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ON THE RELATIONSHIPS BETWEEN TYPES OF

L-CONVERGENCE SPACES

Q. JIN, L. LI AND G. MENG

Abstract. This paper focuses on the relationships between stratified L-conver-
gence spaces, stratified strong L-convergence spaces and stratified levelwise

L-convergence spaces. It has been known that: (1) a stratified L-convergence

space is precisely a left-continuous stratified levelwise L-convergence space;
and (2) a stratified strong L-convergence space is naturally a stratified L-

convergence space, but the converse is not true generally. In this paper, a

strong left-continuity condition for stratified levelwise L-convergence space is
given. It is proved that a stratified strong L-convergence space is precisely a

strongly left-continuous stratified levelwise L-convergence space. Then a suf-
ficient and necessary condition for a stratified L-convergence space to be a

stratified strong L-convergence space is presented.

1. Introduction

Stratified L-convergence spaces were first defined in [9] and then developed in
a series of papers [6, 10, 11] for the case that the lattice L is a complete Heyting
algebra (or a frame). Later, the theory of these spaces was generalized to the
lattice context of complete residuated lattices [25]. In [22], the lattice situation
was further extended to enriched cl-premonoids. Recently, under different lattice
contexts, a type of L-convergence spaces is proposed from the viewpoint of fuzzy
orders [2, 3, 12, 15, 16, 17, 18, 19, 20, 21]. It is proved that these spaces are
slightly stronger than stratified L-convergence spaces, and thus are generally called
stratified strong L-convergence spaces. In [2, 16], it is proved that a stratified L-
convergence space need not to be strong. This leads to a natural question: Does
there exist a sufficient and necessary condition that guarantees that a stratified
L-convergence space is a stratified strong L-convergence space?

In the case of L being a frame, Flores and his co-workers [6] introduced the con-
cept of stratified levelwise L-convergence space which can be regarded as an exten-
sion of the concept of probabilistic convergence space in [24]. They also proposed a
so-called left-continuity condition and proved that the left-continuous stratified lev-
elwise L-convergence spaces are precisely the stratified L-convergence spaces. This
leads to another question: Can stratified strong L-convergence spaces be char-
acterized by levelwise lattice-valued convergence spaces via some left-continuity
condition?
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This article will focus on the above two questions. The contents are arranged
as follows. Section 2 recalls some basic notions and notations used in this pa-
per. Section 3 presents the levelwise characterization for the stratified strong L-
convergence spaces via some left-continuity condition. Section 4 presents a sufficient
and necessary condition for stratified L-convergence spaces to be stratified strong
L-convergence spaces. Section 5 makes a conclusion.

2. Preliminaries

In this paper, if not otherwise specified, (L, ∗, 1) is always a complete residuated
lattice. That is, L is a complete lattice with a top element 1 and a bottom element
0; ∗ is a binary operation on L such that (i) (L, ∗, 1) is a commutative monoid; and
(ii) ∗ distributes over arbitrary joins. Since the binary operation ∗ distributes over
arbitrary joins, the mapping α∗(−) : L −→ L has a right adjoint α→ (−) : L −→ L
given by

α→ β =
∨
{γ ∈ L : α ∗ γ ≤ β}.

The binary operation→ is called the residuation with respect to ∗. We collect some
basic properties of the binary operations ∗ and →.

Proposition 2.1. [1, 7] Let (L, ∗, 1) be a complete residuated lattice. Then

(I1) 0 ∗ α = 0 and 1→ α = α;
(I2) α→ β = 1⇔ α ≤ β;
(I3) α ∗ (α→ β) ≤ β and (α→ β) ∗ (β → r) ≤ α→ r;
(I4) α→ (β → r) = (α ∗ β)→ r = β → (α→ r);
(I5) α ≤ (α→ β)→ β;
(I6) (

∨
j∈J αj)→ β =

∧
j∈J(αj → β);

(I7) α→ (
∧
j∈J βj) =

∧
j∈J(α→ βj);

(I8) α ≤ β ⇒ α→ γ ≥ β → γ and γ → α ≤ γ → β.

