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ABSTRACT: There has been a recent revival of interest in how genetic
interactions evolve, spurred on by an increase in our knowledge of
genetic interactions at the molecular level. Empirical work on genetic
networks has revealed a surprising amount of robustness to pertur-
bations, suggesting that robustness is an evolved feature of genetic
networks. Here, we derive a general model for the evolution of can-
alization that can incorporate any form of perturbation. We establish
an upper bound to the strength of selection on canalization that is
approximately equal to the fitness load in the system. This method
makes it possible to compare different forms of perturbation, in-
cluding genetic, developmental, and environmental effects. In gen-
eral, load that arises from mutational processes is low because the
mutation rate is itself low. Mutation load can create selection for
canalization in a small network that can be achieved through dom-
inance evolution or gene duplication, and in each case selection for
canalization is weak at best. In larger genetic networks, selection on
genetic canalization can be reasonably strong because larger networks
have higher mutational load. Because load induced through migra-
tion, segregation, developmental noise, and environmental vari-
ance is not mutation limited, each can cause strong selection for
canalization.

Keywords: fitness load, genetic network, robustness, redundancy,
dominance, population genetics.

One of the central themes of organismal biology is the
functional integration of the organism as a whole. Changes
in one part or system of an organism are likely to have
effects that cascade through other systems and affect or-
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ganismal functions at a variety of levels. On the one hand,
these interconnections make the organism susceptible to
perturbations from the environment or genetic changes,
as perturbations are less likely to be localized, while on
the other hand, regulatory interactions among different
elements potentially allow the organism to lessen the im-
pact of these perturbations through buffering, feedback,
and compensation. When the output of a biological system
is buffered against some form of perturbation, be it en-
vironmental or genetic, the system is said to be canalized
(Waddington 1942).

The theme of regulatory interactions within develop-
mental, physiological, and neurological systems has a long
history within biology. More recently, interactions at the
level of genetic regulation have been described in terms
of genetic networks, potentially linking together thousands
of elements across the genome (Furlong et al. 2001; Lee
et al. 2002). These networks can be discovered by methods
that reveal regulatory interactions (von Dassow et al. 2000;
Ideker et al. 2001), physical interactions (Uetz et al. 2000),
or biochemical/physiological interactions (Fell 1997). The
ability to describe regulatory systems directly at the genetic
level makes it possible to begin addressing some long-
standing hypotheses regarding the functional role and
long-term evolution of these systems (Waddington 1942;
Schmalhausen 1949; Lerner 1954).

One of the fundamental questions regarding the evo-
lution of genetic networks is how the structure of the
network itself evolves. The most probable explanation is
that network structure is determined by selection acting
directly on the components (the marginal effects) of the
individual network elements. Direct selection on the func-
tion of the network may also produce canalization as a
by-product if networks that have stable attractors also
show less sensitivity to allelic (parameter) changes (Siegal
and Bergman 2002). It is possible, however, that network
structure has no direct adaptive significance, with con-
nections between genes being added and lost in a neutral,
semistochastic fashion (Wagner and Fell 2001; Wagner
2003). A final possibility, and one that is the most im-
portant from a regulatory point of view, is that the network
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structure evolves to make the system as a whole more
robust to perturbations exerted at particular nodes within
the network; in other words, the system becomes canalized.
This is a semantically charged area, and much effort has
been spent on defining just what it means to become can-
alized (Wagner and Altenberg 1996; Gibson and Wagner
2000; Debat and David 2001; see table 1 for a list of def-
initions). However, from the most basic genetic perspec-
tive, perturbations create differences in fitness among in-
dividuals on which selection can then act. In some cases,
individuals may do best by maintaining constant, robust
phenotypic output of a network regardless of the pertur-
bation (i.e., canalization), while in others it may be best
to alter the output of the network (e.g., phenotypic plas-
ticity). Thus, robustness to perturbations can be thought
of as a result of canalization. Put more generally, pertur-
bations create a kind of fitness load that produces the
variation necessary for selection to operate on stabilizing
the phenotype (Fisher 1958; Price 1970).

