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Summary. Consider the ODE (ordinary differential equation) that arises
from a semi-discretization (discretization of the spatial coordinates) of a
first order system form of a fourth order parabolic PDE (partial differential
equationj. We analyse the stability of the finite difference methods for this
fourth order parabolic PDE that arise if one applies the hopscotch idea to
this ODE.

Often the error propagation of these methods can be represented by a
three terms matrix-vector recursion in which the matrices have a certain
anti-hermitian structure. We find a (uniform) expression for the stability
bound (or error propagation bound) of this recursion in terms of the norms
of the matrices. This result yields conditions under which these methods are
strongly asymptotically stable (i.e. the stability is uniform both with respect
to the spatial and the time stepsizes (tending to 0) and the time level
(tending to infinity)), also in case the PDE has (spatial) variable coefficients.
A convergence theorem follows immediately.

Subject Classifications: AMS(MOS): 65M10, 65M20; CR: G1.8.

1. Introduction

Consider a family & of pairs (B, C) of real anti-hermitian matrices. In each
pair the matrices B and C have the same size, but this size may differ from
pair to pair. We are interested in the stability of the recursions

g+,

n

+1=BU+(I+OU,_; (neN) (1

in which (U,) is a sequence of real vectors of appropriate size.

In this paper we derive conditions on &% for which there is a bound € on
the euclidean norm |U,| of U, that is uniform with respect to all m in N, to
all sequences (U,) that satisfy (1) and for which |U,|*>+ jU,|>=1 and to all
(B,C)in #.



276 E.J.W. ter Maten and G.L.G. Sleijpen

In applications B and C depend on the mesh-widths in space and time
employed in the discretization of a PDE (partial differential equation); the
recursions (1) appear in the stability analysis of certain finite difference meth-
ods.

Let A denote the companion matrix (see (13)) of (1). We actually obtain a
bound % of sup{|[A™| |meN} that is uniform with respect to this family #
One may assume that € <% <1/2%.

Such a uniform bound % only exists if the A have the following property
(a).

(a) The spectral radius of A does not exceed 1 and all eigenvalues 4 of A
with |A| =1 are semisimple.

However, as is well-known, this property {a) does not guarantee the exis-
tence of this uniform bound. Assume that all A have property (a). From the
fact that |det(A)] =1 one sees that the A are diagonizable:

there are non-singular matrices X and diagonal matrices 4 such that
A=XAX"' and |d|=I 2)

% is bounded by the supremum of the condition numbers of X (where the
supremum is taken over #). The X are such that any column vector of X has
norm 1. Here, we obtain conditions on & for which these condition numbers
have a uniform bound.

In our previous paper [6], among other things we proved that the compan-
ion matrices A have property (a) whenever ||B| <2.

Concerning our applications, the condition “|{B}f <2” can considered to be
sharp (see the discussion in [6, (6.4)]). Here we can bound the condition
number of X under a somewhat more restrictive condition. Our main result
runs as follows.

Main-Theorem. Assume that ||B| <2. Let 1,,7,€(0,1] be such that
GBI+ liCl?=2"(1—<f)  for i=0,1.

Then t,: =inf{|Re(1)|| A eigenvalue ofA}e[t,,1]. Put f:=|BC+ CB|/(4t,) and
—2(1—73). If B<1 and 1, >%1/2 then u<1 and

1+ 1
1= 7 (1—p)

In our applications the above stability question arises as follows.

Let Q be a region in RM. Let % be a second order partial differential
operator from C'®(Q) into C(Q)*. Consider functions v, w,,...,wgx on [0, )
x © that are sufficiently smooth, that are the solutions of the following PDE
(3) on [0, o0) x 2 and that satisfy some IC (initial conditions) and BC (bound-
ary conditions)

XX~ s2a+1Ci?) ——;

Z%(U’ Wi, ee, W) =(—L*(wy, ..., wg), Z(v)). 3)
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Here, #* is the formal adjoint of .¥. . and the IC and BC are such that the
solutions are unique. Consider the ODE (ordinary differential equation) that
arises from a semi-discretization (a discretization with spatial stepsize 4
=(4x,, ..., 4x,,) of the spatial coordinates) of the above PDE (3). Recursion
(1) appears in a stability analysis of the finite difference method that arises if,
with time stepsize 4t, one applies the hopscotch idea to this ODE (for details,
see § 2).