For a set X, the set LX of functions from X to L with the pointwise order
becomes a complete lattice. Each element of LX is called an L-subset (or a fuzzy
subset) of X. For any λ ∈ LX , K ⊆ LX and α ∈ L, we define the L-subsets
α ∗ λ, α → λ,

∨
K and

∧
K by (α ∗ λ)(x) = α∗λ(x), (α → λ)(x) = α → λ(x),

(
∨

K )(x) =
∨
µ∈K µ(x) and (

∧
K )(x) =

∧
µ∈K µ(x). Let φ be a function, we

define φ→L : LX −→ LY and φ←L : LY −→ LX [8] by φ→L (A)(y) =
∨
φ(x)=y A(x) for

A ∈ LX and y ∈ Y , and φ←L (B) = B ◦ φ for B ∈ LY .
Let X be a set. A fuzzy partial order (or, an L-partial order) ([1, 26, 27, 28, 29])

on X is a function R : X ×X −→ L such that

(1) R(a, a) = 1 for every a ∈ X (reflexivity);
(2) R(a, b) = R(b, a) = 1 implies that a = b for all a, b ∈ X (antisymmetry);
(3) R(a, b) ∗R(b, c) ≤ R(a, c) for all a, b, c ∈ X (transitivity).

The pair (X,R) is called an L-partially ordered set. An L-order-preserving function
f : (X,R) −→ (Y, S) between L-partially ordered sets is a function f : X −→ Y
such that R(a, b) ≤ S(f(a), f(b)) for all a, b ∈ X.
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Let R : LX × LX −→ L be a function defined by

R(λ, µ) =
∧
x∈X

(λ(x)→ µ(x)),

then R is an L-partial order on LX . The value R(λ, µ) ∈ L is the degree that λ is
contained in µ, so the fuzzy partially order R is called fuzzy inclusion order ([1]).
The L-partially ordered set (LX , R) is called the fuzzy powerset of X, denoted by
[LX ] for short.

Definition 2.2. (Höhle and S̆ostak [8]) A stratified L-filter on a set X is a function
F : LX −→ L such that for each λ, µ ∈ LX and each α ∈ L,

(F1) F(0) = 0, F(1) = 1; (F2) F(λ) ∧ F(µ) = F(λ ∧ µ);
(Fs) F(α ∗ λ) ≥ α ∗ F(λ).

The following examples of L-filters belong to the folklore, we list them here
because the notations are needed.

Example 2.3. (1) For each point x in a set X, it is obvious that [x] : LX −→
L, [x](λ) = λ(x) is a stratified L-filter on X, called the principal L-filter generated
by x.

(2) Let J be a non-empty set and {Fj |j ∈ J} be a family of stratified L-filters
on X, then

∧
j∈J Fj is also a stratified L-filter on X. Let F0 denote the meet of all

stratified L-filters on X, i.e., the smallest stratified L-filter on X.
(3) Let φ : X −→ Y be a function and F be a stratified L-filter on X. Then the

function φ⇒(F) : LY −→ L defined by λ 7→ F(λ ◦ φ) is a stratified L-filter on Y ,
called the image of F under φ.

The set of stratified L-filters on a set X is denoted by FsL(X). There is a natural

fuzzy partial order on FsL(X) inherited from L(LX). Precisely, if we let

[FsL(X)](F ,G) = [LL
X

](F ,G) =
∧

λ∈LX
(F(λ)→ G(λ))

for all F ,G ∈ FsL(X), then [FsL(X)] is an L-partially order. For simplicity, we use
the symbol (F ,G) to denote the value [FsL(X)](F ,G) below. We have an obvious
lemma for the L-partial order [FsL(X)].

Lemma 2.4. Let φ : X −→ Y be a function. Then ∀F ,G ∈ FsL(X), (F ,G) ≤
(φ⇒(F), φ⇒(G)).

Definition 2.5. (Flores and Mohapatra and Richardson [6] for L a frame) A col-
lection q = (qα)α∈L, where qα : FsL(X) −→ P(X), is called a stratified levelwise
L-convergence structure on X if it satisfies:

(LL1) [x]
qα→ x,F0

q0→ x for each x ∈ X,

(LL2) G ≥ F qα→ x implies G qα→ x,

(LL3) F qα→ x implies F qβ→ x whenever β ≤ α.

The notation, F qα→ x, means that x ∈ qα(F). The pair (X, q) is called a stratified
levelwise L-convergence space.
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A function φ : X −→ Y between stratified levelwise L-convergence spaces (X, q)

and (Y, q′) is said to be continuous if F qα→ x implies φ⇒(F)
q′α→ φ(x) for each

F ∈ FsL(X), α ∈ L, x ∈ X. The category of stratified levelwise L-convergence
spaces and continuous functions is denoted by L-SLC.