Theoretical work on the evolution of canalization has
proceeded through the development of models that focus
on specific genetic interactions or sources of perturbation
(Gavrilets and Hastings 1994; Wagner 1996; Wagner et al.
1997; Eshel and Matessi 1998; Rice 1998; Kawecki 2000;
Wagner and Mezey 2000; Hermisson et al. 2003). This
approach has yet to yield a unified understanding of how
canalization evolves. Our goal here is to develop a frame-
work that can be used to study how canalization evolves
in response to a variety of perturbations. Through this
framework, several other phenomena can be seen to evolve
via the same mechanisms that promote canalization.

In general, it is extremely difficult to determine the exact
form that selection will take on an arbitrary genetic net-
work. Indeed, even finding exact solutions involving as
few as two loci can be quite difficult (Karlin and Feldman
1970; Nagylaki 1977). Instead, we take a general approach
that seeks to find the upper bound on the strength of
selection for robustness or canalization. If canalization is

Table 1: Definitions

unlikely to evolve even when selection is at its strongest,
then there is little point in spending time on more exact
solutions. This approach also allows a wide variety of dif-
ferent sources of variation to be treated within the same
general framework. Previous treatments of the evolution
of canalization have generally taken the perturbations to
the regulatory system to be external (through environ-
mental variation) or internal (through mutation). Here,
we take a general approach in which any source of vari-
ation within a population can serve to generate genetic
load that can be subject to selection. To do this, we con-
sider canalizing agents that recover some of the fitness lost
by the perturbation without explicitly looking at the in-
termediate level of the phenotype. We show that in general
the maximum strength of selection for canalization is a
simple function of the fitness load generated by the per-
turbation regardless of the source of the perturbation (see
Hermisson et al. 2002 for an alternative treatment focused
on genetic load). When the fitness load is small, then the
maximum strength of selection for canalization is ap-
proximately the load minus the per-gene mutation rate.
This simple result allows us to consider a large set of
problems under the same formalism. Thus, dominance
evolution, gene duplication, and the evolution of robust-
ness in genetic networks are all seen as canalizing effects
that evolve because of the fitness load induced by muta-
tion, segregation, migration, environmental variance, and
developmental perturbations.

The Maximum Rate of Spread of a Canalizing Gene

Questions regarding the evolution of robustness or can-
alization can be recast as asking how novel mutations that
inhibit the loss of fitness due to perturbations evolve. The
source of the perturbation may be changes in the genetic
background, changes in the environment, or changes in
physiological status. A newly arisen canalizing gene will
experience a variety of background conditions because of

Term

Definition

Canalization
Canalization: genetic

Canalization reduces the phenotypic response to perturbations.
A genetic element contributes to genetic canalization if it causes a reduction in

phenotypic variance when expressed in a distribution of genetic backgrounds. This
must be measured relative to the phenotypic variance caused by a reference genetic
element expressed in the same distribution of genetic backgrounds.

Canalization: environmental

A genotype contributes to environmental canalization if it produces less phenotypic

variance when exposed to a distribution of environmental states relative to a

reference genotype.
Robustness
Phenotypic plasticity

conditions.

Maintenance of overall function that minimizes fitness loss in the face of perturbations.
A change in phenotype for a fixed genotype in response to a change in environmental




genetic processes such as segregation and recombination
and ecological processes that cause parents and offspring
to experience different environmental conditions. The
novel canalizing gene will spread if it is able to associate
with backgrounds that allow it to have higher fitness than
the rest of the population. This simple explanation high-
lights many of the results we discuss later; if a canalizing
gene rarely experiences the backgrounds that it is beneficial
in, then selection will only act weakly to spread the can-
alizing gene.

