alpha)$ is a Schur-convex function on Ω_{n}.
(II) If $f^{\prime \prime}(t)<0, \forall t \in[a, b]$, then $F(\alpha)$ is a Schur-concave function on Ω_{n}.

Proof. We first affirm that Case (I) is true as follow.
One can easily see that Ω_{n} is a symmetric convex set, and $F(\alpha)$ is a symmetric function on Ω_{n} and it has continuous partial derivatives. By [1,2], we need to prove that F satisfies the Schur condition:

$$
\begin{equation*}
\left(\alpha_{1}-\alpha_{2}\right)\left(\frac{\partial F}{\partial \alpha_{1}}-\frac{\partial F}{\partial \alpha_{2}}\right) \geqslant 0 \tag{8}
\end{equation*}
$$

Equality is valid if and only if $\alpha_{1}=\alpha_{2}$ or $x_{1}=\cdots=x_{n}$.
In the following, we shall apply the identity (7) in Lemma 1.
Note that $x \in[a, b]^{n}, \alpha \in \Omega_{n}$, for any $i=\left(i_{1}, \ldots, i_{n}\right)$, we have

$$
\begin{gathered}
u_{i}(x)=\alpha_{1} x_{i_{1}}+\cdots+\alpha_{n} x_{i_{n}} \in[a, b] ; \\
\frac{f\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right)}{g\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right)}=\frac{f\left(u_{i}(x)\right)}{g\left(u_{i}(x)\right)} \leqslant \sup _{t \in[a, b]}\left\{\frac{f(t)}{g(t)}\right\} ; \\
S_{f}(\alpha, x)=\frac{1}{n!} \sum_{i_{1} \cdots i_{n}} f\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right) \\
=\frac{1}{n!} \sum_{i_{1} \cdots i_{n}} \frac{f\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right)}{g\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right)} \cdot g\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right) \\
\leqslant \frac{1}{n!} \sum_{i_{1} \cdots i_{n}} \sup _{t \in[a, b]}\left\{\frac{f(t)}{g(t)}\right\} g\left(\alpha_{1} x_{i_{1}}+\ldots+\alpha_{n} x_{i_{n}}\right) \\
=\sup _{t \in[a, b]}\left\{\frac{f(t)}{g(t)}\right\} S_{g}(\alpha, x),
\end{gathered}
$$

or, equivalently,

$$
\begin{equation*}
\frac{S_{g}(\alpha, x)}{S_{f}(\alpha, x)} \geqslant\left[\sup _{t \in[a, b]}\left\{\frac{f(t)}{g(t)}\right\}\right]^{-1}=\inf _{t \in[a, b]}\left\{\frac{g(t)}{f(t)}\right\} \tag{9}
\end{equation*}
$$

Combining (9) with the following inequality

$$
\begin{equation*}
0 \leqslant\left|\frac{g_{i}^{\prime \prime}\left(\xi_{i}^{*}\right)}{f_{i}^{\prime \prime}\left(\xi_{i}^{*}\right)}\right| \leqslant \sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} \tag{10}
\end{equation*}
$$

and the hypotheses of Theorem 1, we obtain that

$$
\begin{align*}
1-\frac{g^{\prime \prime}\left(\xi_{i}^{*}\right)}{f^{\prime \prime}\left(\xi_{i}^{*}\right)} \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)} & \geqslant 1-\left|\frac{g^{\prime \prime}\left(\xi_{i}^{*}\right)}{f^{\prime \prime}\left(\xi_{i}^{*}\right)}\right| \cdot \frac{S_{f}(\alpha, x)}{S_{g}(\alpha, x)} \\
& \geqslant 1-\sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} / \frac{S_{g}(\alpha, x)}{S_{f}(\alpha, x)} \tag{11}\\
& \geqslant 1-\sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} / \inf _{t \in[a, b]}\left\{\frac{g(t)}{f(t)}\right\} \\
& >0 .
\end{align*}
$$

By the identity (7), the inequality (11) and given $f^{\prime \prime}(t)>0, \forall t \in[a, b]$, the Schur condition (8) can be satisfied. So $F(\alpha)$ is a Schur-convex function on Ω_{n}.

