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Summary. Consider the ODE (ordinary differential equation) that arises 
from a semi-discretization (discretization of the spatial coordinates) of a 
first order system form of a fourth order parabolic PDE (partial differential 
equation). We analyse the stability of the finite difference methods for this 
fourth order parabolic PDE that arise if one applies the hopscotch idea to 
this ODE. 

Often the error propagation of these methods can be represented by a 
three terms matrix-vector recursion in which the matrices have a certain 
anti-hermitian structure. We find a (uniform) expression for the stability 
bound (or error propagation bound) of this recursion in terms of the norms 
of the matrices. This result yields conditions under which these methods are 
strongly asymptotically stable (i.e. the stability is uniform both with respect 
to the spatial and the time stepsizes (tending to 0) and the time level 
(tending to infinity)), also in case the PDE has (spatial) variable coefficients. 
A convergence theorem follows immediately. 

Subject Classifications: AMS(MOS): 65M10, 65M20; CR: G1.8. 

1. Introduction 

Consider a family ~" of pairs (B, C) of real anti-hermitian matrices. In each 
pair the matrices B and C have the same size, but this size may differ from 
pair to pair. We are interested in the stability of the recursions 

(I+C*)U,+I=BU.+(I+C)U,_~ (neN) (1) 

in which (U,) is a sequence of real vectors of appropriate size. 
In this paper we derive conditions on ~- for which there is a bound c~ on 

the euclidean norm II Umll of u,~ that is uniform with respect to all m in N, to 
all sequences (U,) that satisfy (1) and for which IIUol12+ IIUl112=1 and to all 
(B, C) in 
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In applications B and C depend on the mesh-widths in space and time 
employed in the discretization of a PDE (partial differential equation); the 
recursions (1) appear in the stability analysis of certain finite difference meth- 
ods. 

Let A denote the companion matrix (see (13)) of (1). We actually obtain a 
bound ~ of sup{l[A"[[ [meN} that is uniform with respect to this family 

One may assume that ~_<(g_<]/~c~. 
Such a uniform bound (g only exists if the A have the following property 

(a). 
(a) The spectral radius of A does not exceed 1 and all eigenvalues 2 of A 

with 121 = 1 are semisimple. 
However, as is well-known, this property (a) does not guarantee the exis- 

tence of this uniform bound. Assume that all A have property (a). From the 
fact that ]det(A)l =1 one sees that the A are diagonizable: 

there are non-singular matrices X and diagonal matrices A such that 

A=XAX -a and IAl=I. (2) 

cg is bounded by the supremum of the condition numbers of X (where the 
supremum is taken over 4 ) .  The X are such that any column vector of X has 
norm 1. Here, we obtain conditions on ~ for which these condition numbers 
have a uniform bound. 

In our previous paper [6], among other things we proved that the compan- 
ion matrices A have property (a) whenever llB ll < 2. 

Concerning our applications, the condition "IIB[I < 2 "  can considered to be 
sharp (see the discussion in [6, (6.4)]). Here we can bound the condition 
number of X under a somewhat more restrictive condition. Our main result 
runs as follows. 

Main-Theorem. Assume that ]IB[] <2. Let Zo, zl~(O , 1] be such that 

(�89 for i=0,  1. 

Then to: =inf{IRe(2)112 eigenvalue of A}~[z o, 1]. Put fl: = [IBC + CBll/(4t o) and 
/~, =2(1-z2) .  I f  f l<l  and "~x>lif2 then p < l  and 

l+ f l  1 
ilXI[ IlK-ill < 2 ( 1 +  lICll 2) 1 - 3  z l (1-~)"  

In our applications the above stability question arises as follows. 
Let f2 be a region in R M. Let s be a second order partial differential 

operator from C(2)(12) into C(O) r. Consider functions v, wl, ..., w K on [0, oe) 
x f2 that are sufficiently smooth, that are the solutions of the following PDE 

(3) on [0, oo)x f2 and that satisfy some IC (initial conditions) and BC (bound- 
ary conditions) 

(~5 (1), W 1 . . . .  , W K ) =  ( - - , ~ *  (W 1 . . . .  , WK) , ,.~(1))). (3) 
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Here, Ae* is the formal adjoint of A a. Sa and the IC and BC are such that the 
solutions are unique. Consider the ODE (ordinary differential equation) that 
arises from a semi-discretization (a discretization with spatial stepsize A 
=(A x l ,  . . . ,AxM) of the spatial coordinates) of the above PDE (3). Recursion 
(1) appears in a stability analysis of the finite difference method that arises if, 
with time stepsize At, one applies the hopscotch idea to this ODE (for details, 
see w 2). 

Now B and C are real anti-hermitian N x N-matrices; N is proportional to 
M 
[J  1/Ax k and U, represents the propagated error at the spatial grid at time 

k=l  
level n A t. 