Definition 2.6. (Jäger [9] and Yao [25]) A stratified L-convergence structure on a
set X is a function lim : FsL(X) −→ LX satisfying

(LC1) lim[x](x) = 1 for every x ∈ X; and
(LC2) ∀F ,G ∈ FsL(X), F ≤ G =⇒ limF ≤ limG.
The pair (X, lim) is called a stratified L-convergence space.

A function φ : X −→ Y between stratified L-convergence spaces (X, lim) and
(Y, lim′) is said to be continuous if limF(x) ≤ lim′ φ⇒(F)(φ(x)) for each F ∈
FsL(X) and each x ∈ X. The category of stratified L-convergence spaces and
continuous functions is denoted by L-SC.

In [16], a notion of stratified strong L-convergence space (called stratified L-
ordered convergence space in [2]) was proposed, and it was defined as a function
lim : FsL(X) −→ LX satisfying (LC1) and

(LC2′) ∀F ,G ∈ FsL(X), (F ,G) ≤ limF → limG, or equivalent, (F ,G) ∗ limF ≤
limG. That is, lim is L-order-preserving.

The full subcategory of L-SC consisting of strong objects is denoted by L-SSC.
Except for the above three kinds of lattice-valued convergence spaces, there are

many other kinds of lattice-valued convergence spaces [4, 5, 13, 14, 23] are discussed
by many researchers.

3. A Levelwise Characterization for Stratified Strong L-convergence
Space Via Strong Left-continuity Condition

In [6], for L a frame, a stratified levelwise L-convergence space (X, q) is said to

be left-continuous if F α→ x iff there exists A ⊆ L such that ∨A = α and F qβ→ x
for each β ∈ A. The category of left-continuous stratified levelwise L-convergence
spaces is proved to be isomorphic to the category of stratified L-convergence spaces.
Observing the proof in [6], we find that its left-continuity condition does not work in
the general lattice context. But if we make a slight modification, that is, replacing
∨A = α by ∨A ≥ α, it will do. The proof is similar to that in [6], thus, it is omitted.

In this section, we shall present a strong left-continuity condition for stratified
levelwise L-convergence spaces and prove the category of strongly left-continuous
stratified levelwise L-convergence spaces is isomorphic to the category of stratified
strong L-convergence spaces.

Definition 3.1. A stratified levelwise L-convergence space (X, q) is said to be

strongly left-continuous if F qα→ x iff there exists A ⊆ L and Gβ
qβ→ x for each β ∈ A

such that
∨
β∈A(β ∗ (Gβ ,F)) ≥ α.

Remark 3.2. Note that the if part of strong left-continuity is obvious. Thus, when
examining it, we only need to check its only if part. In addition, it is easily seen
that strong left-continuity implies left-continuity.
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The full subcategory of L-SLC consisting of strongly left-continuous objects is
denoted by L-SLSLC. We prove below that L-SLSLC is isomorphic to L-SSC.

Proposition 3.3. Let (X, q) be a stratified levelwise L-convergence space. Then
the pair (X, limq) is a stratified strong L-convergence space, where

limq : FsL(X) −→ LX , limqF(x) =
∨
{α ∗ (G,F)

∣∣G qα→ x}.

Proof. (LC1): By (LL1), [x]
qα→ x for each α ∈ L, x ∈ X. Thus

limq[x](x) ≥
∨
{α
∣∣α ∈ L} = 1.

(LC2′): For each F ,G ∈ FsL(X), x ∈ X, we have

(F ,G) ∗ limqF(x) = (F ,G) ∗
∨
{α ∗ (H,F)|H qα→ x}

=
∨
{α ∗ (F ,G) ∗ (H,F)|H qα→ x}

≤
∨
{α ∗ (H,G)|H qα→ x} = limq(G)(x).

�

Remark 3.4. Taking G ≡ F , limq appeared in [6]. In this case, limq is only a
stratified L-convergence space.

Proposition 3.5. Let (X, q) and (Y, q′) be stratified levelwise L-convergence spaces.
If φ : (X, q) −→ (Y, q′) is continuous, then so is φ : (X, limq) −→ (Y, limq′).

Proof. Let F ∈ FsL(X), x ∈ X. Then

limq′φ
⇒(F)(φ(x)) =

∨
{α ∗ (H, φ⇒(F))|H q′α→ φ(x)}

≥
∨
{α ∗ (φ⇒(G), φ⇒(F))|G qα→ x}

≥
∨
{α ∗ (G,F)|G qα→ x} = limqF(x).