Let us now turn to the conclusion (II) of our lemma.
From above argument for (I) we know that the inequalities (9-11) hold still. Using (7), (11) and $f^{\prime \prime}(t)<0, \forall t \in[a, b]$, the converse of (8) can be obtained. Thus, $F(\alpha)$ is a Schur-concave function on Ω_{n}. From the argument, we obtain that equality is valid if and only if $\alpha_{1}=\alpha_{2}$ or $x_{1}=\cdots=x_{n}$.

This completes the proof of Lemma 2.
Proof of Theorem 1. We only prove the first assertion, that is, the inequalities (6) hold for $f^{\prime \prime}(t)>0, \forall t \in[a, b]$, because we also prove the second assertion for $f^{\prime \prime}(t)<0, \forall t \in[a, b]$ by an analogous procedure. Define

$$
\alpha[k]:=(\underbrace{k^{-1}, \ldots, k^{-1}}_{k}, \underbrace{0, \ldots, 0}_{n-k}), \quad k=1, \ldots, n
$$

Clearly, $\alpha[k] \in \Omega_{n}, k=1, \ldots, n$, and

$$
\alpha[k+1] \prec \alpha[k], \quad k=1, \ldots, n-1 .
$$

By Lemma 2, for any $x \in[a, b]^{n}, F(\alpha)$ is a Schur-convex function on Ω_{n} (see [1, 2]). Using the definition of Schur-convex function, we have

$$
F(\alpha[k+1]) \leqslant F(\alpha[k]), \quad k=1, \ldots, n-1 .
$$

Combining this result with the definition of $F(\alpha)$, it follows that the inequalities (6) hold. By the argument of Lemma 2 and the fact of which $\alpha[k]$ strictly majorizes $\alpha[k+$ 1], the sign of equality holding throughout if and only if $x_{1}=\cdots=x_{n}$.

Theorem 1 is thus proved.

3. Applications

Let $x \in(0, \infty)^{n}$. The Dresher mean of order k of x, where $1 \leqslant k \leqslant n$, is defined by

$$
\left[D_{p, q}(x)\right]_{k, n}:= \begin{cases}\frac{1}{k}\left[\frac{\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(\sum_{j=1}^{k} x_{i_{j}}\right)^{p}}{\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(\sum_{j=1}^{k} x_{i_{j}}\right)^{q}}\right]^{1 /(p-q)}, & \text { if } p \neq q \\ \frac{1}{k} \exp \left[\frac{\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(\sum_{j=1}^{k} x_{i_{j}}\right)^{p} \log \left(\sum_{j=1}^{k} x_{i_{j}}\right)}{\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(\sum_{j=1}^{k} x_{i_{j}}\right)^{p}}\right], & \text { if } p=q\end{cases}
$$

Especially,

$$
D_{p, q}(x):=\left[D_{p, q}(x)\right]_{1, n}
$$

is the Dresher mean of x (see [18]), and

$$
\begin{aligned}
& {\left[D_{0,0}(x)\right]_{k, n}=\left(\prod_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}\right)^{1 /\binom{n}{k}}=[G A ; x]_{k, n},} \\
& {\left[D_{1,1}(x)\right]_{k, n}=\left[\prod_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(\frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}\right)^{\frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}}\right]^{1 /\left[\left[\begin{array}{l}
n \\
k
\end{array}\right) A(x)\right]}} \\
& {\left[D_{1,1}(x)\right]_{1, n}=\left(x_{1}^{x_{1}} \cdots x_{n}^{x_{n}}\right)^{1 /\left(x_{1}+\cdots+x_{n}\right)},} \\
& {\left[D_{0,0}(x)\right]_{1, n}=G(x)} \\
& {\left[D_{p, q}(x)\right]_{n, n}=A(x) .}
\end{aligned}
$$

Write

$$
D(p, q):= \begin{cases}{\left[\frac{p(1-p)}{q(1-q)}\right]^{1 /(p-q)},} & \text { if } p \neq q \\ \exp \frac{1-2 p}{p(1-p)}, & \text { if } p=q\end{cases}
$$

Theorem 1 implies the following three corollaries.
Corollary 1. (Inequalities of Pečarić-Svrtan-Dresher type, see [5], [19]) Let

$$
x \in(0, \infty)^{n}, \quad \frac{\max \{x\}}{\min \{x\}}<D(p, q)
$$

(I) If $p>0, q>0, p+q<1$, then

$$
\begin{align*}
A(x) & =\left[D_{p, q}(x)\right]_{n, n} \geqslant \cdots \geqslant\left[D_{p, q}(x)\right]_{k+1, n} \geqslant\left[D_{p, q}(x)\right]_{k, n} \\
& \geqslant \cdots \geqslant\left[D_{p, q}(x)\right]_{1, n}=D_{p, q}(x) \geqslant G(x) \tag{12}
\end{align*}
$$