Although both B and C depend on A and At, quantities like lIBl[ and IICl[ 
depend essentially only on r~ . . . . .  rM, where r k =A t /Ax  2 (k = 1 . . . . .  M). Therefore, 
the main-theorem gives conditions on q , . . . ,  r u under which the error amplifi- 
cation is bounded uniformly both with respect to the time level n A t and to the 
stepsize (At, A) (provided that At=rkAx~) .  This stability statement applies to 
many problems with variable coefficients and mixed derivatives. In particular, 
it also yields a convergence statement (with respect to the discrete La-norm on 
the spatial coordinates), and it tells us how the method can be used stably in a 
variable stepsize procedure. 

In [1, 2], and [3-1, for second order parabolic PDEs, one showed that the 
approximates (obtained by a hopscotch method) converge with respect to an 
inner-product norm that is defined by some positive definite matrix H (depend- 
ing on A and A t) arising from the PDE. However, in the situation of the PDE 
(3), their approach has two disadvantages: in general, the matrix H can only be 
hermitian in case ~ is a constant coefficient operator and, moreover, glb(H) is 
proportional to At  ~ (if, for some q , . . . , r  M At=rkAXZk, k = l  . . . . .  M). Con- 
sequently, in this way, as far as convergence with respect to the discrete L 2- 
norm concerns, one should expect an additional loss in the convergence order 
of A t ~. 

In w we explain how recursion (1) appears in the stability analysis of 
hopscotch methods applied to the PDE (3). For  a special class of PDEs we 
interprete the stability result in the main-theorem as a stability theorem for the 
hopscotch methods. In w 3, 4, 5, we concentrate on the proof of our main- 
theorem. Although this paper is a natural sequel to our previous one [6], it 
can be read independently. In w 3, we collect the facts from [6] that we need 
here. Furthermore, in this section, we give a detailed description of the prob- 
lem. The main part of this paper can be found in w 4. There, we give a purely 
algebraic analysis of matrices that are given by some matrix equation arising 
from (1). In w 5, we combine the results from w 4 and obtain our main-theorem. 

2. A Stability Analysis of Hopscotch Methods 
for Fourth Order Parabolic Equations 

In this section, we briefly recall the hopscotch methods (see (2.3)). Further, in 
(2.1), we sketch the PDEs for which our main-theorem gives stability results 
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and in (2.4) we explain how recursion (1) appears in a stability analysis of the 
hopscotch methods applied to these PDEs. Finally, in (2.5), for some special 
PDEs and a special hopscotch method we explicitly formulate a stability 
theorem. 

In order to avoid too much detail and since this section only serves as an 
illustration of the applicability of our results, we restrict ourselves to a model 
setting whenever it is convenient. For  more details we refer the interested 
reader to [6]. 

(2.1) Let f2 be a region in R M. Let ~ be a second order partial differential 
operator from O2)(f2) into C(f2) r. 5 f*  is the formal adjoint of ~ and operates 
from O2)(f2) K into C(O). Consider real-valued functions u and v and RK-valued 
functions w = ( w t ,  . . . ,wK)  T on [0, oo)x (~ that are sufficiently smooth, that are 
the solutions of the following PDEs on [0, oo) z f2 and that satisfy some IC and 
BC 

PDE(4)  u ,= -5~*oZ~(u )  on [0, oo) x~2 

u satisfies some IC (4) and BC (4) (4) 
and 

8 

(v, w 1 . . . .  , WK) r satisfies some IC (5) and BC (5). (5) 

5e and the IC and BC are such that the solutions are unique. 
For an extensive class of BC one can give a correspondence between BC (4) 

and BC (5) (and IC (4) and IC (5)) under which the problems (4) and (5) are 
equivalent (i.e. either v=u t ,  w = ~ ( u )  or, integrated, v = u ,  wt=Se(u ). See [5, 
Chap. I]). Here, we are interested in the methods that are induced by hop- 
scotch methods for the (semi-discretization of the) PDE (5). However, in case 
the problems are equivalent methods and stability results can be translated (see 
[5, Chap. I] and [6, (4.5)]). 

(2.2) Example.  (The bending beam equation.) Let O =[0, 1] M. For some posi- 
tive coefficient functions al . . . .  ,a  M in O2)(f2) let 5e: C(z~(f2)-*C(f2) ~t be given 
by 

02/)  02V ~T 

, - . . ,  a M - -  5f(v) = a 1 ~x  1 8x  M ] for all v e  C(2)(~'~). 

Then 

s = k=l OX--~k ak wk for all w =(wl, ..., wM)re CC2)(t2) M. 

