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An Investigation of the Lattice
Boltzmann Method for Large
Eddy Simulation of Complex
Turbulent Separated Flow
Lattice Boltzmann method (LBM) is a relatively recent computational technique for fluid
dynamics that derives its basis from a mesoscopic physics involving particle motion.
While the approach has been studied for different types of fluid flow problems, its appli-
cation to eddy-capturing simulations of building block complex turbulent flows of engi-
neering interest has not yet received sufficient attention. In particular, there is a need to
investigate its ability to compute turbulent flow involving separation and reattachment.
Thus, in this work, large eddy simulation (LES) of turbulent flow over a backward facing
step, a canonical benchmark problem which is characterized by complex flow features, is
performed using the LBM. Multiple relaxation time formulation of the LBM is considered
to maintain enhanced numerical stability in a locally refined, conservative multiblock
gridding strategy, which allows efficient implementation. Dynamic procedure is used to
adapt the proportionality constant in the Smagorinsky eddy viscosity subgrid scale model
with the local features of the flow. With a suitable reconstruction procedure to represent
inflow turbulence, computation is carried out for a Reynolds number of 5100 based on
the maximum inlet velocity and step height and an expansion ratio of 1.2. It is found that
various turbulence statistics, among other flow features, in both the recirculation and
reattachment regions are in good agreement with direct numerical simulation and experi-
mental data. [DOI: 10.1115/1.4023655]

1 Introduction

Turbulent flows involving separation and reattachment are com-
mon in many situations in nature and engineering systems. Exam-
ples of the latter include internal flow through diffusers and
combustors and external flow past airfoils. Generally, the presence
of an adverse pressure gradient causes flow separation and subse-
quent reattachment leading to the formation of a recirculating bub-
ble. A canonical problem in this regard is the turbulent flow over a
backward facing step. The geometric simplicity of this problem is
contrasted by the complexity of flow features, including the bound-
ary layer and free shear layer flows evolving into recirculation and
reattachment regions. Owing to this, its numerical simulation is
challenging and represents as an important benchmark problem for
assessment of turbulence models and numerical schemes.

Early studies involving two-dimensional computations of flow
over a backward facing step based on the solution of the
Navier–Stokes (NS) equations at low Reynolds numbers were car-
ried out by Armaly et al. (1993) [1], and Kaiktsis et al. (1991) [2].
For turbulent flows, large scales have most of the energy contain-
ing eddies that are specific to the flow configuration and the small
scales that are generally more isotropic can be modeled. This
forms the basis of the large eddy simulation (LES) technique, in
which only the subgrid scales (SGS) are modeled [3]. On the other
hand, the computation of all relevant turbulence scales without
the use of models, i.e., the direct numerical simulation (DNS) pro-
vides full information at high computational costs; the use of
Reynolds-averaged models, while resulting in a reduction in com-
putational overhead, requires considerable empiricism. Thus, the

LES approach represents a compromise between these two
approaches. In the context of the backward facing step problem,
Friedrich and Arnal (1990) [4] and Akselvoll and Moin (1993) [5]
investigated the use of LES technique based on the NS equations.
A detailed study involving DNS of turbulent flow over a backward
facing step was performed by Le et al. (1997) [6]. They character-
ized the unsteady nature of this problem and presented a detailed
structure of the turbulence statistics. This, together with a com-
panion experimental study involving measurements by Jovic and
Driver (1994) [7,8], provides the data for comparison and valida-
tion of the accuracy of numerical techniques.

Lattice Boltzmann methods (LBM), which evolved from the
lattice gas cellular automata [9] as a physically and computation-
ally improved version to a minimal discrete kinetic model of the
Boltzmann equation [10], have emerged as an alternative compu-
tational method for fluid mechanics problems [11,12]. The solu-
tion of the lattice Boltzmann equation (LBE), a simplified form of
the Boltzmann equation, is generally presented in terms of a
stream-and-collide procedure, representing free-flight and relaxa-
tion process, respectively, of the distribution of particle popula-
tions. When the lattice, which represents the discrete directions
for particle advection, has sufficient rotational symmetry, the LBE
asymptotically recovers the weakly compressible NS equations.
Direct connection to kinetic theory has resulted in improved phys-
ical modeling; for example, of multiphase [13,14] and multicom-
ponent [15] flows and in an asymptotic theory for numerical
analysis [16]. An important consideration in the LBM is the repre-
sentation of the collision term. Owing to its simplicity, it is often
represented by means of the single relaxation time (SRT) model
[17], in which the distribution function for all discrete directions
relax at the same rate [18,19]. On the other hand, the relaxation
process due to collisions can more naturally be described in terms
of an equivalent set of moments, which can, in general relax at
different rates. This forms the basis of the multiple relaxation time
(MRT) formulation [20–22]. By a careful choice of relaxation
times based on a linear stability analysis, its numerical stability
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can be significantly enhanced as compared to the SRT-LBM [21].
The superior stability characteristics of the MRT-LBM has been
demonstrated for various complex flows, including multiphase
systems [23], magnetohydrodynamics [24], and turbulent flows
[25]. Another important advantage of the MRT approach is the
minimization of undesirable viscosity dependent discrete kinetic
effects near walls by a careful parametrization of the relaxation
times for the odd and even moments [26–29]. As a result of the
algorithmic simplicity, amenability to parallelization with near-
linear scalability, and its ability to represent complex boundary
conditions and incorporate physical models more naturally, it has
recently attracted considerable attention [30–36].

In particular, the LBM has been used for computational studies
involving turbulent flows. Due to its kinetic origins, it has been
analyzed for developing turbulence models from a more funda-
mental standpoint [37–39], and for simulations based on
Reynolds-averaged description [40]. The LBM has been investi-
gated for LES using the Smagorinsky eddy-viscosity SGS model
[41] for simple turbulent flows based on the SRT [42] and MRT
formulations [25,43,44], with a focus on wall-bounded flows
using a damping function [45] in a multiblock approach in a
recent study [25]. Other recent studies on the application of the
LBM for turbulent flows include [46–49]. These works employed
“constant” Smagorinsky-type SGS models, where the constant is
obtained empirically and specified a priori, which limits its applic-
ability to general flow situations. Furthermore, some of the studies
(e.g., Ref. [48]) did not account for the need to damp the turbu-
lence effects near walls, which can have important influence on
the accuracy of results. It may be noted that some of the conclu-
sions made in Ref. [49] regarding the lack of significant advantage
of the MRT formulation vis-á-vis the SRT-LBM for turbulent
flows is inconsistent with our prior findings (e.g., Ref. [25]),
which demonstrated the superiority of the former approach for
such problems. Other types of SGS models that have been investi-
gated, such as in Refs. [46,47], may be useful for a class of prob-
lems but are still not without empiricism. To circumvent the
above limitation, the dynamic procedure [50] has recently been
extended for use with the LBM [51], which was further applied to
flows with scalar transport such as heat transfer in a later study
[52]. Based on the information of resolved scales, the model coef-
ficient for the unresolved scales can be locally computed using
this approach. Furthermore, it would also provide the correct
near-wall limiting behavior self-consistently without the use of ad
hoc wall functions, is able to handle transitional flows and does
not rule out backscatter of energy to larger scales. Such a proce-
dure becomes important for LES of complex turbulent flows, such
as that over a backward facing step configuration, using the LBM.