Where the first inequality holds for the continuity of φ and the second inequality
follows from Lemma 2.4. �

Proposition 3.6. Let (X, lim) be a stratified strong L-convergence space, then the

pair (X, qlim) is a strongly left-continuous stratified levelwise L-convergence space,
where

∀α ∈ L,F (qlim)α−→ x⇐⇒ limF(x) ≥ α.

Proof. In the case of L being a frame, for a stratified L-convergence space (X, lim),

it is proved in [6] that (X, qlim) is a stratified levelwise L-convergence space. So, it

suffices to prove the strong left-continuity of qlim.

Assume that there exists A ⊆ L and Gβ
(qlim)β−→ x for each β ∈ A such that∨

β∈A(β ∗ (Gβ ,F)) ≥ α. Then by Gβ
(qlim)β−→ x ⇐⇒ limGβ(x) ≥ β and (LC2′) we

have
limF(x) ≥ limGβ(x) ∗ (Gβ ,F),∀β ∈ A.
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So,

limF(x) ≥
∨
β∈A

(limGβ(x) ∗ (Gβ ,F)) ≥
∨
β∈A

(β ∗ (Gβ ,F)) ≥ α.

This means F (qlim)α−→ x as desired. �

Proposition 3.7. Let (X, lim) and (Y, lim′) be stratified strong L-convergence

spaces. If φ : (X, lim) −→ (Y, lim′) is continuous, then so is φ : (X, qlim) −→
(Y, qlim

′
).

Proof. Suppose that F (qlim)α−→ x, i.e., limF(x) ≥ α. By the continuity of φ, we get

lim′ φ⇒(F)(φ(x)) ≥ limF(x) ≥ α. So, φ⇒(F)
(qlim

′
)α−→ φ(x). �

We define

 Ψ : L-SLSLC −→ L-SSC,
Ψ(φ) = φ,
Ψ(X, q) = (X, limq).

 ∆ : L-SSC −→ L-SLSLC,
∆(φ) = φ,
∆(X, lim) = (X, qlim).

Then Ψ and ∆ are all concrete functors. The following theorem shows that ∆ is
an isomorphism, i.e., L-SLSLC is isomorphic to L-SSC.

Theorem 3.8. Ψ ◦∆ =idL-SSC, ∆ ◦Ψ =idL-SLSLC.

Proof. (1) For (X, lim) ∈L-SSC, we check that Ψ ◦∆(lim) = lim.

Indeed, ∀F ∈ FsL(X), ∀x ∈ X.

lim
qlim
F(x) =

∨
{α ∗ (G,F)|G (qlim)α−→ x} ≥

∨
{α ∗ (F ,F)|F (qlim)α−→ x}

=
∨
{α| limF(x) ≥ α} = limF(x)

Conversely, let

lim
qlim
F(x) =

∨
{α ∗ (G,F)|G (qlim)α−→ x} = β.

By the strong left-continuity of qlim, we have F (qlim)β−→ x, i.e., limF(x) ≥ β =
lim

qlim
F(x). Thus limF(x) = lim

qlim
F(x) as desired.

(2) For (X, q) ∈L-SLSLC, we check that ∆ ◦Ψ(q) = q.

In fact,

F (qlimq )α−→ x⇐⇒ limqF(x) =
∨
{β ∗ (G,F)|G qβ→ x} ≥ α⇐⇒ F qα→ x.

Where the second equivalence holds by the strong left-continuity of (X, q). �

Theorem 3.9. L-SLSLC (and thus L-SSC) is reflective in L-SLC.

Proof. Given (X, q) ∈L-SLC, define (X,Lq) as follows: F (Lq)α−→ x iff there exists

A ⊆ L and Gβ
qβ→ x for each β ∈ A such that

∨
β∈A(β∗(Gβ ,F)) ≥ α. It is not difficult

to check that (X,Lq)∈ L-SLC. Next, we prove that it is strongly left-continuous.
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Suppose that there exists A ⊆ L and Gβ
(Lq)β−→ x for each β ∈ A such that∨

β∈A(β ∗ (Gβ ,F)) ≥ α. We fix β ∈ A. Because Gβ
(Lq)β→ x, then there exists

Aβ ⊆ L and Hγ
qγ→ x for each γ ∈ Aβ such that

∨
γ∈Aβ (γ ∗ (Hγ ,Gβ)) ≥ β. Denoting

B =
⋃
{Aβ |β ∈ A}, then∨

γ∈B

(
γ ∗ (Hγ ,F)

)
=

∨
β∈A

∨
γ∈Aβ

(
γ ∗ (Hγ ,F)

)
≥

∨
β∈A

∨
γ∈Aβ

(
γ ∗ (Hγ ,Gβ) ∗ (Gβ ,F)

)
=

∨
β∈A

(
(Gβ ,F) ∗ (

∨
γ∈Aβ

(γ ∗ (Hγ ,Gβ)))
)

≥
∨
β∈A

(
β ∗ (Gβ ,F)

)
≥ α.