Consider the following BC and IC 

BC(4) u=tp, ~c'~ BC(5) v=(pt ,  w=~k on [0, oo) x~?f2 

IC(4) u = f ,  u ,=g  IC(5) v = g ,  w = ~ ( f )  on {0}xl2 

in which, with ~ =(~q . . . .  , 0 u )  r, tp, ~'1 . . . .  , OM are smooth functions on [0, oo) 
x I2 and f, g on {0} x t2. 
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Now v=u t and w = S f ( u ) i f u  is the solution of (4)and ( ; ) i s  the solution 
of (5). 

(2.3) We now sketch the hopscotch method for problem (5). 
We assume model BC (as, for instance in (2.2)). For simplicity and since our 
interest concerns stability, we also assume that the BC are homogeneous. 

Let A =(Axa, ...,AxM) be a spatial stepsize such that with ~Ck: = - - 1 +  1/Ax k 
we have that t g k ~ N  (k = 1 . . . . .  M). With 

Y(t)=(V(t), W~(t) ..... 14)(t)) r and 

consider the ODE 
Y'(t)--LY(t), t > 0  

_o 
(6) 

that arises by the finite difference standard discretization of (5) on the spatial 
grid Z(A): = {(jl . . . .  ,jM)eZMI(jlAxl .... ,j~tAxM)einterior(f2)}; for t__>0, 
V(t), Wl(t ) ..... WK(t ) are real-valued functions on the grid Z(A), Y(t) is a R K+~- 
valued function on Z(A) and L is the finite difference operator induced by 5~ 
and the BC. M / \ 

with a vector i n R  N, where N:=ll-IKR}(K +1), and One may identify Y(t) 
L with an N x N-matrix. \ k = l  ! 

Let At be a time stepsize. The hopscotch method produces a sequence (Y,) 
of RK+l-valued functions Yn on Z(A) as follows. Let r c Z ( d )  and put b:= 
Z(d) \ r .  {r, b} is a partitioning of the spatial grid in say red and black points. 
For  any function Z on the grid Z(A) let the grid-functions Z r and Z b be such 
that Z,.=Z, Zb=O on r and Zr=O, Zb=Z on b. For each n~N, the grid-func- 
tion operators J2,-1 and J2, are given by J2,,Z=Zr and J2,,_IZ=Zb. NOW, 
the hopscotch method produces the sequence (I1,) by 

(Y.+,-Y,) /At=J,+,LY,+I+J,  LY  . (neN) (7) 

(see e.g. [3], also [6, w 2] and [5, Chap. III]). 
Depending on the particular choice of the "red-black partitioning" of Z(A), 

(7) is an efficient scheme that is second order accurate with respect to A t. 

(2.4) With C=At[J,+ILJ,+I +J, LJ,] and B=2At[J,  LJ.+I +J,+~LJ,] con- 
sider also the recursion 

( I - C )  Y,+E=BY,+I+(I+C)Y . (neN) (8) 

(see [-6, w 2] and [5, Chap. III]). 
The recursions (7) and (8) are equivalent in the following sense. If 

(Y,) satisfies (7) then (I1.) also satisfies (8). If (Y,) satisfies (8) then both 
([J,Y.+�89 + Y,-1)]) and ([J.+l Y,+�89 + Y.+I)]) satisfy (7). 

In particular this implies that (7) and (8) have equivalent stability proper- 
ties. 

Essentially, the above construction only requires the ordinary differential 
equation (6). Such an equation also arises by a semi-discretization of the simple 
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heat flow equation. In this case (8) corresponds to the Du Fort-Frankel scheme 
and the scheme is equivalent to a hopscotch method. 

(2.5) Consider the situation as in (2.2). Let the red-black partitioning of Z(A) 
be the checker board one. Then the matrices B and C are given by 

I0  rol 1 - 2 r i D  1 0 
C : ~  , . . 

L - 2 r M D  M 0 0 d 
and 

] B : =  2rlD1S1 0 

I_2rM "D MSM o . . .  

Here D k is the diagonal matrix that corresponds to the grid-function operator 

( U (j) ) j~Z~ A) ~'* ( ak (Jl A X 1 . . . . .  J M A X M) U (j) ) j~ z~a) 

S k is the matrix that corresponds to the grid-function operator 

(U (j))j~zta)~--~(U (Jl . . . .  ,Jk- 1,Jk + 1, Jk + 1 . . . .  JM) + U (Jl . . . . .  Jk- 1,Jk -- 1,jk + 1 . . . .  ,JM))j 
and r k = A t / A x  k (see also example (7.2) in [6]). Put 

p : = ( p 2 + . . . + p ~ ) ~  with p k : = 2 r k { m a x a k ( x ) l x ~ f 2 } .  (9) 

Then IICII _-<p and [IBII <2p.  
Now, from the main-theorem one can easily deduce the following result. 