In this work, we will study and assess the LBM for LES of a
demanding problem involving turbulent flow over a backward fac-
ing step, characterized by complex flow features including separa-
tion and reattachment. It may be noted that prior work on LBM
for the backward facing step problem is very limited, focusing
particularly on low Reynolds number laminar flows (e.g., Ref.
[53]). Hence, there is a great need to investigate the ability of the
LBM for eddy-capturing simulations of such complex turbulent
flows. Multiple relaxation time LBM formulation, which main-
tains numerical stability, is employed with multiblock grids that
reduce computational overhead while resolving near-wall turbu-
lence structures. Dynamic procedure is applied to the Smagorin-
sky SGS model to locally compute the model coefficient based on
the resolved fluid motion. Appropriate inflow and outflow bound-
ary conditions are employed to adequately maintain the relevant
mean and turbulence motions at these boundaries. Simulations are
performed for a Reynolds number of 5100 and an expansion ratio
of 1.2, for which DNS [6] and experimental data [7] are available.
The computed turbulence structure will be compared with these
data to assess the LBM.

The paper is organized as follows. Section 2 briefly discusses
the multiple relaxation time (MRT)-LBM. The dynamic proce-
dure employed with the SGS model for representing unresolved

motions is presented in Sec. 3. Section 4 provides a concise dis-
cussion of conservative locally refined multiblock gridding strat-
egy. The problem specification, including the geometric
configuration, boundary conditions, and computational conditions,
is presented in Sec. 5. A comparison of turbulent statistics is made
along with a discussion of results in Sec. 6. The main conclusions
of this work are summarized in Sec. 7.

2 Multiple Relaxation Time Lattice Boltzmann

Method

We will now briefly present the key elements of the MRT-LBM
that allow incorporation of the Smagorinsky SGS model using the
dynamic procedure. For details, the reader is referred to Refs.
[22,25,44,51]. In the stream-and-collide depiction of the LBM,
the collision process is represented as a relaxation of the distribu-
tion functions to their local equilibrium; the streaming step
describes the advection of the distribution functions along the dis-
crete characteristic directions represented by a lattice. The three-
dimensional, nineteen particle velocity (D3Q19) lattice considered
in this work is shown in Fig. 1, which corresponds to the particle
velocity ea

! given by

ea
!¼

ð0; 0; 0Þ a ¼ 0

ð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þ a ¼ 1;…; 6

ð61;61; 0Þ; ð61; 0;61Þ; ð0;61;61Þ a ¼ 7;…; 18

8><>:
(1)

The distinguishing feature of the MRT-LBM is that it computes
collision in moment space, while the streaming process is per-
formed in the usual particle velocity space [22]. For convenience,
the following notations are used. The local distribution function f
and its local equilibrium feq in particle velocity space may be

written as the following column vectors: f ¼ f0; f1; f2;…; f18½ �†

and feq ¼ f eq
0 ; f eq

1 ; f eq
2 ;…; f eq

18

� �†
, where the superscript † repre-

sents the transpose operator. The distribution functions f are trans-

formed into equivalent moments f̂ through f̂ ¼ T f where T is the
transformation matrix. Here, and in the following, the “hat” repre-
sents the moment space. T is constructed such that the collision

matrix in moment space K̂ is a diagonal matrix, i.e., K̂ ¼ T KT �1,
where K is the collision matrix in particle velocity space. This fol-
lows when T is orthogonal, which is formed from combinations
of monomials of the Cartesian components of the particle velocity

ea
! through the standard Gram–Schmidt procedure [22]. Further-

more, the equilibrium moments follow from f̂
eq ¼ T feq. The com-

ponents of the moment-projections of these quantities are:

f̂ ¼ f̂0; f̂1; f̂2;…; f̂18

� �†
and f̂

eq ¼ f̂ eq
0 ; f̂ eq

1 ; f̂ eq
2 ;…; f̂ eq

18

� �†
, which are

given in Appendix A for completeness.

Fig. 1 Schematic illustration of the three-dimensional, nine-
teen velocity (D3Q19) model
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The solution of the MRT-LBM can thus be written in terms of
the following collision and streaming steps, respectively:

~fð~x; tÞ ¼ fð~x; tÞ þ Xð~x; tÞ (2)

and

fað~xþ~eadt; tþ dtÞ ¼ ~fað~x; tÞ (3)

where the distribution function f ¼ ffaga¼0;1;…;18 is updated due

to collision resulting in the post-collision distribution function
~f ¼ f~faga¼0;1;…;18 before being shifted along the characteristic

directions during the streaming step. X represents the change in
distribution function due to collisions as a relaxation process and
is given by

Xð~x; tÞ ¼ T �1 �K̂ f̂ð~x; tÞ � f̂
eqð~x; tÞ

� �h i
(4)

where K̂ ¼ diagðs0; s1;…; s18Þ is the diagonal collision matrix in
moment space. Now, some of the relaxation times sa, i.e., those
corresponding to the hydrodynamic modes can be related to the
transport coefficients and modulated by eddy-viscosity due to the
SGS model as follows [22,25,44]: s�1

1 ¼ 9=2ð Þfþ 1=2ð Þ, where f
is the molecular bulk viscosity, and s9 ¼ s11 ¼ s13 ¼ s14 ¼ s15

¼ s� , where s�1
� ¼ 3 �=Dtð Þ þ 1=2ð Þ ¼ 3 ð�0 þ �tÞ=Dt½ � þ 1=2ð Þ,

with �0 being molecular shear viscosity and �t the eddy-viscosity
determined from the dynamic SGS model discussed in Sec. 3. The
rest of the relaxation parameters, i.e., for the kinetic modes, can
be chosen through a linear stability analysis, as given in Ref. [22].

The hydrodynamic fields, i.e., the density q, velocity ~u and
pressure p can then be obtained as follows:

q ¼
X18

a¼0

fa; ~j � q~u ¼
X18

a¼0

fa~ea; p ¼ c2
s q (5)

where cs ¼ c=
ffiffiffi
3
p

with c ¼ dx=dt being the particle speed, and dx

and dt are the lattice spacing and time step, respectively. It follows
from the Chapman–Enskog expansion that the MRT-LBM aug-
mented by an eddy-viscosity recovers the “grid filtered” weakly
compressible Navier–Stokes equations [23,54]. Thus, the density,
momentum and pressure obtained from Eq. (5) are effectively
grid-filtered quantities: q! �q; q~u! �q~�u and p! �p, where the
“overbar” represents a quantity that is grid-filtered. Optimization
procedures, based on the properties of T , need to be fully
exploited for an efficient implementation [22,25,44,51].