Thus F (Lq)α−→ x as desired.

We check below that idX : (X, q) −→ (X,Lq) is the L-SLSLC-reflection.

Since F qβ→ x implies F (Lq)β→ x, thus idX is obvious continuous. Assume that
(Y, p) ∈ L-SLSLC, and φ : (X, q) −→ (Y, p) is continuous. Next, we check that

φ : (X,Lq) −→ (Y, p) is also continuous. Let F (Lq)α→ x. There exists A ⊆ L and

Gβ
qβ→ x for each β ∈ A such that

∨
β∈A(β ∗ (Gβ ,F)) ≥ α. Because φ : (X, q) −→

(Y, p) is continuous, thus ∀β ∈ A, φ⇒(Gβ)
pβ→ φ(x). So, by Lemma 2.4∨

β∈A

(
β ∗ (φ⇒(Gβ), φ⇒(F))

)
≥
∨
β∈A

(
β ∗ (Gβ ,F)

)
≥ α.

Therefore, φ⇒(F)
pα→ x by the strong left-continuity of (Y, p). �

4. A Sufficient and Necessary Condition Such That Stratified
L-convergence Spaces to be Stratified Strong L-convergence Spaces

It is known that a stratified L-convergence structure needs not to be strong
[2, 16]. In the following, we shall give a sufficient and necessary condition such that
stratified L-convergence spaces to be strong. Our idea comes from the following
equivalence [28]: A function f : LX −→ LY is L-order-preserving iff

(1) f is order-preserving function, i.e., λ ≤ µ=⇒f(λ) ≤ f(µ);
(2) For each α ∈ L, λ ∈ LX , f(α ∗ λ) ≥ α ∗ f(λ).
The axiom (LC2′) means that lim is L-order-preserving. Analogizing the above

equivalence, it seems (LC2′) can be split into (LC2) and the following condition:
For each α ∈ L,F ∈ FsL(X), lim(α ∗ F) ≥ α ∗ limF .

Unfortunately, α ∗ F is not a stratified L-filter in general. We use

[α ∗ F ] =
∧
{G ∈ FsL(X)|G ≥ α ∗ F} =

∧
{G ∈ FsL(X)|α ≤ (F ,G)}



100 Q. Jin, L. Li and G. Meng

to replace it. Note that the set {G ∈ FsL(X)|G ≥ α ∗ F} is not empty since
F ≥ α ∗ F . Intuitively, [α ∗ F ] is the coarsest stratified L-filter finer than the
function λ 7→ α ∗ F(λ). In this way, we obtain the condition

(LC2′′) For all α ∈ L,F ∈ FsL(X), lim[α ∗ F ] ≥ α ∗ limF .

Theorem 4.1. Let (X, lim) be a stratified L-convergence space, then

(LC2′)⇐⇒ (LC2) + (LC2′′).

Proof. (LC2′)=⇒(LC2′′). For each α ∈ L,F ∈ FsL(X), by α ∗ F ≤ [α ∗ F ] we
have (F , [α ∗ F ]) ≥ α. So by (LC2′)

α ∗ limF ≤ (F , [α ∗ F ]) ∗ limF ≤ lim[α ∗ F ].

Conversely, ∀F ,G ∈ FsL(X), let α = (F ,G). Then α ∗ F ≤ G. Thus by (LC2) and
(LC2′′)

(F ,G) ∗ limF = α ∗ limF ≤ lim[α ∗ F ] ≤ limG. �

Note that for L = {0, 1}, the axiom (LC2′′) simply states that

lim[0 ∗ F ] ≥ 0 ∗ limF = 0, limF ≥ limF .
Therefore, in this case, we have the equivalence (LC2)⇐⇒(LC2′).

The next two examples show that this equivalence is not always true for L 6=
{0, 1}.