When discussing the evolution of canalization or the
evolution of genetic interactions in general, it is important
to realize that epistatic effects must be defined relative to
a reference genotype (Hansen and Wagner 2001). This is
particularly evident when discussing canalization because
we are interested in changes in the genetic system that
lead to a reduction in phenotypic variance as a response
to perturbations. This could be accomplished by an allelic
mutation at an existing locus, the duplication of an existing
locus, the creation of a new modifier locus, or even the
wholesale restructuring of the genome. For example, the
modification of linkage relationships between existing al-
leles is a genetic change that can affect robustness without
introducing a new gene in any traditional sense. Still, in-
dividuals with the new linkage arrangement have a novel
genetic element (the linkage group) and can respond to
natural selection for canalization. We will refer to these
canalizing elements as elements, genes, or alleles to fit the
context of each particular example.

We define the fitness of a novel canalizing element in
background i as

W, = p,+ 10— p)w, 0]

where 0 < p; <1 is the degree of robustness conferred in
background i and w; <1 is the relative fitness of back-
ground 7 as compared to a reference state with relative
fitness 1. Again, the background state refers to the whole
set of features that define an individual, including the ge-
netic state at other loci, the environment the individual
experiences, and any other relevant genomic features. The
variable p expresses the degree of robustness that the can-
alizing element confers in background i. When p = 1 the
deleterious effects of the background are completely
masked by the canalizing element, yielding a phenotype
that is identical to the reference state. As p declines, the
masking effect of the canalizing element is reduced, and
the expressed phenotype is more similar to the background
phenotype.

To determine the spread of a canalizing element we need
to follow changes in the background that the element is
found in as well as changes in the allelic state of the can-
alizing gene. To simplify the situation we assume that there
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is unidirectional mutation from the “best” canalizing allele
to other alleles and that the other alleles of the canalizing
gene have reduced or equal robustness in all backgrounds.
While canalizing genes must arise through mutational pro-
cesses, our assumption of unidirectional mutation is jus-
tified if mutation creates functional canalizing genes much
less often than mutation inactivates them. Under these
assumptions the invasion of a canalizing element depends
only on the spread of the best canalizing allele, so we
restrict our consideration to only this best canalizing allele
for the rest of the article.

Transitions between different background states may be
due to the genetic features of the system or to imposed
environmental or spatial variation. For instance, segre-
gation and recombination can shift the genetic background
of the canalizing gene, and the amount of linkage between
all of the interacting genes will determine the probability
distribution of these transitions. The environmental back-
ground can also change, but these changes will be due to
less predictable mechanisms such as changes in the weather
or movement between different habitats. As long as
changes in the environmental background follow a Mar-
kov process, we can then define the fixed probabilities
that cause a novel canalizing element to move between
backgrounds.

To calculate the opportunity for canalization we need
to determine the spread of a novel canalizing element. The
analysis is based on assumptions that are commonly used
in several approaches to evolutionary theory, including
genetic invasion analysis (Feldman and Karlin 1971), evo-
lutionarily stable strategy (ESS) analysis (Shaw and Mohler
1953; Maynard Smith 1982), and adaptive dynamics (Metz
et al. 1992; Dieckmann and Law 1996). We assume that
before the novel genetic element appears, the resident pop-
ulation achieves a stable stationary distribution of states,
which will in turn produce the genetic and environmental
background. For particular examples that we discuss, the
resident dynamics are explicitly defined and the stable
states determined. We then follow the spread of a rare
novel element that must interact with the set of back-
grounds produced by the resident dynamics. We do this
by assuming that the frequency of the class of individuals
carrying the novel element is small, on the order of a term
€. While this condition of rarity holds, interactions be-
tween individuals carrying the novel element will typically
be on the order of €*, which we ignore. Because of these
assumptions, the spread of the novel element can be ex-
pressed using a linear matrix equation that depends on
the steady state of the resident population.