3 Subgrid Scale Model Using Dynamic Procedure

The use of the dynamic procedure for estimating the model
coefficient of the SGS models at the grid-scale relies on sampling
the smallest super-grid resolved scales (i.e., test-filtered scales),

and assuming scale-invariance at these two levels [50]. If �D is the

width of the grid-filter (�D ¼ dx, where dx is the lattice grid spac-

ing) and ~�D is the test-filter width, then a common choice is
~�D=�D ¼ 2 [50]. Here, “bar” refers to the grid-filtered values and a
“tilde” refers to the test-filtered values. The effect of unresolved
turbulent motions at subgrid scales is parameterized by an eddy-
viscosity model [41]

�t ¼ C�D2j�Sj (6)

where j�Sj is the strain rate, given by j�Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij

�Sij

q
and C is the

model coefficient. It follows from a Chapman–Enskog analysis

that the grid-filtered strain rate j�Sj can be algebraically related to
the local nonequilibrium moments, and direct velocity differenc-
ing can thus be avoided (see Appendix A). The main element

involved, then, is the determination of the model coefficient C,
which is accomplished as follows.

By invoking scale-invariance, the anisotropic part of the SGS
stress at the grid-filter scale sij (sij ¼ �ui �uj � uiuj) and that at the

test-filter scale Tij (Tij ¼ ~�ui~�uj �guiuj), where uiuj and guiuj are
unknowns, are respectively modeled in terms of the above eddy-
viscosity relations using the strain rates at corresponding scales.
The unknown SGS stress at each filter level can then be related by

the Germano identity [50] Lij ¼ e�uie�uj �g�ui �uj ¼ Tij � ~sij, where Lij

is the resolved turbulent stress, a known quantity. Upon substitut-
ing the eddy-viscosity parameterizations on the right hand side of
Lij, an over determined system is obtained for the determination
of the model coefficient C [50], which can be solved by a least
square minimization approach [55] to yield

C ¼ � 1

2

LklMklh i
MijMij

� � (7)

where

Mij ¼ ~�D
2j~�Sj~�Sij � �D2 gj�Sj�Sij (8)

In Eq. (7), the usual summation convention of the repeated indices
is assumed and h�i represents spatial averaging in homogeneous
directions or time averaging or both, depending on the problem,
so as to stabilize the computations. Furthermore, clipping is done
when �t < 0, i.e., set �t ¼ 0 in such cases. When the eddy viscos-
ity in Eq. (6) is computed from the above it is added to the molec-
ular viscosity �0, calculated from the statement of the problem, to
obtain the total viscosity �, i.e., � ¼ �0 þ �t; � can then be used to
compute the “effective” relaxation times for hydrodynamic
moments in the MRT-LBM (Sec. 2). Implementation of the
dynamic SGS model in the MRT-LBM requires careful considera-
tion of the following factors. First is the choice of the test-filter in
the computation of the Mij tensor. To conform naturally with the
underlying cubic lattice grid structure, the discrete trapezoidal fil-
ter, which also allows for a simple dimension-wise implementa-
tion can be considered [51], as used in this work. Another issue is
the implementation of the test-filters near grid interfaces in a mul-
tiblock approach, which requires careful use of averaging proce-
dures, as discussed in Ref. [51]. Furthermore, optimization
strategies should be fully considered for incorporating the
dynamic procedure in the MRT-LBM to allow for an efficient
implementation.

4 Multiblock Local Grid Refinement

The use of grids fine enough to resolve the wall regions, where
the turbulence structures are smaller, throughout the domain can
result in significant computational cost. This can be mitigated by
introducing coarser grids farther from the wall, where turbulent
length scales are generally larger. One approach is to consider
using continuously varying grid resolutions, using an interpolation
augmented formulation [56] that effectively decouples particle ve-
locity space represented by the lattice and the computational grid.
However, it is well known that interpolation could introduce sig-
nificant numerical dissipation (see, e.g., Ref. [21]), which could
severely affect the accuracy of solutions involving turbulent fluc-
tuations. Thus, we consider locally embedded grid refinement
approaches. In broad terms, there are two such versions—one in
which the coarse and fine grids are adjacent [57,58] that use inter-
polations for inter-grid information transfer, and the other consid-
ers staggered grid arrangement [59,60]. As the latter version is
conservative [59,60], it preserves mass and momentum conserva-
tion, and it is considered in this work.

Figure 2 shows a schematic of such a multiblock approach in
which a fine cubic lattice grid is used close to the bottom wall
surfaces and a coarser one, again cubic in shape, farther out. In
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order to facilitate the exchange of information at the interface
between the grids, the spacing of the nodes changes by an integer
factor, in this case two. As well as using different grid sizes, the
two regions use different time steps (time step being proportional
to grid size), and the computational cost required per unit volume
is thus reduced by a factor of 16 in the coarse grid. Figure 2 shows
a staggered grid arrangement, in which nodes on the fine and
coarse sides of the interface are arranged in a manner that facili-
tates the imposition of mass and momentum conservation. Differ-
ent blocks communicate with each other through the Coalesce and
the Explode steps; in addition to the standard stream-and-collide
procedure [59,60]. Essentially, the Coalesce procedure involves
summing the particle populations on the fine nodes to provide
new incoming particle populations for the corresponding coarse
nodes. Similarly, the Explode step involves redistributing the pop-
ulations on the coarse node to the surrounding fine nodes.

For completeness, we will now briefly discuss the key elements
of the local grid refinement procedure. To illustrate the grid com-
municating steps, a magnified view of the nodes near the interface
is shown in Fig. 3. Since there can be many different levels of
grid refinement, the procedure may be best described by means of
the following pseudocode involving recursion:

subroutine Loop(integer level)
if(level<0) return
Loop(level–1)
Loop(level–1)
Advect(level)
Boundaries(level)
Coalesce(level)
Collide(level)
Explode(level)
return

end

The Loop piece of code is a recursive subroutine which is
initially called for the coarsest grid, and is then called for suc-
cessively finer grids. The grids are assigned a property level
such that the finest has level¼0, the next finest level¼1,
and so on. The first step in this subroutine is to check whether
all the grids have already been done; if not the Loop routine is
called for the next finer levels. In the code above, this call is
made twice, which is appropriate for the case where node sepa-
rations change by a factor of two between successive grids.
The number of calls is equal to the grid spacing ratio. The
steps within this procedure are briefly described below.

Advect(level)
The streaming step-particle populations on the grids with the cor-

responding value of level propagate from one node to another.
Boundaries(level)
The boundary conditions are imposed on the grids of the current

level
Coalesce(level)
This step involves communication between grids of different

levels. For velocity directions in the boundary region pointing into
the coarser grid, the particle populations on the fine nodes are

summed to give new incoming particle populations for the coarse
grid. In Fig. 3, this corresponds to summing the populations on
the blue (small) nodes within the dotted square to give the popula-
tion for the red (large) node. In terms of the density distribution
function, this can be expressed as

f c
a ð~x; tÞ ¼

1

rD

XrD

i¼1

f f
a ð~xi; tÞ (9)

where the superscripts c and f correspond to coarse and fine grid
nodes, respectively, r is the grid refinement ratio (usually r¼ 2) is
the number of spatial dimensions (D¼ 3 for three dimensional
models), and the subscript i refers to adjacent fine grid nodes cor-
responding to a coarse grid node. Owing to the special staggered
grid arrangement and the use of this coalesce step, conservation of
mass and momentum is maintained.