(II) If $p>1, q>1$, then

$$
\begin{align*}
A(x) & =\left[D_{p, q}(x)\right]_{n, n} \leqslant \cdots \leqslant\left[D_{p, q}(x)\right]_{k+1, n} \leqslant\left[D_{p, q}(x)\right]_{k, n} \\
& \leqslant \cdots \leqslant\left[D_{p, q}(x)\right]_{1, n}=D_{p, q}(x) . \tag{13}
\end{align*}
$$

In each case, the sign of equality holds throughout if and only if $x_{1}=\cdots=x_{n}$.

Proof. We only prove the case (I), that is, the inequalities (13) hold, because we also prove the case (II) with the same method. Since

$$
\left[D_{p, q}(x)\right]_{k, n}=\left[D_{q, p}(x)\right]_{k, n}
$$

is continuous of (p, q), we can assume that $0<q<p<1$. Now we take

$$
[a, b]=[\min \{x\}, \max \{x\}], \quad f:[a, b] \rightarrow(0, \infty), \quad f(t)=t^{p}
$$

and

$$
g:[a, b] \rightarrow(0, \infty), \quad g(t)=t^{q}
$$

We verify that the conditions of Theorem 1 can be satisfied below.
Firstly, we notice that

$$
\begin{aligned}
\sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} & =\sup _{t \in[a, b]}\left\{\left|\frac{q(q-1) t^{q-2}}{p(p-1) t^{p-2}}\right|\right\} \\
& =\sup _{t \in[a, b]}\left\{\frac{q(1-q)}{p(1-p)} t^{q-p}\right\} \\
& =\frac{q(1-q)}{p(1-p)} a^{q-p} \\
\inf _{t \in[a, b]}\left\{\frac{g(t)}{f(t)}\right\} & =\inf _{t \in[a, b]}\left\{t^{q-p}\right\}=b^{q-p} .
\end{aligned}
$$

By

$$
0<q<p<1, \quad p+q<1, \quad p(1-p)-q(1-q)=(p-q)(1-p-q)>0
$$

we have

$$
\begin{gathered}
D(p, q)=\left[\frac{p(1-p)}{q(1-q)}\right]^{1 /(p-q)}>1 \\
\sup _{t \in[a, b]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\}=\frac{q(1-q)}{p(1-p)} a^{q-p}<b^{q-p}=\inf _{t \in[a, b]}\left\{\frac{g(t)}{f(t)}\right\} \Leftrightarrow \frac{\max \{x\}}{\min \{x\}}<D\{p, q\}, \\
f^{\prime \prime}(t)=p(p-1) t^{p-2}<0, \forall t \in[a, b] .
\end{gathered}
$$

Thus, by Theorem 1, the reverse (6) holds. In other words, we have

$$
\begin{align*}
A(x) & =\left[D_{p, q}(x)\right]_{n, n} \geqslant \cdots \geqslant\left[D_{p, q}(x)\right]_{k+1, n} \geqslant\left[D_{p, q}(x)\right]_{k, n} \tag{14}\\
& \geqslant \cdots \geqslant\left[D_{p, q}(x)\right]_{1, n}=D_{p, q}(x)
\end{align*}
$$

Secondly, using the results of [19]:

$$
D_{p, q}(x) \geqslant D_{r, s}(x) \Leftrightarrow \max \{p, q\} \geqslant \max \{r, s\} \text { and } \min \{p, q\} \geqslant \min \{r, s\},
$$

and $p>0, q>0$, we get

$$
\begin{equation*}
D_{p, q}(x) \geqslant D_{0,0}(x)=G(x) \tag{15}
\end{equation*}
$$