We assume that a single, well-mixed population consists
of individuals that can be indexed by their background
state, i. When a novel genetic element appears in this
population, either as an allelic variant at a preexisting locus
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or as a new gene, the number of individuals carrying the
novel allele can be described by the recursion

v(t+ 1) = %Zv,.(t)wn, o)

)

where v(t) is the number of individuals in background i
carrying the novel allele at time #, p. is the deleterious
mutation rate of the novel allele, w is the mean fitness in
the population before the novel element is introduced,
T, is the probability that an individual offspring produced
by a background j individual will end up in background
i as an adult, and W, is the fitness of individuals carrying
the novel allele in background j. For the rest of the article
we will suppress the . Note that to reduce the number of
subscripts we have defined the fitness of individuals in
background i without the novel allele as w; while the fitness
of individuals with the novel allele is denoted as W, The
matrix T represents the probability that a novel allele from
a state i individual will end up in a state j individual
following reproduction. This matrix does not take selec-
tion into account but includes effects from the mating
system, segregation, recombination, and environmental ef-
fects. The T matrix also is affected by the equilibrium
frequencies of resident individuals with each background.

We can convert equation (2) into the matrix equation
v(t+ 1) = v(t)R by defining the matrix

1_
R=—_p'C
w

FT, (3)

where F is a matrix with the fitness values W, along the
diagonal and 0 elsewhere. Using the eigenvalue equation
Av* = v'R, we can sum over the states to get

1—pu,
AZi = R W, @
i i

The summations on the right-hand side can be rearranged
and simplified by noting that ¥, T;; = 1 for every j. This
is because the T matrix represents the distribution of oft-
spring among the possible states, and each offspring must
end up in some state. Defining q; = v;/(2,v;) and W =
2, q;W, gives

L T 5)

w
The term W represents the realized average fitness of the
novel element, given the distribution it achieves while it
is spreading (i.e., along the eigenvector). Thus, equation
(5) shows that the average fitness of the canalizing element
determines whether the novel element will spread. This

average fitness value will typically be weighted toward
states that are more common in the original population
as well as states that have higher fitness with the novel
allele. This means that canalization of rare states will con-
tribute less to selection on canalization than canalization
of common states.

While it can be quite difficult to solve for the spread of
the canalizing gene in general (because the distribution of
background states is usually unknown), we can find it for
some special cases and also find the upper bound on se-
lection for canalization. When the level of robustness is
the same for all states (i.e., p; = p), then equation (5)
simplifies to

1_
)\= _l"’c
w

where w = 2,q;w;. The best-case scenario for the spread
of a canalizing gene occurs when the gene confers perfect
robustness and p; = 1, so that an upper bound on the
strength of selection for canalization, defined as s, =
N — 1, is given by

1_
sa<—Fe— 1 @)
w

This result is quite intuitive; selection goes up as w goes
down because there is more fitness load for a canalizing
gene to repair. However, mutation at the canalizing locus
itself imposes a direct cost. This mutation cost is typically
left out of ESS analyses because it is usually thought to be
on a smaller order of magnitude than selection on typical
adaptations. In this analysis, as we will show, it cannot be
ignored because it is often on the same order of magnitude
as selection for canalization. Note that the selection co-
efficient, s, is typically written with only positive terms,
but we have included the force of mutation in s.

It is informative to express this in terms of the fitness
load in the system. There have been many different for-
malizations of the genetic load, but here we refer to the
fitness load as an umbrella term for the reduction in fitness
due to any sort of perturbation. The standard definition
of genetic load is

L=——, )

where w is the fitness of a “reference type” and w is the
mean fitness in the population (Crow 1958). Traditionally,
the reference type is taken to be the genotype with the
highest fitness, or the genotype with no mutations. Here,
we extend this notion by defining the fitness load with



respect to the reference background with the highest ab-
solute fitness and set the reference relative fitness to 1. In
this view, the fitness load could be due to mutation, to
segregation, to recombination, to migration, or entirely to
environmental fluctuations. When both the load and the
mutation rate are small and of similar magnitudes, then

Sc § L - I’l’c‘ (9)

This provides a simple upper bound on the strength of
selection for canalization as the load in the system minus
the mutation rate of the canalization gene. Thus, if the
load is on the order of the per-gene mutation rate, then
there is no selection for canalization at all. Under all cir-
cumstances, selection for canalization cannot be greater
than the load in the system.