Example 4.2. [2, 17] Let L be the linearly ordered frame ({0, a, 1},∧, 1) with
0 < a < 1. Assume X = {x, y}.

For each F ∈ FsL(X) and z ∈ X, let limF(z) =

{
1, F ≥ [z];
0, others.

. Then (X, lim)

satisfies the axiom (LC2). Let Fx(λ) =


1, λ = 1X ;
a, λ(x) = 1, λ(y) 6= 1;
a, λ(x) = a;
0, λ(x) = 0.

,∀λ ∈ LX .

Then Fx is a stratified L-filter on X. It is easily seen that Fx = [a ∧ [x]] and
[x] 6≤ Fx. So,

a ∧ lim[x](x) = a 6≤ 0 = lim[a ∧ [x]](x).

That means (X, lim) does not satisfy (LC2′′).

Example 4.3. Let L, X and Fz be defined as the above example. For each
F ∈ FsL(X) and z ∈ X, let

limF(z) =

{
1, F = Fz or F = [z];
0, others.

When α = 0, 1, the axiom (LC2′′) holds obviously. For α = a, it suffices to consider
the case of F = Fz, [z]. It is easily seen that [a ∧ [z]] = [a ∧ Fz] = Fz. So,

lim[a ∧ F ](z) = 1 ≥ a = a ∧ limF(z).

This means that lim satisfies the axioms (LC2′′). Let

F1(λ) =

{
0, λ(x) = 0;
1, others.

,∀λ ∈ LX .
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Then F1 a stratified L-filter and F1 ≥ Fx. However, limF1(x) = 0 < 1 = limFx(x).
That means lim does not satisfy the axiom (LC2).

In [2], for L being a frame, it is proved that L-SSC is a reflective subcategory
of L-SC. Indeed, we observe easily that this result also holds in the general lattice
context.

Let Elim(X) be the set of all stratified strong L-convergence structures on X. For
lim, lim′ ∈ Elim(X), we define lim ≤ lim′ iff ∀F ∈ FsL(X), limF ≤ lim′ F . Then
it is easily seen that for each non-void subset {limi |i ∈ I} of Elim(X), we have∧
i∈I limi ∈ Elim(X). The least element of (Elim(X),≤) is defined as limF(x) =

([x],F), and the largest element of (Elim(X),≤) is defined as limF(x) ≡ 1. Thus
(Elim(X),≤) forms a complete lattice.

For each (X, lim) ∈ L-SC, the L-SSC-reflection [2] is given by idX : (X, lim) −→
(X, lim∗), where lim∗ =

∧
{lim′ ∈ Elim(X)|lim′ ≥ lim}. The following proposition

shows that lim∗ can be constructed by lim itself.

Proposition 4.4. Let (X, lim) be a stratified L-convergence space. Then the func-
tion lim : FsL(X) −→ LX defined by

limF =
∨

G∈FsL(X)

((G,F) ∗ limG)

is the least stratified strong L-convergence structure on X larger than or equal to
lim. So, lim∗ = lim.

Proof. (LC1) For each x ∈ X, lim[x](x) ≥ lim[x](x) ∗ ([x], [x]) = 1.
(LC2′) For all F ,G ∈ FsL(X),

limF ∗ (F ,G) =
∨

H∈FsL(X)

(limH ∗ (H,F) ∗ (F ,G))

≤
∨

H∈FsL(X)

(limH ∗ (H,G)) = limG.

That lim ≥ lim is obvious. For all lim′ ∈ Elim(X) with lim′ ≥ lim, we have

limF =
∨

H∈FsL(X)

(limH ∗ (H,F)) ≤
∨

H∈FsL(X)

(lim′H ∗ (H,F))
(LC2′)

≤ lim′F . �

In the proof of lim ∈ L-SSC, (LC2) is not used. Thus one can construct a
stratified strong L-convergence structure from a function lim only with (LC1).

5. Conclusions

This paper focuses on the relationships between three types of L-convergence
spaces: stratified L-convergence spaces, stratified strong L-convergence spaces and
stratified levelwise L-convergence spaces. The main results are summarized as the
following two: (1) a levelwise characterization for stratified strong L-convergence
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spaces via strong left-continuity condition is obtained; (2) a sufficient and nec-
essary condition such that a stratified L-convergence space is a stratified strong
L-convergence space is obtained.
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[8] U. Höhle and A. S̆ostak, Axiomatic foundations of fixed-basis fuzzy topology, In: U. Höhle,
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