Theorem. Let  rl,.. . ,r~a~(O , ~ )  be such that p < 2 - V / 2  (with p as in (9)). Then 

there is a Cg~R (c~=<56/(2-]/~-p))  such that for  all At,  A = ( A x  1 . . . . .  AxM) with 
1/AXk~N , At/Ax2<=rk ( k = l  . . . . .  M)  and for  all m e N  we have that IIYm]l<=Cg 
whenever ( Y,) satisfies (8) and [IY01[2+ ItYa][2_<l (with B and C as in (2.5)). [] 

By means of this theorem, one can easily prove that the method converges; 
this is left to the reader. 

3. Notations, Conventions and Basic Facts 

(3.1) On C N, ( . , . )  denotes the standard inner product and [[.ll is the as- 
sociated Euclidean norm. With respect to the standard basis e l , . . . ,  e N in C u we 
identify N x N-matrices A with linear maps A from C N into C N (the (k, /)-matrix 
entry Ak~ of A is equal to (Ae  l, ek) ). The spectrum of A is denoted by a(A). The 

spectral norm ]/max[a(A*A)[ of A is also denoted by I[A[[. If A is invertible 
then the condition number tlAll ]IA-III of A is denoted by ~(A). 
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(3.2) Let B and C be anti-hermitian N x N-matrices. 

For such a pair (B, C) of matrices, we consider N x N-matrices S, T and X that 
have the following properties. 

S and T are real diagonal matrices, 
a(T)c_(O, 1] and S2 + T 2 =I. (10) 

X is non-singular, complex and 
B X + 2 C X T = 2 i X S  (11) 

IIXekH =1 and (Xek, Xel )=O if k:4:l and Tkk=T u. (12) 
Put 

A = = T - i S .  

(3.3) Lemma. If IIBll <2 then the matrices S, T and X with the above properties 
(10), (11) and (12) exist and, moreover, 

( I + C * ) X A = B X + ( I + C ) X A .  [] 

For a proof of the above lemma, we refer to the results in w 5 and w 6 of [6] 
(see (5.11) and (6.1)). 

(3.4) The matrices S, T and X which have the above properties (10), (11) and 
(12) that correspond to the pair (B, - C) of matrices are denoted by S, T and )( 
respectively. 

We put D: = - T - i S  and to: =min(a(T), a(T)) (>0). With 

fI+c*i 01-' [B i1+c 1 A: = [-----~------j--~] [ i i - - ( ) ]  (13) 

1 X:=�89 LX---I-~DJ and A:=[(~--[~-], (14) 

we have the following theorem; for a proof, we refer to the proof of (5.6) and 
to (5.11) and (6.1) in [6]. 

(3.5) Theorem. Assume that IIBI[ <2. Then 

(a) X is a non-singular matrix in which each column is a vector with norm 
equal to 1. 

(b) AX=XA, IAI=I. [] 

(3.6) If B and C are as in (1), then obviously A is the companion matrix of 
this recursion (1). We are interested in an upper-bound of the condition 
number ~g(X). In w we give such an upper-bound. Our estimate is based on 
the following proposition. 

(3.7) Proposition. Put cg:=[max(llXll, I]2l])J [max(llX-*ll, tl2-1ll)]. 

(a) I f  
 el/1 - to<l  (15) 
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then 
c~(X) ~ V~C~/(1 - (~ 1//1 - t o ) .  

(b) With 5~. �9 ={veC N ] IIvlt =1}, put 

c~: =min(inf{Re(XAX-lv, v)} veS~}, inf{Re( -)(D2-1v, v)] veSP}). 

and 

Therefore [IX-ill <1/~ II~-IH max(llX-1ll, II~-lll) and 

~(X) < 2 II X -  111 <g whenever X is invertible. 

(a) Note that IlXzJX - 1 - I l l < ~ l l T - I + i S ) l < < g l / ~ - t o )  and likewise 
H2D2-1+Ill<c~l/2-~-to). Since, for any matrix A we have that 
11(I +A)-11] < ( 1 -  ]l/ll)-1 whenever II/II < 1, and since we also have that 

X = [ - [ i ? ] I  i - I [[.(~:i.?! ] I  !0 +21 [..]t~.l.i..ijl i t [ [ X ~ X ~ ) " - /  i 0  i-XD2-'-I]]"O ............ .1] 

it follows that 

[Ix--ltl ~___11//2(1 - - I v / 2 ( ~ V ~  --t0)) -1 if (15) holds.  