From (14) and (15) we get (12).
The proof is therefore complete.
REmark 1. From Corollary 1 and

$$
\lim _{p \rightarrow 0^{+}, q \rightarrow 0^{+}} D(p, q)=\lim _{p \rightarrow 1^{+}, q \rightarrow 1^{+}} D(p, q)=\infty
$$

we can obtain some interesting inequalities (see [5]) : If $x \in(0, \infty)^{n}$, then

$$
\begin{equation*}
A(x) \geqslant \cdots \geqslant[G A ; x]_{k+1, n} \geqslant[G A ; x]_{k, n} \geqslant \cdots \geqslant G(x) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
A(x) \leqslant \cdots \leqslant\left[D_{1,1}(x)\right]_{k+1, n} \leqslant\left[D_{1,1}(x)\right]_{k, n} \leqslant \cdots \leqslant\left[D_{1,1}(x)\right]_{1, n} \tag{17}
\end{equation*}
$$

The sign of equality holds throughout if and only if $x_{1}=\cdots=x_{n}$.
REMARK 2. Since (12) implies the following inequality

$$
A(x) \geqslant D_{p, q}(x)=\left[\frac{A\left(x^{p}\right)}{A\left(x^{q}\right)}\right]^{1 /(p-q)} \geqslant G(x), \forall p, q: p>0, q>0, p+q<1
$$

by Corollary 1 and the definition of Riemann integral, we know that: If $p>0, q>0$, $p \neq q, p+q<1$, the function $f:[\alpha, \beta] \rightarrow(0, \infty)$ is continuous, and it satisfies the condition

$$
\frac{\max _{t \in[\alpha, \beta]}\{f(t)\}}{\min _{t \in[\alpha, \beta]}\{f(t)\}}<D(p, q),
$$

then we have

$$
\begin{equation*}
\frac{\int_{\alpha}^{\beta} f \mathrm{~d} t}{\beta-\alpha} \geqslant\left(\frac{\int_{\alpha}^{\beta} f^{p} \mathrm{~d} t}{\int_{\alpha}^{\beta} f^{q} \mathrm{~d} t}\right)^{1 /(p-q)} \geqslant \exp \left(\frac{\int_{\alpha}^{\beta} \ln f \mathrm{~d} t}{\beta-\alpha}\right) \tag{18}
\end{equation*}
$$

One of the integral analogues of the inequalities (6) is the following inequality (19).

Corollary 2. Under the hypotheses of Theorem 1 , let $E \subset \mathbb{R}^{m}$ be a bounded closed domain with measure (m-dimensional volume) $|E|=1$, and let $\phi: E \rightarrow[a, b]$ be a Riemann integrable function. If $f^{\prime \prime}(t)>0, \forall t \in[a, b]$, then

$$
\begin{equation*}
\frac{f\left(\int_{E} \phi\right)}{g\left(\int_{E} \phi\right)} \leqslant \frac{\int_{E} f \circ \phi}{\int_{E} g \circ \phi} \tag{19}
\end{equation*}
$$

where $f \circ \phi=f(\phi), g \circ \phi=g(\phi)$, and \int_{E} is Riemann integral. If $f^{\prime \prime}(t)<0, \forall t \in[a, b]$, then the inequality (19) is reversed.

Proof. On the one hand, the hypotheses of Corollary 2 imply that the functions

$$
\phi: E \rightarrow \mathbb{R}, \quad f \circ \phi: E \rightarrow \mathbb{R}, \quad g \circ \phi: E \rightarrow \mathbb{R}
$$

are integrable. On the other hand, Theorem 1 implies the inequality

$$
\begin{equation*}
\frac{f(A(x, w))}{g(A(x, w))} \leqslant \frac{A(f(x), w)}{A(g(x), w)}, \forall x \in[a, b]^{n} \tag{20}
\end{equation*}
$$

where

$$
w \in(0,1)^{n}, \quad \sum_{i=1}^{n} w_{i}=1, A(x, w)=\sum_{i=1}^{n} w_{i} x_{i} .
$$

Let

$$
T=\left\{\Delta E_{1}, \cdots, \Delta E_{n}\right\}
$$

be a partition of E, and let

$$
\|T\|=\max _{1 \leqslant i \leqslant n X, Y \in \Delta E_{i}} \max _{i}\{\|X-Y\|\}
$$

be the 'norm' of the partition T, where $\|X-Y\|$ is the length of the vector $X-Y$. Pick any

$$
\xi \in \Delta E_{1} \times \cdots \times \Delta E_{n},
$$

by (20) we get

$$
\begin{equation*}
\frac{f\left(\int_{E} \phi\right)}{g\left(\int_{E} \phi\right)}=\lim _{\|T\| \rightarrow 0} \frac{f(A(\phi(\xi), w))}{g(A(\phi(\xi), w))} \leqslant \lim _{\|T\| \rightarrow 0} \frac{A(f(\phi(\xi)), w)}{A(g(\phi(\xi)), w)}=\frac{\int_{E} f \circ \phi}{\int_{E} g \circ \phi} \tag{21}
\end{equation*}
$$

where

$$
w=\left(\left|\Delta E_{1}\right|, \cdots,\left|\Delta E_{n}\right|\right) \in(0,1)^{n}, \quad \sum_{i=1}^{n}\left|\Delta E_{i}\right|=1, \quad \phi(\xi) \in[a, b]^{n}
$$