Now B and C are real anti-hermitian N x N-matrices; N is proportional to
M

[] 1/4x, and U, represents the propagated error at the spatial grid at time
k=1
level nAt.

Although both B and C depend on 4 and At, quantities like |B|| and || C||
depend essentially only on r,, ..., 7,,, where r, =At/4x} (k=1, ..., M). Therefore,
the main-theorem gives conditions on ry, ..., r,, under which the error amplifi-
cation is bounded uniformly both with respect to the time level n 4t and to the
stepsize (A4t, A) (provided that At=rA4x}?). This stability statement applies to
many problems with variable coefficients and mixed derivatives. In particular,
it also yields a convergence statement (with respect to the discrete L*-norm on
the spatial coordinates), and it tells us how the method can be used stably in a
variable stepsize procedure.

In [1, 2], and [3], for second order parabolic PDEs, one showed that the
approximates (obtained by a hopscotch method) converge with respect to an
inner-product norm that is defined by some positive definite matrix H (depend-
ing on 4 and At) arising from the PDE. However, in the situation of the PDE
(3), their approach has two disadvantages: in general, the matrix H can only be
hermitian in case % is a constant coefficient operator and, moreover, glb(H) is
proportional to A¢* (if, for some ry,...,r,, At=rAdx}, k=1,...,M). Con-
sequently, in this way, as far as convergence with respect to the discrete L*-
norm concerns, one should expect an additional loss in the convergence order
of Att,

In §2, we explain how recursion (1) appears in the stability analysis of
hopscotch methods applied to the PDE (3). For a special class of PDEs we
interprete the stability result in the main-theorem as a stability theorem for the
hopscotch methods. In §3, 4, 5, we concentrate on the proof of our main-
theorem. Although this paper is a natural sequel to our previous one [6], it
can be read independently. In § 3, we collect the facts from [6] that we need
here. Furthermore, in this section, we give a detailed description of the prob-
lem. The main part of this paper can be found in §4. There, we give a purely
algebraic analysis of matrices that are given by some matrix equation arising
from (1). In § 5, we combine the results from § 4 and obtain our main-theorem.

2. A Stability Analysis of Hopscotch Methods
for Fourth Order Parabolic Equations

In this section, we briefly recall the hopscotch methods (see (2.3)). Further, in
(2.1), we sketch the PDEs for which our main-theorem gives stability results
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and in (2.4) we explain how recursion (1) appears in a stability analysis of the
hopscotch methods applied to these PDEs. Finally, in (2.5), for some special
PDEs and a special hopscotch method we explicitly formulate a stability
theorem.

In order to avoid too much detail and since this section only serves as an
illustration of the applicability of our results, we restrict ourselves to a model
setting whenever it is convenient. For more details we refer the interested
reader to [6].

(2.1) Let 2 be a region in R™. Let £ be a second order partial differential
operator from C?(Q) into C(Q)¥. £* is the formal adjoint of % and operates
from C*Q)X into C(Q). Consider real-valued functions # and v and R¥-valued
functions w=(w,, ..., wg)T on [0, ) x @ that are sufficiently smooth, that are
the solutions of the following PDEs on [0, c0) x Q and that satisfy some IC and

BC
PDE (4) u,=—%*2Lu) on [0,00)xQ

u satisfies some I1C(4) and BC (4) @
and
d (v 0 —*\ /(v
PDE (5) ?a?(w)’(z 0 )(w) on [0, 0) x Q

(0, Wy, ..., w)T satisfies some IC (5) and BC (5).
1 K

& and the IC and BC are such that the solutions are unique.

For an extensive class of BC one can give a correspondence between BC (4)
and BC(5) (and IC(4) and IC(5)) under which the problems (4) and (5) are
equivalent (i.e. cither v=u,, w=%(u) or, integrated, v=u, w,=%(u). See [5,
Chap. I]). Here, we are interested in the methods that are induced by hop-
scotch methods for the (semi-discretization of the) PDE (5). However, in case
the problems are equivalent methods and stability results can be translated (see
[5, Chap. I] and [6, (4.5)]).