(b) Let weC 2N, I[wll = 1 be such that glb(X)= IlStwll. Since 

glb (X) > Re (X w, w) = �89 + IK*] w, w) 

[X.A.- X .-.2+..E 1 ...................... 0 ...................... 1 
IK + X *  = [ 0 i - 2 D X -  1 _ [ ) ~ D ) ? - 1 3 " ]  

it follows that glb(X)=> ct. 
Therefore I1~-111<1/~ ifc~>0. [] 

In (4.1-6), we deduce a lower and an upper bound for a(X*X) (and 
a(J?*Jf); see (4.5)) and we comment on these results (in (4.6)). In (4.7-11), we 
concentrate on an estimate for a lower bound for ~ (see (4.10)). A combination 
of these results in w with those in (3.7) yields our main-theorem. Since, by 
(3.7.a), an estimate for a(X*X) and a(J?*2) is sufficient to have a result of the 
announced type, we should justify our additional analysis in (4.7-11): our 
estimate Xo of t o (%<to), c~ of cd (~<c~ in (4.6)) and ~ of ct (~>~ in (4.10)) are 
such that ~ > 0  (see (15)) whenever ~ t / ] - - x o  < 1 (see (15); for a proof of this 
claim, see (4.11.b)). Therefore, our result based on (3.7.b) gives a better estimate 
than the one that is based on (3.7.a). For instance in the realistic situation 

/ f  
c~>0 (16) 

then g(X) < 2cg/c~. 

Proof One easily shows that IlXll <l/2max(llXll,  IIX[I). With 

~[: = [Xzi/X -1 - I  ] IX ? 2 ]  _)?D)?_ 1 we have that X=�89 
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where p: =�89 = HC[[ (see w we have that 

&>0 if p<0.589 (see (4.11.c)) while 

c ~ ] / ~ - z  o < 1 only if p <0.436 (see (4.6.c)). 

In w and w 5 all the matrices and quantities are as in (3.2) and (3.4). 
Moreover,  B is such that HBI[ <2.  

4. On The Equation B X + 2 C X T = 2 i X S  

In (4.5), we obtain a bound for the spectrum a(X*X) .  In order to prove this 
result, associated to the diagonal matrix T, we introduce the following two 
matrix operations. 

(4.1) Notations. Let F be an N x N-matrix. 
OI(F) is the N • N-matr ix  in which the (k, /)-entry is equal to 0 if Tkk + T n and 
equal to Fkz if Tkk = T n (~(F) may considered to be a block-diagonal matrix). For  
any neN,  

F~.: = s T " - J F T  j-1. 
j = l  

A number of elementary properties of these operations will be used in the 
proof  of (4.3). These properties are listed in the following lemma; its proofs are 
left to the reader (in the proof  of (e) and (f), one may apply the theorem of 
Courant-Fischer  and the relations in (h)). 

(4.2) Lemma.  Let F be a hermitian N x N-matrix 

(a) I f  T F = F T  then F =  ql(F). 
(b) T " F - F T n = T F ~ " - F ~ " T .  

(c) Both F ~ and ql(F) are hermitian. 
(d) ql(F ~") = n T n-1 ql(F). 

(e) [I ql[(X* FX)  ~"3 l[ < n 11F II. 
(f) I f  F is positive definite then ql(F ~") is positive definite. 

(g) II(X*FX)~"II <n I[FII IIXII 2, 
(h) qI(X*X)=I and ~ ( T X * X + X * X T ) = 2 T .  [] 

(4.4) Proposition. 
(a) Let D o, D 1, D 2 . . . .  be hermitian N x N-matrices such that 

1 
T: = -  ~ nl[D.II <1  

2to .=1 
and 

~ D . X T  ~ = X T  2. 
n=O 
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1 
Put/~: =2~0 IIDtll and p: = 7 - f l .  Then 

I - T - P i ~ _ ~  ] ( l+~)<[glb(X)]2<l lX[IZ<(l+7) / ( l -~ ' )  �9 

(b) Let ,71, JB and C be hermitian N x N-matrices such that 

~: = I[Bll/(2to)< 1 
and 

A X  + B X T  + C2 X T 2  = - X T  2. 
Then 

1+  II~]l ~ < [glb(X)]2 < IIXII2 < 1 +/~+ II CII2 = = 1- /~  

and 

oK(X) < ( 1 + [1C{I 2) 1 +tiff 
1-/~ 

Proof (a) Put  W : =  ~ D . X T " - X T  2. Then, by our assumption and Lemma 
n = 0  

(4.2.b), we have that 
(3O 

0 = W * X  - X *  W =  T ~  (X*D,X)  ~" 
n = l  

- ~, ( X * D . X ) ~ " T - T ( T X * X + X * X T ) + ( T X * X + X * X T ) T .  
n = l  

Hence, by  (a) and (h) of (4.2) 

(X*D.Xp"--[TX*X+X*XT]=ql (X*D.X) ~" -2T. 
n = l  n = l  

Consider a 2 s a ( X * X )  and a v e C  N for which ( X * X - 2 ) v = O  and Ilvlk =1. Then 

( r [ x * x - 2 ] v , v ) = O  and ( [ X * X - 2 ] r v ,  v)=0.  