Collide(level)
This routine performs the local collision step based on the MRT

formulation for the grids of the current level. Note that collisions
are not performed for nodes on the interface with a coarser grid; for
example, the blue nodes lying inside the dotted square in Fig. 3.

Explode(level)
This is the other step dealing with exchange of information

between grids of different levels. For velocity directions pointing
into the fine grid, the particle populations on coarse grid nodes in
level at the boundary are homogeneously redistributed to
the fine grid nodes level-1 according to:

f f
a ð~x; tÞ ¼ f c

a ð~xi; tÞ (10)

It may be noted that [60] does not explicitly apply rescaling as
they suggest it to occur implicitly by the scheme itself in the spe-
cific volumetric grid arrangement employed. On the other hand,
we considered an additional rescaling of the nonequilibrium part
of the distributions (or, equivalently, the nonequilibrium moments
corresponding to the viscous modes in the MRT framework, i.e.,

f̂ neq;c ¼ ðDtc=s�;cÞðDtf =s�;f Þf̂ neq;f , where s� ¼ 1=ð3�=Dtþ 1=2Þ)

Fig. 2 Local grid refinement when using a staggered
arrangement

Fig. 3 Interface between coarse and fine grid when using a
staggered arrangement
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in our implementation similar to Ref. [61] after the streaming step
at each grid level, though their effect on the results was found to
be minor in the staggered grid formulation consistent with prior
observations [60]. Such an approach has been validated in various
prior studies for different applications (e.g., Refs. [51,62]). For a
more recent related work involving rescaling and interpolations in
the on-node MRT based grid refinement implementation, see Ref.
[48]. We also plan to pursue such an alternative formulation in
our future studies, while taking into account the near-wall physics
involving the turbulence damping effects (as done here self-
consistently using the dynamic procedure), which seem to have
been neglected in Ref. [48].

5 Problem Specification

Let us now discuss the specific geometrical setup, computa-
tional conditions as well as the boundary conditions, particularly
those at the inlet and outlet, considered for the turbulent flow over
a backward facing step.

5.1 Geometrical Configuration and Computational
Conditions. The geometry of the computational domain is illus-
trated schematically in Fig. 4. The total length and height of the
domain are 32 h and 6 h, respectively, with an extent in the span-
wise direction of 4 h. Here h is the step height. The ratio of the
heights downstream and upstream of the step, i.e., the expansion
ratio is ER¼ 1.2. The Reynolds number Reh based on the maxi-
mum free stream velocity U0 and the step height is 5100. The
boundary layer thickness at the step is about 1.2 h. This arrange-
ment and the flow condition is the same as that reported in prior
studies [5–7]. The origin of the coordinate system is taken to be at
the lower step corner. The inlet is at the left boundary, x¼ –12 h,
and the mean inflow velocity profile was set to that obtained from
Spalart’s boundary layer DNS data [63]. Perturbations were care-
fully superimposed on this inflow mean velocity profile in order
that the correct turbulence characteristics would develop in the
approach to the step, as discussed below (see Sec. 5.2 for details).
For the outlet, a convective boundary condition is employed (see
Sec. 5.3). A zero-stress boundary was applied at the upper surface
(z¼ 6 h) and no slip condition at the walls was imposed using the
half-way bounce back approach [64]. The domain was periodic in
the spanwise (y) direction.

A note regarding the effect of the choice of relaxation times of
the collision model on the location of the no-slip wall boundary
condition is in order. A number of studies [26–29] have shown
that at least two different relaxation times, when appropriately
parameterized, are necessary to minimize the undesirable viscos-
ity dependent discrete kinetic effect of locating wall boundaries.
For example, for simulating a parabolic velocity profile corre-
sponding to a laminar flow in a channel of actual height H, it can
be shown that the following parametric relation results (e.g.,

Ref. [29]): H2 ¼ H2
1=2 þ 4D2 � 1. Here, H1=2 ¼ Ndx, where N is

the number of fluid nodes spanning across the channel, and
D ¼ ð4=3Þ 1=s� � 1=2ð Þ 1=sq � 1=2

	 

, where s� and sq are the

relaxation parameters of the second-order (viscous) or even
moments and the third-order or odd moments, respectively. To
avoid the discrete kinetic effects, i.e., to ensure H ¼ H1=2, this
means that sq ¼ 8ð2� s�Þ=ð8� s�Þ ¼ 16�=ð8� þ 1Þ. The precise
formulation of such parametric relations have been found to
depend on the choice of the moments, the structure of the equili-
bria, as well as the type of flow [65]. On the other hand, if sq is
not set according to the above, or if only the SRT model with a
relaxation parameter 1=s is employed, then the deviation from the
actual boundary in the case of steady laminar flow is
D ¼ 4=3ðs� 1=2Þ2 ¼ 12�2. For typical ranges of the relaxation
parameter, it follows that the error of inaccurate boundary location
lies within one lattice spacing. As D scales quadratically with the
viscosity, the above considerations become important for slow or
creeping flows with Reynolds number Re� 1.

It should be carefully noted that the formula for the relaxation
times mentioned above is based on the assumption of neglecting
the unsteady term that arise in the emergent macroscopic equa-
tions [26,27], and hence is no longer “exact” for time-dependent
flow problems, even within the laminar flow regime. This is par-
ticularly so for problems involving strongly unsteady features,
i.e., consisting of high frequency flow components. As already
noted in Ref. [27], further work is required to address these classes
of problems within the laminar flow context. In the case of turbu-
lent flow, an inherently time-dependent problem, one not only
cannot neglect the role of unsteady emergent terms but also need
to take into account other features due to its multiscale nature.
Clearly, since the above formula based on steady laminar flow
physics is not valid for turbulent flows, it is no wonder that the LB
literature has invariably used bounce-back type schemes that do
not involve adjustment of relaxation times for the latter problems
(see, e.g., Ref. [48] for a recent study).

In any case, in particular, the additional factors involved for the
LES of turbulent flows using the LBM are as follows. First, the
Reynolds number is relatively very high Re � Oð103Þ � Oð105Þ,
and hence the molecular viscosity �o is relatively very small. Sec-
ond, while the eddy viscosity �t in the relation � ¼ �o þ �t, where
� is the total viscosity, can vary significantly both spatially as well
as temporally, near-wall turbulence physics dictates that they
should rapidly tend towards zero as walls are approached. In fact,
�t should satisfy the near-wall asymptotic scaling �t � Oðz3

þÞ,
where zþ is the wall normal distance in viscous units (see, e.g.,
Refs. [50,66]). Thus, in the all-important near-wall region (say,
zþ < 15), much of the contribution for the total viscosity comes
from the molecular viscosity �o, which is already relatively small
given the chief interest is in the high Reynolds number turbulent
flow. Most of the eddy viscosity; on the other hand, is generated
due to shear only in the bulk region away from the walls. In other