(2.2) Example. (The bending beam equation.) Let Q=[0, 11*. For some posi-
tive coefficient functions a,, ..., a, in C?(Q) let &: CP(Q)- C(2M be given
by

v ?v\T
L) = (‘11 T ey Gy a—;(;) for all veCP(Q).
Then
M 62
g*(W)=kzl 532 %W for all w=(w,, ..., w,)Te CHQM.
= k

Consider the following BC and IiC

BC@4) u=¢p, Lu=y BC(O) v=¢, w=y on [0, 0) x 0Q
IC4) u=f, u,=g IC(5) v=g, w=2(f) on {0}xQ

in which, with ¥ =, ..., ¥,)%, ©, ¥, ..., ¥, are smooth functions on [0, )
xQ and f, g on {0} x Q.
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Now v=u, and w=.%(u) if u 1s the solution of {4) and (:}) is the solution
of (5).

(2.3) We now sketch the hopscotch method for problem (5).
We assume model BC (as, for instance in (2.2)). For simplicity and since our
interest concerns stability, we also assume that the BC are homogeneous.

Let 4=(4x,,...,4x,) be a spatial stepsize such that with k,: = —1+1/4x,
we have that k,eN (k=1, ..., M). With

YO=0/0 0., W) and L=(] )

L 0
consider the ODE
Y()=LY(), t20 ()

that arises by the finite difference standard discretization of (5) on the spatial
grid Z(A): ={(Jy, .-, s EZM | (j, A X\, ..., Jpy AXp ) €interior (Q)}; for t=0,
V(t), W,(t), ..., W(t) are real-valued functions on the grid Z(4), Y(t) is a RX+!.
valued function on Z(4) and L is the finite difference operator induced by &
and the BC. M
One may identify Y(f) with a vector in R", where N:= ( I1 Kk) (K +1), and
L with an N x N-matrix. k=1
Let At be a time stepsize. The hopscotch method produces a sequence (Y,)
of R¥*'.valued functions Y, on Z(A4) as follows. Let r<Z(4) and put b:=
Z.(A)\r. {r,b} is a partitioning of the spatial grid in say red and black points.
For any function Z on the grid Z(4) let the grid-functions Z, and Z, be such
that Z,=Z, Z,=0 on r and Z,=0, Z,=Z on b. For each neN, the grid-func-
tion operators J,,_, and J,, are given by J,,Z=Z, and J,, Z=Z,. Now,
the hopscotch method produces the sequence (Y,) by
(Y

n

a—Y)at=J, LY, +JLY, (neN) ()

(see e.g. [3], also [6, §2] and [S, Chap. IIL]).
Depending on the particular choice of the “red-black partitioning” of Z(4),
(7) is an efficient scheme that is second order accurate with respect to At.

(24) With C=4tlJ,,,LJ, ,+J,LJ] and B=24:[J LJ, ,+J,  LJ] con-
sider also the recursion

U~CO)Y,,,=BY, ,+(I+CQ)Y, (eN) ®)

(see [6, § 2] and [5, Chap. II1]).

The recursions (7) and (8) are equivalent in the following sense. If
(Y) satisfies (7) then (Y,) also satisfies (8). If (Y,) satisfies (8) then both
(0, Y, 44,1 (Y, + Y, )] and ([, Y, +3J,(Y, , +Y,,,)]) satisly (7).

In particular this implies that (7) and (8) have equivalent stability proper-
ties.

Essentially, the above construction only requires the ordinary differential
equation (6). Such an equation also arises by a semi-discretization of the simple
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heat flow equation. In this case (8) corresponds to the Du Fort-Frankel scheme
and the scheme is equivalent to a hopscotch method.