Therefore, 

22( rv ,  v ) = ( [ T X * X  + X* X T ]  v, v) 

= (X*D,X)~"v,v  +2(Tv, v ) -  ~ ( X * D , X ) ~ " v , v  . 
~ n =  1 n= 1 

Now, note that 
2(2 - 1) (Tv, v)E {s~R I s = 2 ( 2 - 1 )  t, tE [to, 13} ; 

X*D.X)~"v ,v  2to~; 
n = l  

X*D.X)~"v ,v  <2toPllXll 2", 
\ n =  2 

= (D1Xv, Xv)  2 
](X*D1X v, v)l (Xv, Xv)  < L[DII[ 2 =2to/~2. 
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Therefore, if 2 > 1 then 

2(2 - 1 )  t0<2tof l2+2toPl lXl lZ+2t07 ,  

and )L<(1 +p  hkXtl2 +7)/(1 -fl). 
In particular, for 2 =  ]lXI] z, we have that 

IlSll 2 <(1 + y)/(1-7). 
If 2 < 1 then 

2 ( 2 - 1 ) t o >  - 2 t o f 1 2 - 2 t o P l l X I I 2 - 2 t o T >  - 2 t  o (f12+7+Pl_~_7].l+7~ 

(b) Obviously, the setting in (b) is a particular one of (a). However, here we 
have the additional information that D 2 = -  (~z is negative definite. One can 
use this additional information to improve the result a little. 

Proceed as above in order to find that 

TX*(1 + (~2) X + X*(1 + C2)XT=2T-X*I~X+ 51(X*BX)+2T~I(X* C2X). 

Now, consider a 2ea(X*(1 + C2)X) and a w C  N, Ilvll = 1 for which 

IX*(1 + C2)X -23  v =0. 
Observe that 

< (SX v, X v) (X v, X v) 2 
I(X*BXv, o)I= (Xv, Xv) ([l+CZ]Xv, Xv) <II/~II,L 

and 
v ,<(ql(X* cZX) T%, T~v) 

0 _-< (7" ql(X* ~2 X) , v) = -  (T~v~v ' ~ (Tv, v) < II c II 2 (Tv, v). 

By a reasoning as in (a), using these observations, we see that 

G(X*(I+d2)X)~- + ~ ' -  I - B  

We also have that 

{ (Xv, Xv) } 
a(X*X)~ ([I+C2]Xv, Xv)([I +~2]Xv, Xv ) Ilv][=l , 

and 
1 (X v, X v) < 1. 

1+ Ildll~<([l + ~Z]X v, X v ) -  

Now, the statement in (b) of the proposition follows easily. [] 

(4.4) Remark. In our estimate of a(X*X), we actually only need the result in 
(b) of (4.3). However, since the result in (a) has some interest on its own 
account, we also give this general formulation in (a). For instance, let (w-~Y(() 
be an analytic map from a neighbourhood of [0, 1] (in C) into the space of 
N x N-matrices such that 

F(0* =F(~) for all 
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and for some tot(0, 1] we also have that 

a(F(t))c_ ItS, 1] for all t~[to, 1]. 

Then (see [4, Chap. III, w167 and [6, (5.3)]), there are t t . . . . .  t N in [t o, 1] 
and x t . . . .  , x N in C N such that for each k = 1 . . . .  , N 

_ _  2 F(tk)Xk--tkXk, IlxkJI =1,  (X~,Xl)=0 if k # l  and tk=t z. 

Now, the result in (a) of (4.3) may be used to estimate the condition number of 
the matrix with k-th column equal to x k. 

1 
(4.5) Theorem. Put f l : = ~ o  ][BC+ CB]I. I f  f l < l  then 

1 - f l  l+fl+llCll and cr  )i-E~" 
a(S*X)~ (1 + 11Cj]2) (1 +fl), 1 - /3  

Proof. Since BX + 2 C X T = 2 i X S ,  we also have that 

B2X + 2(BC + CB) X T +  4 C 2 X T  2 = - 4 X S  2. 

Therefore, by (10), 

�88 + I) X +�89 + CB) X T + C2 X T  2 = X T  2. 

Now, we may apply (4.3.b) with 

,~ i=- �88  B=-- �89  and C=iC.  [] 

(4.6) Remark. (a) If t,,:=�89 ItCll then /3<1 whenever to>t,,. In particular 
f l < l  if 4(1-t2)>(llBll+2t,,llCbl) 2 or, equivalently, if - I + 4 ( I I B H ) - a >  
IICII2(3+ II CllZ). 