Fig. 4 Schematic representation of geometry. Step is at x/h 5 0 and z 5 0 corresponds to lower
boundary. Note that dimensions of some regions are exaggerated to ensure clarity.
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words, given that � � �o � 1 is in the near-wall region, the devia-
tion D from the actual location, while within one lattice spacing
dx nevertheless becomes relatively small. Third, and finally, by
being a multiscale problem, near-wall turbulence physics requires
that the lattice spacing in the vicinity of the walls be generally
kept relatively small, of the order of the Kolmogorov scale, akin
to that used in DNS (while the bulk region scales may be much
larger). These various aspects fortunately make the issue of the
deviation D involved in locating the boundary relatively much
less prominent for LES of turbulent flow, when compared to that
for problems such as Stokes flows. Since � � �o � 1 in the near-
wall regions, the issue of numerical stability becomes a significant
concern for high Re turbulent flow LES. In such situations, in our
experience, the SRT-LBM was found to become unstable for a
given choice of resolution, while the MRT-LBM is able to provide
robust simulations by carefully separating various relaxation times
for the kinetic modes. Also of interest to note here is that Ref.
[29] found that maintaining a parametric relation between the
relaxation parameters to minimize viscosity related discrete
effects such as that presented above tends to make the approach
less stable. As seen from the results of our prior studies and the
current work, the use of interpolated bounce back condition for
LES of turbulent flows was found to give satisfactory results.
Nevertheless, for the purpose of generality and rigor, it would be
interesting to derive the parametric relation between the relaxation
times with variable viscosity (which satisfies a specified variation)
for turbulent flows with a given mean velocity profile (e.g., 1=7th

power law), following the analytical approach presented in Ref.
[27]. Such studies may also take special significance for RANS,
where the near-wall effects are implicitly modeled by means of a
slip velocity using a log-law, i.e., using a wall function approach
(this can be extended to other types of problems as well, including
non-Newtonian variable viscosity flows). These are subjects for
future investigations.

Let us now discuss the grid resolution employed for simulating
the turbulent flow over a backward facing step. As shown in
Fig. 4, three different grid resolutions were employed in a multi-
block approach. The finest grid had a size, D ¼ dx such that the
step size is resolved by 64 grid nodes (h ¼ 64dx); the medium
grid was twice the size of the fine grid and the spacing of the
coarse grid was twice that of the medium grid. The nodes nearest
to the wall were spaced two wall units from the wall (Dþ ¼ 2).
This was found to be adequate to fairly resolve the near-wall tur-
bulence structures in prior studies [25,51]. While the use of the
bounce back boundary condition does not necessarily maintain the
location of the wall exactly half-way between the two adjacent
nodes, for the simulation of turbulent flow, the deviation from the
actual location turns out to be relatively small. This can be
numerically demonstrated based on analytical considerations of
the mean velocity profile in the universal viscous sublayer region
carried out for a well-defined wall-bounded turbulent flow. Ap-
pendix B presents such a calculation and shows that it is practi-
cally adequate to use such a boundary condition for a turbulent
flow simulation. The eddy viscosity has negligible contribution in
the entire viscous sublayer, with about three to four orders of mag-
nitude smaller than the molecular viscosity. Furthermore, the lat-
ter is also relatively very small in a turbulent flow resulting in
overall minor deviation in wall location, confirming our earlier
arguments. Further refinement in accuracy could, in principle, be
possible by constructing and using new expressions for the relaxa-
tion times for the third-order moments based on considerations of
the mean velocity profile derived from turbulence physics. In any
case, from the above it follows that the finest grids had a resolu-
tion of about four wall units, with the medium and coarse grids 8
and 16, respectively. To reduce the computational cost while
maintaining the necessary free stream flow physics, a medium
grid with a thickness of 0.25 h is employed in the vicinity of the
zero-stress upper boundary. As discussed in Sec. 4, the multiblock
grids were arranged in a staggered manner to satisfy conservation
of hydrodynamic fields.

Of course, based on our current state of knowledge, it is impos-
sible to precisely locate the boundary using bounce-back type for-
mulations in LB algorithms, regardless of how the sets of
relaxation parameters are tuned, for turbulence simulation. The
specific parametric relation between two relaxation parameters
was developed to strictly work for steady laminar flows [26,27].
Due to the lack of a proper alternative, we have used the bounce-
back scheme without tuning relaxation parameters in this regard
in the present work. This is similar to various LES-LBM studies
existing in the literature (for recent work, see, e.g., Ref. [48]).
However, as discussed above, this does not necessarily imply a
significant limitation in the context of turbulent flows. Here, it
should be noted that numerical schemes used for LES, be it based
on LBM or NS-based solvers, and experimental techniques for
turbulence are generally associated with various sources of uncer-
tainty errors. For example, even in the NS-based LES that are
devoid of the issue mentioned above, there are various numerical
aspects that introduce uncertainties in the results (see, e.g., Ref.
[67] for a detailed discussion). It is only meaningful to make
proper comparison in a statistical sense for turbulent flows
between the simulation results and prior data and the adequacy is
established if the former is within the uncertain error bounds. A
recent LES-LBM study mentioned above [48] has shown good
agreement for various turbulence statistics, stresses, coefficients
of pressure and drag for flow past a sphere. This is consistent with
our earlier discussion related to the boundary conditions in turbu-
lent simulations using the LBM. Similarly, in the present work,
we will see a good agreement between our simulation results and
the prior data (involving measurement data and DNS), of course
within their uncertainty error ranges, when detailed comparisons
are made for the statistics involving velocity field, components of
Reynolds stresses and the spatial development of the coefficient
of pressure along the backward facing step.

The following note is in order regarding the estimated computa-
tional efficiency achieved with the use of the multiblock grid strat-
egy in place of the uniform grid implementation throughout the
domain. Overall, the collision step executed via the MRT formu-
lation, whose computational cost is similar to the standard imple-
mentations, comprises the main computational element for a
given grid level; the streaming step is just the regular memory
shift operation and the inter-grid transfers comprise a minor over-
head. In general, as discussed earlier, the medium grid reduces the
computational cost by a factor of 16 when compared to the fine
grid, since both the space step and the time step are increased in
the same proportion. Similar cost reduction factor exists between
the coarse grid and the medium grid. Now, the total volume of the
computational domain shown in Fig. 4 in terms of the step height
h is 720h3. For the particular multiblock gridding approach
employed, the fine, medium and coarse grids occupy the volumes
of 23:2h3, 141:2h3 and 555:6h3, respectively. This yields a factor
of 72=ð23:2þ 141:2=16þ 555:6=256Þ or about 21 reduction in
the computational cost when the multiblock grid approach is used
in lieu of the single uniform fine grid throughout the domain.

5.2 Inflow Conditions. Unlike in RANS, for LES one must
carefully provide information on the time-dependent characteristics
of the eddy motion, i.e., the fluctuating component of velocity, at
the inlet. The overall velocity at the inlet can then be expressed as

uðy; z; tÞ ¼ huðzÞi þ u0ðy; z; tÞ (11)

where huðzÞi is the mean, or ensemble averaged, velocity, and is
u0ðy; z; tÞ is the corresponding fluctuating component. For the
mean velocity profile, possible choices based on semiempirical
considerations include an approximate one seventh power law or
a Blasius profile. Alternatively, it can be taken from experimental
or, as was done here, DNS data for the boundary layer flow [63].