(2.5) Consider the situation as in (2.2). Let the red-black partitioning of Z(4)
be the checker board one. Then the matrices B and C are given by

0 2n D, ... 2ry Dy,
Cim —Zf’lD1 O 0
| —2ryDy O ... O
and
0 =218, D, ... =2r,SyDy
B.c 2r1?1S1 0 0
|27 Dy Sup 0 0

Here D, is the diagonal matrix that corresponds to the grid-function operator

(UDjezy @G AX 1, - e A% ) U()jeza)

S, is the matrix that corresponds to the grid-function operator

(U(j))jeZ(A)H(U(jb --'ajk_19jk+ 1ajk+1’ ]M)+ U(.jla ”‘ajk—l’jk*17jk+1’ 7]M))J
and r, =At/Ax} (see also example (7.2) in [6]). Put

pr=(pi+...+pi)* with p,:=2r{maxa,(x)|xeQ}. 9)

Then | C|=p and |B| £2p.
Now, from the main-theorem one can easily deduce the following result.

Theorem. Let r,...,1,€(0, ) be such that p<2—]/§ (with p as in (9)). Then
there is a $R (€ £56/2—1/2—p)) such that for all At, A=(4x,, ..., Ax,,) with
1/4x,eN, AtjAxt<r, (k=1,...,M) and for all meN we have that ||Y,| <%
whenever (Y,) satisfies (8) and || Yy||>+ | Y;|*S 1 (with B and C as in (2.5)). O

By means of this theorem, one can easily prove that the method converges;
this is left to the reader.

3. Notations, Conventions and Basic Facts

(3.1) On C¥ (.,.) denotes the standard inner product and |.| is the as-
sociated Euclidean norm. With respect to the standard basis e, ..., ey in CV we
identify N x N-matrices 4 with linear maps 4 from C" into C¥ (the (k, l)-matrix
entry A, of A is equal to (Ae,, ,)). The spectrum of A4 is denoted by o(A). The
spectral norm Jmax|o(A*A)} of 4 is also denoted by |A]. If A is invertible
then the condition number |A4| |4~} of 4 is denoted by %(A).
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(3.2) Let B and C be anti-hermitian N x N-matrices.

For such a pair (B, C) of matrices, we consider N x N-matrices S, T and X that
have the following properties.

S and T are real diagonal matrices,

10
6(T)<(0,1] and S?+T?*=1 (10)
X is non-singular, complex and (11)
BX +2CXT=2iXS§
[Xell=1and (Xe,Xe)=0if k+l and T, =T,. 12)

Put
A:=T—i8§.

(3.3) Lemma. If |B| <2 then the matrices S, T and X with the above properties
{10), (11) and (12) exist and, moreover,

(I+CHXA=BX+(I+C)X4. O
For a proof of the above lemma, we refer to the results in § 5 and §6 of [6]
(see (5.11) and (6.1)).

(3.4) The matrices S, T and X which have the above properties (10), (11) and
(12) that correspond to the pair (B, — C) of matrices are denoted by S, T and X
respectively.

We put D:=—T—i§ and t,: =min(a(T), ¢(T)) (>0). With

I+C*i01"'[BiI+C
1= : j 1
A [ 0 il] [1; 0] (13)
XA X 40
,—1 ol Bl I B
X: =L 2[X :XD] and 4 [0 D] (14)

we have the following theorem; for a proof, we refer to the proof of (5.6) and
to (5.11) and (6.1} in [6].

(3.5) Theorem. Assume that |B} <2. Then

(a) X is a non-singular matrix in which each column is a vector with norm
equal to 1.

(b) AX=X4, ld|=I. O

(3.6) If B and C are as in (1), then obviously A is the companion matrix of
this recursion (1). We are interested in an upper-bound of the condition
number #(X). In §4, we give such an upper-bound. Our estimate is based on
the following proposition.

(3.7) Proposition. Put €:=[max(| X[, | X|)] [max(|X "], | X ~*)].

@ If
=ty <1 (15)
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then
(X)<V26/(1-%)/1-1,).

(b) With &:={veC¥||v| =1}, put

a: =min(inf{Re(XAX ~ v, 0)|ve S}, inf{Re(—XDX~'v,v)|ves)).
If

then ¥(X)<2% /o

>0 (16)

Proof. One easily shows that |X|| £}/2max (] X, | X[). With

N XA4x-! -
x::[ AX I

~[X 0
[ —XDX‘I] we have that X:%]/EX[ ~].