(b) Let ZOO(0, 1] be such that 

(�89 [IB[I +%  II Ell) 2 --(1 -z~).  (17) 

Then to>=Z o. Put 

fl:=tlBtl tlCll/(2zo) and c~: = ( 1 - f l ) - 1 [ ( 1 +  IIC112)(1+fl)(1+ IICllZ+/~)] ~. 

Then fl<=fl and ~q(X)__<cK. 
Since 0<(IIBII-2Zo IlC{I)2 =4(1-Zo2)-16Zo2 fl, we have that 

fl<(1 - z~)/( 4 z2). 

In particular, we have that fl < 1 whenever 

Zo>-~V~0 .447  (or NBll <2]/5(2-]1CI])).  

(c) Suppose that 

p: =�89 [[nll= 11CII. 
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(In a stability analysis of hopscotch methods  this often occurs see [6, w 7] and 
(2.5).) Then % = ( i - - p 2 ) / ( 1  +p2) and f l=p2/z O. 

Now,/~ < 1 if and only if p < (l /~ - 1) ~ ~ 0.644. Since 

~ ( 1  + f l ) l / 1  l + f l  cvq- o>=Vl+p2  _ )v -zo =v p 

we have that  c~1 / /1 -% > 1  whenever p>0.420.  Therefore,  we can only hope 
that  the estimate as in (3.7.a) can be used if at least p <0.420. 

(4.7) Put T : = X T X  -1 and for any ze(0,1] ,  E ( r ) : = - I + 7 " / r  and e(z) 
:=  liE(z)1[. In (4.8-9), we obtain an upper  bound for e(z). This bound will be 
used as follows. Let 

% : = i n f { R e ( X A X - l v ,  v ) l veC N, []vll =1} (see (3.7.b)). 

In our  est imate for the error p ropaga t ion  bound, it is impor tan t  to have an % 
that  is as large as possible; at least we should have that  ~ 0 > 0  (see (3.7.b)). 

Since B X + 2 C X T = 2 i X S  we have that  

B + 2 C ~ = 2 i X S X  -a 
and consequently 

X A X - I = z + ~ B + z C + z ( I + C ) E ( z )  (for all z~(0, 1]). 

By the fact that  the B and C are anti-hermitian,  this implies that  

ct o > z [ 1 - I1(I + C) E(z)II]. (18) 

We will use an upper  bound for e(z) to obtain an upper  bound for 
II(I+C)E(z)ll and consequently a lower bound for %.  The paramete r  r will 
be used to optimalize this lower bound. 

(4.8) Lemma. For z e I - 1 ,  + 1], put W(z): =(�89 + z C)2-~ - ( I - - z  2) and 

w(v): =max(l l  W(~)lb, II W(-T)II) .  

Assume that there is a ze(�89 1] such that w(z )<z  2. Then 

e(z) < w(z)/( 2 z 2 - w(z)) (19) 
and 

I1(1 + c) E(~)II =< w(z)/( 222 - wfz)). (20) 

Proof F r o m  the identity 

(�89 2 + �89 + CB) 7"+ C 2 ~,2 = ~,2 - I  

one may  verify that  

W(z) (I + :F/z)+ W ( -  z)( I  -7"/z) = 2 ( I  - C 2) (~,2 _zz).  

In other  words 

2 z 2 (I - C 2) E(z) (2 + E(z)) = W(z) (2 + E(z)) - W( - z) E(z). (21) 
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NOW, suppose that 
e(z)< 1. (22) 

Then (21), and the fact that II(I-C2)-111 <1 (C 2 is negative definite) and also 
[1(2 + E(z))- 11[ ~ (2 - e(z))- ,  imply that 

2 z 2 e (z) (2 - e (z)) =< w (z) (2 - e ('c)) + w (z) e (z) = 2 w (z). 

If w(z)<z  2, we now see that 

e(-c) < w (7:)/(2"c 2 - w (-t')) _< w (-c)/-t -2. (23) 

Since ( I -Ca)=(1+ C)( I -C)  and II(I-C)-Xll <1,  from (21), we also may con- 
clude that 

2z2 I[ (1 + C) E(z)/b (2 - e(z)) < 2 w (z) 

whenever (22) is correct. If w(z)< z 2, we may use (23) in order to find that (20) 
holds. 

Finally, we should show that  our  assumption (22) is correct whenever 
w(z )< r  2. For  this purpose, for pe [0 ,1 ] ,  consider the relation pBX(p) 
+2pCX(p)T(p)=2iX(p)S(p). Using the results in [4, Chap. III, w167 
(see also (3.2)), one can see that for the pair (pB, pC) there is a choice 
S(p), T(p) and X(p) (and X(p) -1) that continuously depend on p. With 

ep(z):= I - I X ( p ) T ( p ) X ( p )  -1 , ep(z) continuously depends on p. Since 

e o ( Z ) = l l - 1 / z l < l  and e l (~)=e(z  ), a continuity argument and the result (23) 
imply (22). [ ]  

(4.9) Lemma.  Let zle(0,  1] be such that 

(II�89 + h  It Cll) 2 --2(1 -z2) .  