Equation (9) establishes an upper bound to the strength
of selection on a canalizing element. This makes some
intuitive sense because a purely canalizing element can
only be subject to selection when it “fixes” something that
is “broken,” as reflected in the load of the system in the
absence of the canalizing element. This result immediately
allows us to compare the load produced by different
sources of variance to understand why the strength of
selection on canalization differs in those systems. This is
only a gross measure because the realized strength of se-
lection on canalization will also depend on the amount of
robustness that is feasible (limitations on p;) and the way
that the canalizing element is shuffled among backgrounds
(realizations of g;). The feasibility of canalization is de-
pendent on the biological details of the system; there are
certainly limits to the ability of single genetic changes to
mask variability. The changing associations of the back-
ground will be determined by the preexisting genetic struc-
ture of the organism and the structure of environmental
changes. These effects can limit selection on the canalizing
element if they prevent it from becoming associated with
the backgrounds that it canalizes best.

Genetic load has played an important role in population
genetics and has been extensively studied and reviewed
(Crow 1970). In many cases, we can make use of this
extensive literature to determine the upper bound on se-
lection for canalization. In other cases we must develop
estimates of the maximum fitness load in order to establish
an upper bound selection for canalization.

The Opportunity for Canalization in Gene Networks

In the previous section we showed that the maximum
strength of selection for canalization is a simple function
of the fitness load irrespective of the source of the variance.
All genes are subject to mutation, and mutational load has
played an important part in many facets of evolutionary
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thinking (Haldane 1937; Kondrashov 1984; Crow 1993;
Cherry 2002). The amount of load that mutation generates
is known to depend on many factors, including the num-
ber of genes, the mutation rate, the form of epistasis, the
mating system, and population structure (Haldane 1937;
Crow 1970, 1993; Kondrashov 1984; Charlesworth et al.
1990; Burger 2000; Whitlock 2002). In this section we
consider the amount of load that is generated by genetic
networks of different complexities and consider how novel
genetic elements that contribute to genetic robustness
might spread.

We define a genetic network as a group of loci that
interact to produce a phenotype that relates to fitness.
These loci can interact in any number of ways, such as
through transcription regulation, by producing proteins
that interact, or by producing morphological traits that
exhibit fitness trade-offs. Robustness can evolve through
the allelic modification of a locus or through the addition
of a novel locus that mediates the interactions. Novel net-
works can even be created from groups of noninteracting
loci when a gene that interacts with preexisting genes
arises. In this case, the canalizing element actually creates
the network.

In order to understand the opportunity for canalization
of the mutational load in genetic networks, we need to
know how the topology of genetic networks generates the
genetic load. Rather than focusing on the mechanistic dy-
namics of genetic networks and the resulting epistatic in-
teractions, we focus directly on the genetic load that can
be generated by such networks. By determining the cir-
cumstances that make canalization a feasible explanation
for genetic network evolution, we can focus our modeling
efforts on problems that are likely to play a role in the
evolution of real biological systems. To do this, we consider
the epistatic relationships that provide the least and
greatest amounts of load.

Evolution of Two-Gene Networks through Canalization

The simplest genetic network consists of a single haploid
gene. In this scenario there is no epistasis or dominance
to complicate the issue, so canalization can only evolve
through the addition of a novel genetic element that masks
the effect of mutations at the primary locus. One possible
mechanism for canalization in this system is the dupli-
cation of the original gene. If a single wild-type copy of
the gene is sufficient to produce the wild-type fitness, then
the gene duplicate is said to be redundant, and the novel
network exhibits epistasis. This two-gene network exhibits
epistasis and shows a reduction in the variability of fitness
to perturbation at either locus and is thus canalized (Wag-
ner and Altenberg 1996).