0 —-X
Therefore [X~1| <)/2 X~ max(|X ~*l, |X~*|) and
¢(X)<2|X~1 % whenever X is invertible.

(a) Note that |XAX-'—I| SC|T-1+iS| =6V 2(1—t,) and likewise
IXDX-*+1|<%)y2(1—1t,). Since, for any matrix A we have that
II+A4)" ' £(1—|lA])~ ! whenever |A]| <1, and since we also have that

X_[I—f] [[.{_5_9])(1 [ ! 51] [XEX'H P9
Ui 041 2L-rii 0 ?—XDX“—IH

it follows that

X1 £3/200-31/2%1/2(1=1,))~"  if (15) holds.

(b) Let weC?¥, |w|l =1 be such that glb(X)={Xwj. Since

glbX)ZRe(X w, w)=1([X+X*]w, w)
and

e o [XAX'4[XAX-'7%: 0
* = ¥ = -2 -2 =
X+X [ 0 i —XDX‘l—[XDX“]*]
it follows that g~1b()~()gfx.
Therefore | X! 1/aif «>0. [

In (4.1-6), we deduce a lower and an upper bound for o(X*X) (and
a(X*X); see (4.5)) and we comment on these results (in (4.6)). In (4.7-11), we
concentrate on an estimate for a lower bound for a (see (4.10)). A combination
of these results in §4 with those in (3.7) yields our main-theorem. Since, by
(3.7.a), an estimate for o(X*X) and o(X* X) is sufficient to have a result of the
announced type, we should justify our additional analysis in (4.7-11): our
estimate 7, of t, (1,<t,), € of € (¢ <% in (4.6)) and & of « (x =& in (4.10)) are
such that &>0 (see (15)) whenever #1/1 -1, <1 (see (15); for a proof of this
claim, see (4.11.b)). Therefore, our result based on (3.7.b) gives a better estimate
than the one that is based on (3.7.2). For instance in the realistic situation
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where p:=1||Bj =| C|| (see §2), we have that

>0 if p=<0.589 (see (4.11.c)) while
€V 1—1,<1 only if p<0.436 (see (4.6.c)).

In §4, and §5 all the matrices and quantities are as in (3.2) and (3.4).
Moreover, B is such that |B| <2.

4. On The Equation BX+2CXT=2iX$

In (4.5), we obtain a bound for the spectrum a(X*X). In order to prove this
result, associated to the diagonal matrix T, we introduce the following two
matrix operations.

(4.1) Notations. Let F be an N x N-matrix.

f(F) is the N x N-matrix in which the (k, l}-entry is equal to 0 if T;;, =+ T;, and
equal to F,, if T, =T, (7(F) may considered to be a block-diagonal matrix). For
any neN,

Fin.— Y Tri FTI-",

J=1

A number of elementary properties of these operations will be used in the
proof of (4.3). These properties are listed in the following lemma,; its proofs are
left to the reader (in the proof of (¢) and (f), one may apply the theorem of
Courant-Fischer and the relations in {h)}.

(4.2) Lemma. Let F be a hermitian N x N-matrix
(2) If TF=FT then F=9(F).
(o) T"F—FT"=TF"—F¥T.
(c) Both F*" and 9(F) are hermitian.
(d) TE)=nT"1 U(F),
(€ I9UX*FX)*]| <n|F]|.
(f) If F is positive definite then T(F*") is positive definite.
(@ IX*FX)*|<n|F| |X|>
(h) TX*X)=1I and NTX*X +X*XT)=2T [J

(4.4) Proposition.
(a) Let Dy, D, D,, ... be hermitian N x N-matrices such that

1 o0
yi=g5- Y nlD, <1
tO n=1
and
Y D, XT"=XT>

n=0
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1
Put B::F D, and p:=vy—B. Then
0