The specification of the fluctuating component u0 (dependent on
spanwise coordinate y and time t as well) that preserves the
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essential features of inflow turbulence characteristics (such as the
Reynolds stress) presents a significant challenge. Ideally one
might hope to use the output from a DNS of a turbulent boundary
layer to provide the inlet conditions. In practice, the data will not,
in general, be available for specific situations, and other techni-
ques have been developed to generate suitable inflow turbulence
conditions [3]. One of the simplest approaches is to impose a
white noise with length and time scales equal to the grid spacing
and time step, i.e., random velocity at the inlet plane. This rudi-
mentary method has a number of limitations—it yields few low
frequency/low wavenumber fluctuations while providing an
excess of high frequency perturbations. As a result, it is found that
this artificial turbulence rapidly dissipates downstream from the
inlet. A more realistic approach is based on the information from
the energy spectrum [68,69]. Here, the fluctuating turbulent field
is expressed as a Fourier series, whose amplitudes are chosen to
be consistent with the energy spectrum and phases to produce the
correct Reynolds stress. It requires considerable distance from the
inlet for the development of the required turbulent velocity field
incurring significant computational expense [70]. Alternatively, a
recycling approach [71], in which an additional computational
domain is placed upstream of the main domain, can be employed.
The conditions at the end of this section are used for the inlet con-
ditions both for the main domain and for this section. In practice,
for a spatially developing flow, such as a boundary layer, it is also
necessary to perform some rescaling when transferring the field
from the downstream boundary to the upstream boundary. It may
be noted that by applying carefully designed body force at a num-
ber of planes downstream of the inlet promotes the development
of desired Reynolds stress profile with these methods [72].

In this work, we have employed the reconstruction procedure
[73], which is simpler and computationally more efficient. The
key idea behind this method is to reconstruct the typical turbu-
lence structures by imposing several disturbances with different
characteristics which correspond in frequency and wavelength to
typical scales found in the flow being modeled. It is a modification
of an earlier proposed approach [74]. Specifically, it considers
four modes, one in the inner layer that represents the effect of
near-wall streaks, and three or more further modes that perturb at
different levels in the outer flow. The velocity perturbations at the
inlet is given by [73]

u0kðy; z; tÞ ¼ u	
XN

j¼1

Ckj cosðbjyþ /jÞ sinð2pt	=sjÞf ðz; zmax
j Þ (12)

where the index k denotes the Cartesian velocity component, j the
mode with N¼ 4 and u	 is the friction velocity. The values of var-
ious constants in Eq. (12) are given in Table 1. The envelope func-
tion f ðz; zmax

j Þ is written as

f ðz; zmax
j Þ ¼

z

zmax
j

 !n

exp � z

zmax
j

 ! !n" #m

(13)

in which m¼ 2 for k¼ 3 and j > 1, and unity otherwise. The pa-
rameter n is given by n ¼ 1� ð1þ tanhð10ðz� zmaxÞÞÞ=6 for the
first mode, i.e., j¼ 1, and is unity otherwise. In Table 1, td is the
displacement thickness. Note that only the streamwise (k¼ 1) and
wall-normal (k¼ 3) components are calculated from above. The

spanwise component is computed so as to satisfy divergence free
condition of the perturbed velocity field.

To assess this approach, a series of numerical experiments were
conducted in which a boundary layer was simulated by using the
inlet mean velocity profile based on the DNS data and superim-
posing a perturbation using Eq. (12) as inlet conditions. Turbu-
lence statistics were collected at locations several boundary layer
thickness downstream of the inlet and compared with DNS data
[63]. Different parameters were varied, and the set found to give
the best performance is shown in Table 1, and a value of 49 wall
units was used for the displacement thickness td. In addition, a
small amount of random noise was added to the inlet velocities,
and no perturbation was applied for zþ > 250. These considera-
tions preserved the mean velocity and turbulent fluctuations in the
boundary layer development downstream of the inlet for simula-
tion of flow past the step.

5.3 Outflow Boundary Conditions. At the outlet, a convec-
tive condition was used, which can be specified as

@u

@t
þ Uc

@u

@x
¼ 0 (14)

where Uc is a convective velocity, typically set to the free stream
velocity. This choice for the boundary causes the unsteady turbu-
lence structures to propagate out of the domain. Furthermore, it
tends to maintain numerical stability of the overall approach.

6 Results and Discussion

In order to let the flow establish a statistically stationary state,
the simulation was initially run for a period of 300h=U0, where U0

is the maximum free stream velocity. Such a large startup period
is necessary as fluid elements have large residence time in the
recirculation region [6]. The computation was continued for a fur-
ther duration of 200h=U0 during which various statistics of the
flow field were collected. Parallel processing strategy was
employed by running the computation using 16 processors. Mean
flow velocity profiles and turbulence statistics were compiled
from fully three-dimensional turbulent field by averaging over
both time and the homogeneous spanwise direction. Comparisons
of the computed structure of the development of the turbulent
flow field were made with the DNS data [6], experimental data
[7], as well as prior LES results [5].

Figure 5 shows a comparison of the computed velocity profiles
with the DNS data [6] at different selected stations in the recircu-
lation, reattachment and recovery regions. The dramatic changes
in the velocity profiles of these regions is well reproduced by the
multiblock MRT-LBM using the dynamic SGS model, and is in
excellent agreement with DNS. In particular, as noted in Ref. [6],
the velocity profile is yet to reach a fully developed equilibrium
boundary layer profile at the farthest location considered, i.e.,
x/h¼ 19, where it exhibits an inflection point. This is consistent
with the observation that for the relatively low Reynolds number

Table 1 Parameters for inflow turbulence

j C1j C3j sj bj /j zmax
j

1 15.2 �7 100 2p=100 0 12
2 5.6 �2.8 32 2p=133 0.1 td
3 5.6 �2.8 58 2p=200 0.2 2td
4 5.6 �2.8 109 2p=400 0.3 3td

Fig. 5 Mean streamwise velocity profiles. From left to right,
positions are x/h 5 0.5, 1, 2.5, 4, 6, 10, 15, 19; successive pro-
files are offset by U0 on abscissa: (–) this study; (- -) DNS [6].
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considered, as the flow experiences sudden expansion over the
step, it is subject to an appreciable adverse pressure gradient in
the streamwise direction that prevents maintenance of the equilib-
rium boundary layer, i.e., the asymptotic logarithmic law.

The complex flow structure involving flow separation and reat-
tachment can more clearly be observed by means of the mean
streamlines obtained by LES, which is shown in Fig. 6. In addition
to the main recirculation bubble, a relatively large secondary bub-
ble can also be seen in the step corner, consistent with DNS [6].
An important quantitative measure characteristic to the recircula-
tion region is the reattachment length Xr. There are a few different
methods in which the location of the reattachment point can be
determined all of which give almost identical results for this prob-
lem [6]. The approach used here was to find the location at which
the mean velocity changes sign, which gave a value of Xr ¼ 6:0
for the location of the reattachment point. This compares well
with the value of 6.1 obtained in the LES reported by Akselvoll
and Moin (1993) [5], who also noted a value of 6.0 with their prior
fine grid calculation, i.e., DNS; the more recent DNS of Le et al.
(1997) [6] obtained a value of 6.28. The corresponding measure-
ments in the experiments by Jovic and Driver (1994) [7] found the
value of Xr to vary between 6.0 and 6.1. Plots of the computed in-
stantaneous spanwise vorticity are shown in Fig. 7. It can be
observed that the free shear layer region leads to flow separation,
as seen by a quiescent region in the lee of the step; subsequently,

the region of high vorticity spreads out towards the bottom wall in
the recovery region.