Therefore the inequality (16) holds from (21). This ends the proof.
COROLLARY 3. (Inequalities of Fan type, see[8]) If $x \in\left(0, \frac{1}{2}\right]^{n}$, then

$$
\begin{equation*}
\frac{A(x)}{A(1-x)} \geqslant \cdots \geqslant \frac{[G A ; x]_{k+1, n}}{[G A ; 1-x]_{k+1, n}} \geqslant \frac{[G A ; x]_{k, n}}{[G A ; 1-x]_{k, n}} \geqslant \cdots \geqslant \frac{G(x)}{G(1-x)} \tag{22}
\end{equation*}
$$

where

$$
1-x=\left(1-x_{1}, \ldots, 1-x_{n}\right), \quad 1 \leqslant k \leqslant n-1
$$

and the sign of equality holding throughout if and only if $x_{1}=\cdots=x_{n}$.

Proof. It goes without saying that, for each $x \in\left(0, \frac{1}{2}\right]^{n}$, we can always find $a \in$ $\left(0, \frac{1}{2}\right)$ such that $x \in\left[a, \frac{1}{2}\right]^{n}$. In Theorem 1, we take

$$
\begin{gathered}
f:\left[a, \frac{1}{2}\right] \rightarrow(0, \infty), \quad f(t)=t^{\gamma}, \quad 0<\gamma<1 \\
g:\left[a, \frac{1}{2}\right] \rightarrow(0, \infty), \quad g(t)=(1-t)^{\gamma}, \quad 0<\gamma<1
\end{gathered}
$$

We verify that the conditions of Theorem 1 can be satisfied as follows.

$$
\begin{aligned}
\sup _{t \in[a, 1 / 2]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} & =\sup _{t \in[a, 1 / 2]}\left\{\left|\frac{\gamma(\gamma-1)(1-t)^{\gamma-2}}{\gamma(\gamma-1) t^{\gamma-2}}\right|\right\} \\
& =\sup _{t \in[a, 1 / 2]}\left\{\left(\frac{1}{t}-1\right)^{\gamma-2}\right\} \\
& =1
\end{aligned}
$$

$$
\inf _{t \in[a, 1 / 2]}\left\{\frac{g(t)}{f(t)}\right\}=\inf _{t \in[a, 1 / 2]}\left\{\left(\frac{1}{t}-1\right)^{\gamma}\right\}=1
$$

From the above we have

$$
\sup _{t \in[a, 1 / 2]}\left\{\left|\frac{g^{\prime \prime}(t)}{f^{\prime \prime}(t)}\right|\right\} \leqslant \inf _{t \in[a, 1 / 2]}\left\{\frac{g(t)}{f(t)}\right\} .
$$

It is easy to see that

$$
f^{\prime \prime}(t)=\gamma(\gamma-1) t^{\gamma-2}<0, \quad \forall t \in\left[a, \frac{1}{2}\right]
$$

By now, our verification procedure has been finished. Thus the inverse inequalities (6) are true, that is, we have

$$
\begin{equation*}
\left[\frac{f_{k+1, n}(x)}{f_{k+1, n}(1-x)}\right]^{1 / \gamma} \geqslant\left[\frac{f_{k, n}(x)}{f_{k, n}(1-x)}\right]^{1 / \gamma}, \quad k=1, \ldots, n-1 \tag{23}
\end{equation*}
$$

Passing the limit as $\gamma \rightarrow 0$ in (23), we can obtain (22). By the same argument as in Theorem 1, we can derive the sign of equality in (22) holding throughout if and only if $x_{1}=\cdots=x_{n}$.

This completes the proof of Corollary 3.