1
(1-v-p122) / (1+A)S(ebCOT S X2 <L+ /(1= 3.
(b) Let A, B and C be hermitian N x N-matrices such that
B: =Bl /2t <1

d
;l: AX+BXT+C:XT?=—XT>
en
S 148+ C2
T T p S B ®PSIX P ===
and
€X)<(1+]C) )i-g

Proof. (a) Put W:= Z D, XT"—XT? Then, by our assumption and Lemma

(4.2.b), we have that

0=W*X —X*W=TY (X*D,X)*"

n=1

~ Y (X*D, X)"T—T(TX*X + X*XT)+(TX*X +X*XT)T.

n=1

Hence, by (a) and (h) of (4.2)
Y. (X*D, X"~ [TX* X+ X*XT]=1[ ¥ (x*D,X)*"| 2T
n=1 n=1

Consider a 1eo(X*X) and a veC” for which (X*X —A)v=0 and ||v| =1. Then
(TIX*X —A]v,v)=0 and ([X*X—4]Tv,0v)=0.
Therefore,
24(To,)=([TX*X +X*XT]v,v)
- ( S (X*D, X)*", v) +2(To, v)— (‘ﬂ i(X*D,,X)‘*" ), u>.

n=1

Now, note that
2 =1 (To,v)e{seR|s=2(L—1)t, te[t,, 11};

(i(X*DnX)“” v, v)

n=1

§2toy;

S2t,p 1 X115

( i (X*D, X)* v, v)

n=2

X )

* P S SR A
00D, X v, o) == S

llé Dyl A =2t BA.
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Therefore, if A>1 then
200~ 1) tg <200 B i+ 2140 |1X |2 +2207,

and AZ(1+p | X|*+7)/1-p)
In particular, for A= X|?, we have that

X112 S L+ /(1)
If A<1 then
2 1+y
241102 =200 BA~20pIXI? ~2tg7Z =214 (BA+7+p 7).
(b) Obviously, the setting in (b) is a particular one of (a). However, here we
have the additional information that D,= — C? is negative definite. One can

use this additional information to improve the result a little.
Proceed as above in order to find that

TX*(1+ CHX + X*(1+ CHXT=2T— X*BX + UX*BX)+2THX* C*X).
Now, consider a Aea(X*(1+ C?) X) and a veCP, ||v] =1 for which

[X*1+CHX —)]v=0.
Observe that .
(X*BX v, 0)| < (BXv,Xv) (X v, Xv)

(Xv,Xv) ([1+C*]X0v,X0)

AZ B4,

and ~
_(IX*C?X)Tv, THy)
= (T*v, T*v)

0=<(T 9(X*C2X)v,v) (Tv,0)£||C|*(Tv,v).

By a reasoning as in (a), using these observations, we see that

1-B 1+ﬁ+llc\|2]
1+8° 1-8 '

6(X*(1+C'2)X)§[

We also have that

* vy ~ (Xv,Xv) _
a{X X)_{([1+CZ]XU,XU)([1+62]Xv’XD)‘\|v§|—-1},
and

1 < (Xv,Xv) <1.

1+ CIIP=([1+C* 1 X v, X )
Now, the statement in (b) of the proposition follows easily. [

(4.4) Remark. In our estimate of o(X*X), we actually only need the result in
(b) of (4.3). However, since the result in (a) has some interest on its own
account, we also give this general formulation in (a). For instance, let {—TI'({)
be an analytic map from a neighbourhood of [0, 1] (in C) into the space of
N x N-matrices such that

F{Q*=r) forall(
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and for some t,€(0, 1] we also have that
o(F(®)=[t3, 11 for all teft,, 1].

Then (see [4, Chap. III, §§6.1-2] and [6, (5.3)]), there are t,, ..., ty in [ty 1]
and x,, ..., xy in C" such that for each k=1,..., N

Tt x, =t2x,  lixll =1, (x,x)=0 if k*I and ¢, =t,.

Now, the result in (a) of (4.3) may be used to estimate the condition number of
the matrix with k-th column equal to x,.