An important measure of the turbulent activity in the flow field
is provided by the second-order turbulent statistics. Figure 8
presents a comparison of the structure of turbulence statistics at a
number of locations downstream of the step. Generally, good
agreement is seen for various components of turbulent intensities
and Reynolds stress, demonstrating the ability of the multiblock
MRT-LBM using the dynamic SGS model to reproduce complex

Fig. 6 Mean streamlines computed by the multiblock MRT-
LBM using the dynamic SGS model. Note that vertical coordi-
nate is exaggerated by a factor of two for clarity.

Fig. 7 Instantaneous values of the vorticity computed by the
multiblock MRT-LBM using the dynamic SGS model for three
different representative times

Fig. 8 Turbulence intensities and Reynolds stress downstream of the step at different stations:
(–) multiblock MRT-LBM using the dynamic SGS model; (- -) DNS [6]; (o) experiment [7]
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turbulence physics. The influence of the SGS model, in compari-
son with just performing a coarse DNS, is now demonstrated. In
this regard, an earlier study by Akselvoll and Moin (1993) [5] pro-
vides both coarse and fine DNS data, along with LES results using
the dynamic SGS model based on the solution of the NS equations
for turbulent statistics close to the corner in the recirculation
region at x/h¼ 2, which is used for comparison in Fig. 9. Evi-
dently, the LES results of the turbulent intensities and the Reyn-
olds stress using the dynamic SGS model, based on both the NS
[5] and the multiblock MRT-LBM (this study) is in much better
agreement with the fine DNS than the corresponding coarse DNS
calculations. Thus, the use of a subgrid scale model is necessary
to correctly reproduce the resolved turbulent stresses, as the
coarse grid computations without a model is unable to do so, sub-
stantially overpredicting them. In future work, it would be inter-
esting to study the effects of different SGS models.

Finally, we report the variation of the step-wall pressure in
terms of the nondimensional pressure coefficient Cp defined by

Cp ¼
2ðP� P0Þ

qU2
0

(15)

where P0 is the reference pressure measured at x/h¼ –5, for com-
parison with prior data. Figure 10 shows the variation of Cp as a
function of the streamwise distance x/h, where a comparison
with the DNS [6] and experimental [7] data is also made. The
structure of the strong adverse pressure gradient in the down-
stream of the step, particularly in the reattachment region, is evi-
dent. While just like in DNS, some difference between the
computed results and experimental data is observed in the recov-
ery region, overall, the LES results are in very good agreement
with the DNS.

7 Summary and Conclusions

In this paper, we discussed the computation of a complex exter-
nal turbulent flow over a backward facing step using the lattice
Boltzmann method. Large eddy simulations were performed by
incorporating a dynamic procedure for the Smagorinsky SGS
model in a multiple relaxation time formulation using multiblock
grids to achieve accurate and efficient implementation. Flow
boundary conditions were introduced carefully to correctly main-
tain the essential features of turbulence by using a reconstruction
procedure at the inlet and a convective boundary condition at the
outlet. Parallel computations were performed to obtain the turbu-
lence statistics for a Reynolds number based on the step height and
maximum free stream velocity of 5100 and an expansion ratio of
5.1. It was found that the mean velocity profile is in excellent agree-
ment with DNS throughout the entire domain, including the recir-
culation, reattachment and recovery regions. The reattachment
length was found to be 6.0 times the step height, which agrees very
well with prior DNS and experimental data, as well as LES based
on Navier–Stokes equations. Furthermore, the structure of turbu-
lence intensities and Reynolds stress and the pressure distribution
obtained using the multiblock MRT-LBM with a dynamic SGS
model were in good quantitative agreement with prior data.
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Appendix A: Components of the Moments Their

Equilibria and Strain Rate Tensor for D3Q19 Model

The components of the various elements in the moments are as
follows [22]:

Fig. 9 Comparison of turbulence intensities and Reynolds
stress close to the corner in the recirculation region at x/h 5 2:
(–) multiblock MRT-LBM using the dynamic SGS model; (o) DNS
[5]; (1) LES [5]; (3) coarse DNS [5]

Fig. 10 Comparison of the variation of the step-wall pressure
coefficient: (–) multiblock MRT-LBM using the dynamic SGS
model; (- -) DNS [6]; (o) experiment [7]
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f̂0 ¼ q; f̂1 ¼ e; f̂2 ¼ e2; f̂3 ¼ jx; f̂4 ¼ qx; f̂5 ¼ jy;

f̂6 ¼ qy; f̂7 ¼ jz; f̂8 ¼ qz; f̂9 ¼ 3pxx; f̂10 ¼ 3pxx;

f̂11 ¼ pww; f̂12 ¼ pww; f̂13 ¼ pxy; f̂14 ¼ pyz; f̂15 ¼ pxz;

f̂16 ¼ mx; f̂17 ¼ my; f̂18 ¼ mz

Here, q is the density, e and e2 represent kinetic energy that is in-
dependent of density and square of energy, respectively; jx, jy, and
jz are the components of the momentum, i.e., jx ¼ qux; jy ¼ quy;
jz ¼ quz, qx, qy, qz are the components of the energy flux, and pxx,
pxy, pyz, and pxz are the components of the symmetric traceless vis-
cous stress tensor; The other two normal components of the vis-
cous stress tensor, pyy and pzz, can be constructed from pxx and
pww, where pww ¼ pyy � pzz. Other moments include: pxx;pww, mx,
my, and mz. The first two of these moments have the same symme-
try as the diagonal part of the traceless viscous tensor pij, while
the last three vectors are parts of a third rank tensor, with the sym-
metry of jkpmn. The corresponding components of the equilibrium
moments, which are functions of conserved moments, i.e., density
q and momentum~j, are as follows [22]:

f̂ eq
0 ¼ q; f̂ eq

1 � eeq ¼ �11qþ 19
~j �~j
q
;

f̂ eq
2 � e2;eq ¼ 3q� 11

2

~j �~j
q
; f̂ eq

3 ¼ jx; f̂ eq
4 � qeq

x ¼ �
2

3
jx;

f̂ eq
5 ¼ jy; f̂ eq

6 � qeq
y ¼ �

2

3
jy; f̂ eq

7 ¼ jz; f̂ eq
8 � qeq

z ¼ �
2

3
jz;

f̂ eq
9 � 3peq

xx ¼
3j2x �~j �~j
� �

q
; f̂ eq

10 � 3peq
xx ¼ 3 � 1

2
peq

xx

� �
;

f̂ eq
11 � peq

ww ¼
j2
y � j2z

h i
q

; f̂ eq
12 � peq

ww ¼ �
1

2
peq

ww;

f̂ eq
13 � peq

xy ¼
jxjy
q
; f̂ eq

14 � peq
yz ¼

jyjz
q
; f̂ eq

15 � peq
xz ¼

jxjz

q
;

f̂ eq
16 ¼ 0; f̂ eq

17 ¼ peq
ww ¼

j2
y � j2

z

h i
q

; f̂ eq
12 � peq

ww ¼ �
1

2
peq

ww;

f̂ eq
13 � peq

xy ¼
jxjy
q
; f̂ eq

14 � peq
yz ¼

jyjz
q
; f̂ eq

15 � peq
xz ¼

jxjz

q
;

f̂ eq
16 ¼ 0; f̂ eq

17 ¼ 0; f̂ eq
18 ¼ 0

For problems involving external forces ~F, the components of the
source terms in moment space can be found in Ref. [25].