REFERENCES

[1] A. W. Marshall, I. Olkin, B. C. Arnord, Inequalities: Theory of majorization and its applications (2nd Ed), Academic Press, New York, 2011.
[2] B. Y. WANG, Elements of majorization Inequalities, 57-58, Beijing Normal Univ. Press, 1990. (in Chinese)
[3] D. S. Mitrinović, J. E. PečArić, A. M. Fink, Classic and new inequalities in analysis, Kluwer Academic Publishers, 1993.
[4] J. E. Pečarić, V. Volenec, Interpolation of the Jensen inequality with some applications, Österreích. Akad. Wiss. Math.-Natur. Kl Sonderdruck Sizungsber 197 (1988), 463-467.
[5] J. E. PeČarić, D. SVRTAN, New refinements of the Jensen inequalities based on samples with repetitions, J. Math. Anal. Appl. 222(1998)365-373.
[6] J. J. WEn and Z. H. Zhang, Jensen type inequalities involving homogeneous polynomials, J. Inequal. Appl. Volume 2010, Article ID 850215, 21 pages doi:10.1155/2010/850215.
[7] C.-L. WANG, Inequalities of the Rato-Popovicica type for functions and their applications, J. Math. Anal. Appl. 84 (1984), 436-446.
[8] W.-L. WANG, Some inequalities involving means and their converses, J. Math. Anal. Appl. 238 (1999), 567-579.
[9] S. Abramovich, B. Mond, J. E. Pečarić, Sharpening Jensen's inequality and a majorization theorem, J. Math. Anal. Appl. 214, 2 (1997), 721-728.
[10] S. S. Dragomir, C. Pearce, J. E. Pečarić, Interpolations of Jensen's inequality, Tamkang J. Math. 34, 2 (2003), 175-187.
[11] X. L. TAN, J. J. WEn, Some developments of refined Jensen inequality, J. SW. Univ. Nationalities 29, 1 (2003), 20-26. (in Chinese)
[12] C. B. GAO, J. J. WEn, Inequalities of Jensen-Pečarić-Svrtan-Fan type, JIPAM 9, 3 (2008), Article 84.
[13] J. J. WEn, W.-L. WANG, On some refinements of the Jensen inequality, J. Chengdu Univ. 21, 2 (2002), $1-4$.
[14] J. J. Wen, The inequalities involving Jensen functions, J. Systems Sci. Math. Sci. 27, 2 (2007), 208218. (in Chinese)
[15] B. Mond, J. E. PeČARIĆ, Matrix inequality for convex functions, J. Math. Anal. Appl. 209 (1997), 147-153.
[16] J. Antezana, P. Massey, D. Stojanoff, Jensen's inequality for spectral order and submajorization, J. Math. Anal. Appl. 331 (2007), 297-307.
[17] W.-L. WANG, P. F. WANG, A class of inequalities for the symmetric functions, Acta Math. Sinica 27 (1984), 485-497. (in Chinese)
[18] M. Bjelica, Asymptotic planarity of Dresher mean values, Mat. Vesnik 57 (2005), 61-63. (Russian journal)
[19] Zs. PÁLES, Inequalities for sums of powers, J. Math. Anal. Appl. 131, 1 (1988), 265-270.
[20] L. Horvath, J. E. PečArić, A refinement of the discrete Jensen's inequality, Math. Inequal. Appl. 14, 4 (2011), 777-791.
[21] L. Horvath, A method to refine the discrete Jensen's inequality for convex and mid-convex functions, Math. Comput. Modelling 54 (2011), 2451-2459.
[22] L. Horvath, K. A. Khan, J. E. PečARIć, On parameter dependent refinement of discrete Jensen's inequality for operator convex functions, J. Math. Compt. Sci. 2, 3 (2012), 656-672.

Jiajin Wen
Institute of Mathematical Inequalities and Applications
Chengdu University
Chengdu, Sichuan, 610106
P.R. China
e-mail: wenjiajin623@163.com
Chaobang Gao
College of Mathematics and Information Science
Chengdu University
Chengdu, Sichuan, 610106
P.R. China,
e-mail: kobren427@163.com
Wan-lan Wang
Institute of Mathematical Inequalities and Applications
Chengdu University
Chengdu, Sichuan, 610106
P.R. China
e-mail: wanlanwang@163.com

[^0]: Mathematics subject classification (2010): 26D15, 26 E 60.
 Keywords and phrases: Jensen's inequality, Pečarić-Svrtan's inequality, Fan's inequality, majorization.