1
(4.5) Theorem. Put §: =i |BC+ CB). If g<1 then
0

|t sozaricn

__ﬁ'

1-8 14+ C)?
A+ICHa+p  1-p

Proof. Since BX +2CXT=2i XS, we also have that

U(X*X)E[

B*X+2(BC+CB)XT+4C>XT?*=—4XS2%
Therefore, by (10),
1B*+ N X+i(BC+CB)XT+C*XT*=XT>~
Now, we may apply (4.3.b) with
A=-%B*+I), B=-4BC+CB) and C=iC. [J

(4.6) Remark. (a) If t,:=%||B| ||C|| then B<1 whenever t,>t,. In particular
B<1 if 4(1—¢2)>(|B|+2t,|C|)* or, equivalently, if —1+4(|B|) '>
ICIPG+ICl?.

(b) Let 7,€(0,1] be such that

GBI +7o (1 ClH* =1 —15). (17)
Then ty21,. Put
B:=1B| |C)/215) and &:=(1-H7'(I+|CIHA+HA+]CI>+PTE

Then < f and 4(X)< 4. i
Since 0S(||B|| —21, | Cl)* =4(1 —t2)— 1612 f, we have that

f=(1—1d)/41).
In particular, we have that <1 whenever
1,>11/5~0447  (or |B| <252~ | Cl).

{c) Suppose that
p:=%|Bl=|Cll.
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(In a stability analysis of hopscotch methods this often occurs see [6, § 7] and
(2.5)) Then 1,=(1 —p»)/(1+p?) and f=p¥z,.
Now, f<1 if and only if p<(}/2 —1)*~0.644. Since

N 1+8

EY1-1, ;1/1+p22+g]/1—10 =l/§pl—%,
we have that €)/1—1,>1 whenever p=0.420. Therefore, we can only hope
that the estimate as in (3.7.a) can be used if at least p <0.420.
(47) Put T:=XTX"' and for any 7€(0,1], E(x):=—I+T/z and e(1)
:=||E(7)||. In (4.8-9), we obtain an upper bound for e(r). This bound will be
used as follows. Let

oy =inf{Re(XAX~'v,v)|veCV, [v] =1} (see (3.7.b)).

In our estimate for the error propagation bound, it is important to have an o,
that is as large as possible; at least we should have that a,>0 (see (3.7.b)).
Since BX +2CXT=2i XS we have that

B+2CT=2iXSX!
and consequently

XAX '=t+iB+1C+1(I+ C)E(r) (for all 7€(0, 1]).
By the fact that the B and C are anti-hermitian, this implies that
apzt[1—[(I+ C)EM@|]. (18)

We will use an upper bound for e(r) to obtain an upper bound for
I+ C)E(z)| and consequently a lower bound for «,. The parameter t will
be used to optimalize this lower bound.

(4.8) Lemma. For te[ —1, +1], put W(t): =GB+t C)?>+(I —12) and

w(t): =max (| W), [W(-2)l).
Assume that there is a te(}, 1] such that w(r) <12 Then

e(1) S w()/(272 —w(r)) (19)

and

I+ C) Ez)[| Sw(r)/(22* —w(1)). (20)
Proof. From the identity

GB)*4+1(BC+CB)T+C*T?*=T*—-1
one may verify that
W@+ T+ W(—1) (I -T/x) =2 - C»(T* -1?).

In other words

203 — CY E(1) 2+ E() = W(2) 2 + E(x)) — W(—1) E(x). @1
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Now, suppose that
e(t)1. (22)

Then (21), and the fact that (I —C?)~!| €1 (C? is negative definite) and also
I2+E(2) | £(2—e(z))”! imply that

272e() (2 —e(t)) S w(t) 2 —e(n)) + w(t) e(t) =2w(1).
If w(t) 1%, we now see that
e() Sw(D)/(27 —w(D)) Sw(r)/7°, (23)

Since (I —C?)=(I+ C)(I—C) and ||(I - C)~ ! £1, from (21), we also may con-
clude that
22 |(I+ Q) E(D)] 2 —e(1) <2w(r)

whenever (22) is correct. If w(r) <12, we may use (23) in order to find that (20)
holds.