The components of the strain rate tensor used in subgrid scale
(SGS) turbulence model at the grid-filter level can be written ex-
plicitly in terms of nonequilibrium moments [44]

Sxx � �
1

38q
s1ĥ
ðneqÞ
1 þ 19s9ĥ

ðneqÞ
9

h i
(A1)

Syy � �
1

76q
2s1ĥ

ðneqÞ
1 � 19 s9ĥ

ðneqÞ
9 � 3s11ĥ

ðneqÞ
11

� �h i
(A2)

Szz � �
1

76q
2s1ĥ

ðneqÞ
1 � 19 s9ĥ

ðneqÞ
9 þ 3s11ĥ

ðneqÞ
11

� �h i
(A3)

Sxy � �
3

2q
s13ĥ

ðneqÞ
13 (A4)

Syz � �
3

2q
s14ĥ

ðneqÞ
14 (A5)

Sxz � �
3

2q
s15ĥ

ðneqÞ
15 (A6)

where

ĥðneqÞ
a ¼ f̂a � f̂ eq

a ; a 2 f1; 9; 11; 13; 14; 15g (A7)

Here, f̂a and f̂ eq
a are components of moments and their local equili-

bria. sa are elements of the collision matrix K̂ ¼ diagðs0; s1;…; s18Þ
in moment space. A generalization of the above expressions for the
strain rate tensor in the presence of external forces is presented in
Ref. [25].

Appendix B: Estimation of the Deviation in the Wall

Location in a Turbulence Simulation Using the LBM

In order to quantitatively estimate any deviation in the wall loca-
tion from that specified by means of the half-way bounce back
scheme for turbulent flow simulation, we consider the following
well-defined problem involving fully developed channel flow. We
consider turbulent flow driven by a body force Fx ¼ 1:2437
 10�6

with the channel width resolved by N¼ 45 nodes in the wall normal
direction (see Refs. [25,51,75] for details on the problem setup).
The use of the half-way bounce back boundary condition implies
that the specified channel width is H1=2 ¼ N � dx ¼ 45. The fluid
viscosity and density are set to be �0 ¼ 0:001833 and q0 ¼ 1:0,
respectively. The shear Reynolds number, which is based on the
shear or friction velocity u	 typical for wall-bounded turbulent
flows, is equal to 183.7. This corresponds to a nominal Reynolds
number Re based on maximum velocity of 3485, and in the same
order of magnitude for the flow past the backward facing step con-
sidered in this work. The simulation is carried out using the WALE
SGS model [76], whose behavior in the near-wall region is similar
to the general dynamic SGS model discussed in this work. In partic-
ular, both these models recover the physically correct near-wall as-
ymptotic scaling for the decay of the eddy viscosity �t � OððzþÞ3Þ.

Figure 11 shows the mean velocity profile as a function of the
wall normal distance normalized by viscous scales (denoted by
“þ”) in semilog coordinates, providing, in particular, a magnified
view of its near-wall variation. Here, the mean velocity hui is nor-
malized by the friction velocity u	 (which is related to the driving
force, see Ref. [25]) and the distance z by the viscous scale
d� ¼ �0=u	, i.e., zþ ¼ z=d� . In the viscous sublayer region
(zþ � 5) that adjoins the wall and below the log-law region, flow
physics considerations yield the following analytical solution for
the mean velocity profile (see, e.g., Ref. [66]):

hui
u	
¼ z

d�
; if

z

d�
� 5 (B1)

Fig. 11 Mean velocity profile in a fully developed turbulent
channel flow at a shear Reynolds number Re	 ¼ 183:7 plotted
as a function of the wall normal distance normalized by viscous
scales in semilog coordinates
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In our recent study for the same physical problem [75], we have
found that in this viscous sublayer region, the eddy viscosity �t rap-
idly reduces from � 10�5 to 10�6 (see Fig. 7 in Ref. [75]), and that
the ratio of the eddy viscosity and the molecular viscosity �t=�0

correspondingly varies from 5:4
 10�3 to 5:4
 10�4, respec-
tively. Thus, the eddy viscosity �t is three to four orders of magni-
tude smaller than the molecular viscosity �0, with the former, as it
should, having practically negligible contribution on the dynamics
of flow in the viscous sublayer region. This is consistent with the
well-known observation that almost entire momentum transfer in
the viscous sublayer is due to the molecular mechanism, with the
eddy transport having negligible contribution—a universal behav-
ior of bounded turbulent flows (see also Fig. 7.4 in Ref. [66]).

Now, setting H to be the actual channel width observed in the
turbulent flow simulation, and e to be the deviation from the wall
location prescribed by the half-way bounce back boundary condi-
tion on each side, we have H ¼ H1=2 þ 2e. The friction velocity
u	 mentioned above can be estimated from a global force balance,
i.e., Fx ¼ q0u2

	=H [51] yielding u2
	 ¼ FxðH1=2 þ 2eÞ=q0. Hence,

using this and the expression for the viscous length scale d� speci-
fied earlier, Eq. (B1) can be rewritten as hui ¼ zu2

	=�0

¼ zFxðH1=2 þ 2eÞ=ðq0�0Þ. Denoting z1 to be the actual nearest or
the first fluid node from the wall, we have z1 ¼ 1=2þ e, at which
we represent the mean velocity by hu1i. Hence, the above consid-
erations yield the following analytical expression for the mean ve-
locity at the nearest fluid node:

hu1i ¼
1

2
þ e

� �
Fx

ðH1=2 þ 2eÞ
ðq0�0Þ

(B2)

When the simulation is statistically converged, we obtain the
value of the mean velocity field at z1 as hu1i ¼ 0:0146683. Match-
ing this value with the analytical solution given above should
allow us in deducing the actual location of the wall boundary.
Hence, substituting for the values of hu1i, Fx, H1=2; �0, and q0

leads to a quadratic equation in terms of the unknown e, i.e.,

2e2 þ 1þ H1=2

	 

eþ 1

2
H1=2 �

hu1iq0�0

Fx

� �
¼ 0 (B3)

whose solution yields e ¼ 0:019 or the deviation in the wall loca-
tion is less than 2% of the lattice mesh size. Thus, while in princi-
ple, the deviation e is not exactly zero, in reality it is indeed
relatively very small compared to the mesh spacing and hence the
choice of the boundary condition is adequate for the simulation of
turbulent flow.
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