Then W(Zl)<�89189 + z  1 [I C[[) 2 =(1 -z~).  I f  z, > � 8 9  then w(zO<z ~ and 

e(zl) <(ll�89 +za II Cll) 2 

I1(I+ c )e%)l l  _-<(ll�89 + h  tl CIl) 2. 

Proof Since (�89 z is negative definite and since 1[(�89 
(ll�89 we have that ] lW(Zl) l l<(1-z2) .  The other  results 
easily follow from the preceding lemma. [ ]  

F rom (18) and the result in (4.9), one immediately deduces the following 
proposition. 

(4.10) Proposition. Let "Clff[O , 1] be such that 

(II�89 + z ,  11Ctl) 2 =2(1  -z~) .  

I f  % >�89 then 

Re (XAX- l v ,  v)>zx[1-([1�89 for all veC N, Ilvll=l.  
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(4.11) Remark. (a) Obviously, one may improve the result in (4.9) be finding a 
r~ for which 

max(/]�89 + 21 C[] 2, 11�89 - ' c  1Cll 2) =2(1 -zz0.  

Also by using an expression like the one in (20) (or (19)), one may improve the 
bound in (4.10). 

(b) Let Zo,/~ and c~ be as in (4.6.b). Let z~ be as in (4.10). In order to justify 
our analysis in (4.7-10), we will show now that we have the following property. 

Property. 
z1>�89 whenever c~] /1 -Zo  <1  (24) 

(compare with the conditions (15) and (16) in (3.7)). 

Proof. One easily verifies that z 2 > 222/(1 + z~). Therefore, 

z 1 >�89 whenever % > ~ ] / ~ 0 . 5 7 7 .  (25) 
Since 

2 [ 1 - � 8 8  IIB[I 2] = 1 + II CIk 2 +(llBII II CII)/% < 1 + II CII 2 + lZ_PB < ~#, 

the assumptions 
Zo6(0,�89 and ~ < ( 1 - Z o )  -~- 

imply that Zo>�89188 ~ and 

IIBII I1CII < [(1 -Zo) -~  - 1] z o < ] / ~ z  2. 
Hence 

2 1 -- (~ I[BII +�89 Eli) 2 =1  -Zo  +(~t /2-Zo)IIBII  IICII + ( ~ - z g ) I l f l [  2 

< 1-zg+( �89 IICII +~llnll 2 116112<1. 

A combination of (25) and this last inequality implies (24). []  

(c) Consider again the case where p: =�89 = IICll (see (4.6.c)). Then z 1 = 
(2-p2)/(2+p2). Now, we have that z 1 > �89  if 

p < 2 - ] / ~ 0 . 5 8 5 .  

5. The Main-Theorem 

A combinat ion of the results 
gives an upper bound for cg(X) 

(5.1) Main-Theorem. Put 3" = 
�9 " =(ll�89 +21 II CII=)= 2(1 -z~). I f  

3 < 1  and za>�89 
then # < 1 and 

1 +  3 1 < 4 ] / ~ ( 1  + IICll 2) 
cg(X)<2(1 + IICII) 2 

1 - 3 r 1 ( 1 - # )  = ( 1 - 3 ) ( 1 - # )  " 

in (3.7.b), Theorem (4.5) and Proposit ion (4.10) 
(see (3.6)). 

l i n e +  Cnll/(4to) and let 216[0 , 1] be such that IJ 

(26) 

[]  
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(5.2) Remark. (a) One may improve the result in (5.1) a little by exploiting the 
observation in (4.11.a). 

(b) Let  % be such tha t  (ll�89 +~ollCIt)2 = ( 1 - ~ )  (as in (4.6.b)). If Vo> �89  
then  (26) ho lds  (see (4.6.b) a n d  (4.11.b)), a n d  /~<�89 (see (4.6.b)). In  this case (see 
(4.11.b)), 

c-g (X) < 6 V ~  1 + II c [I 2 < 6 ] /~(1 + II C IL 2) (,.C2 q_ 1)/(3 Z 2 -- 1). 
1 - - ~  

(c) If p: = II�89 = II Cll then (26) holds if 

p < 2 - - ] / ~ 0 . 5 8 5  (see (4.6.c) a n d  (4.11.c)). 

In  this case 

/ ~ 0 . 7 0 2  a n d  c g ( X ) < 5 6 / ( 2 - l / ~ - p ) .  
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