Finally, we should show that our assumption (22) is correct whenever
w(t)<1% For this purpose, for pe[0,1], consider the relation pBX(p)
+2p CX(p)T(p)=2iX(p)S(p). Using the results in [4, Chap. III, §§6.1-2]
(see also (3.2)), one can see that for the pair (pB,p C) there is a choice
S(p), T(p) and X(p) (and X(p)~') that continuously depend on p. With

1
e,(1):= ”I—; X(p)T(p) X(p)*

e,(t)=[1—1/r{<1 and e,(r)=e(r), a continuity argument and the result (23)
imply (22). [

(49) Lemma. Let t,€(0, 1] be such that

, e,(t) continuously depends on p. Since

(IZBll +7, | CI)*=2(1 —)).

Then w(z,) S5(I3Bll +7, | CI)? =(1 =13). If 7, 24V/2 then w(z)) <7} and
e(t)=(I3B] +, I C)?
IT+ O E@)l =(I3Bll +7, ] ClI)*.

Proof. Since (3B+7t,C)* is negative definite and since [($B+71,C)*|=<
(L B| +1,|C)*=2(1 —3), we have that |W(z,)| =(1—17). The other results
casily follow from the preceding lemma. [

From (18) and the result in (4.9), one immediately deduces the following
proposition.

(4.10) Proposition. Let t,€[0, 1] be such that
(3Bl +7, 1 Cl)>=2(1 —7}).
If ©,>11/2 then
Re(XAX 'v,0)27,[1-(}3B]| +1,ICI)*]1>0 for all veCP, |v|=1.
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(4.11) Remark. (a) Obviously, one may improve the result in (4.9) be finding a

7, for which
max(|3B+1, C|% |3B—1, C|?)=2(1 -7}).

Also by using an expression like the one in (20) (or (19)), one may improve the
bound in (4.10).

(b) Let 14,  and € be as in (4.6.b). Let 7, be as in (4.10). In order to justify
our analysis in (4.7-10), we will show now that we have the following property.

t,>11/2 whenever EY1-1,<1 (24)

(compare with the conditions (15) and (16) in (3.7)).

Property.

Proof. One easily verifies that t =213/(1 + t2). Therefore,

1,>1)/2 whenever 1,>11/3~0.577. (25)
Since

1o (1= BIP1=1+|CI2+(IB] CI)/co<1+1C|> +

} b
<= o
A
K

the assumptions
1,6(0,3Y2] and €=<(1-1,) ¢

imply that 7,=31/2[1—%||B[?]* and
IBI | CIl S[(1 —10)~* —1] 7o <}/272.

Hence
GIBI+3121CI? =12 +G Y21 Bl ICI +G -7 | C|12
<1-13+G12-1,) |B] [C| +5IBI? |CI*<1.
A combination of (25) and this last inequality implies (24). [

(c) Consider again the case where p:=j— |B|| =| C| (see (4.6.c)). Then 7, =
(2—pH/2+ p?). Now, we have that 7, >11/2 if

p<2-1/2~0.585.

5. The Main-Theorem

A combination of the results in (3.7.b), Theorem (4.5) and Proposition (4.10)
gives an upper bound for €(X) (see (3.6)).

(5.1) Main-Theorem. Put f:=|BC+ CB||/(4t,) and let 1,€[0, 1] be such that u
=(I3Bll +7, [ CI1H)=2(1—<}). If
<t and 1,>11/2 (26)
then u<1 and
1+ 1 _4v20+1Cp)

€(X)<2(14+ | C|)> = '
X) =20+ IC T S U=pd =y

O
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(5.2) Remark. (a) One may improve the result in (5.1) a little by exploiting the
observation in (4.11.a).

(b) Let 7, be such that (||3B||+1, ] Cl))*=(1—12) (as in (4.6.b)). If ro>§]/§
then (26) holds (see (4.6.b) and (4.11.b)), and B <3 (see (4.6.b)). In this case (sec
(4.11.b)),

L+ C)’? (22 4 1322
GOV 2= =61 20+ ICP) 3+ DB -1,

(©) If p:=|+B| =||C| then (26) holds if
p<2-12~0585 (sec (4.6.c) and (4.11.c)).

In this case

p=0702 and % (X)<56/2—)2—p).
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