Mutation-selection balance at a single haploid locus is
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well known to generate a mutational load of u, the rate
of mutation from the wild-type allele to a deleterious state
(Crow 1993; Burger 2000). This result is robust to changes
in the number of deleterious alleles and the fitness map
(Burger 2000). Direct application of equation (9) shows
that

S S BT pas (10)
where p, is the mutation rate at the duplicated locus. In
the case of a gene duplication, it is unlikely that the mu-
tation rate will go down, and the most likely situation is
that p = pgy. Thus, redundancy can only evolve through
selection if it is accompanied by a reduction in the mu-
tation rate. In that case, we could see the performance of
a function shift from one gene to another with a lower
mutation rate, but even in this scenario long-term stability
of the canalized system is unlikely, as the gene with the
higher mutation rate will eventually go extinct (Nowak et
al. 1997; Phillips and Johnson 1998).

This simple analysis of the transition from a one-gene
into a two-gene network highlights the forces that operate
on network evolution in general. Any factor that increases
the size of the mutational target experiences a direct cost
and thus must be balanced by an increase in the mean
fitness of individuals carrying the novel genetic element
if it is to spread.

Canalization through Dominance Evolution

The mutational load generated by a single haploid gene is
not large enough to create selection for canalization
through gene duplication because the direct cost of mu-
tation is on the same order as the benefit of reducing the
load. However, a single diploid locus can create a muta-
tional load of up to twice the mutation rate (Crow and
Kimura 1970). This provides an opportunity for selection
on a gene that can modify the interaction between alleles
at the original locus, leading to the evolution of dominance
of the wild-type allele (Fisher 1928). This system was ex-
tensively studied throughout the twentieth century, with
the general conclusion that direct selection for dominance
modification is weak and other forces will play a larger
role (given that the population is at mutation-selection
balance; Fisher 1928; Wright 1929, 1934; Haldane 1930;
Waddington 1942; Feldman and Karlin 1971; Keightley
1996; Bourguet 1999; Hurst and Randerson 2000; Ombholt
et al. 2000; Otto and Yong 2002). Dominance evolution
can be viewed as canalization by noting that the gene that
confers dominance at the original locus reduces the change
in fitness in response to genetic variance.

We can use our framework to show that the maximum
strength of selection on dominance via genetic canalization

is limited by the mutation rate in equilibrium populations.
Depending on the degree of dominance, the mutation load
at a diploid locus can range from p to 2u (where u is the
per-allele mutation rate). This gives the maximum op-
portunity for canalization through dominance modifica-
tion as

S S 20~ Ba (11)
where p is the mutation rate at the major locus and p, is
the mutation rate at the locus controlling dominance (this
is equivalent to the result found by Wright 1934; see the
appendix in the online edition of the American Naturalist
for a full derivation). This means that when mutation acts
equally on the major locus and the modifier, then the
strength of selection is about half of the load.

A single diploid locus is, in effect, a genetic network
with two sites. When the potential canalizing element can
only effect the load generated by a single locus, then the
direct cost of mutation is expected to be similar to the
maximum benefit of reducing the load. A single diploid
locus can generate more load, and therefore selection for
canalization can be larger than the direct cost of mutation
on the novel gene, but even in the best-case scenario it is
only expected to be equal to the per-gene mutation rate.

Canalization of the Mutation Load in
Larger Genetic Networks

So far we have examined canalization of the mutational
load generated by a single locus and canalized either
through the creation of a genetic network or through mod-
ification of the existing dominance interactions. The mu-
tation load generated by systems with only a few genes
cannot be very large, and so the strength of selection on
canalization is small or nonexistent. Larger networks can
produce larger load because of the larger total number of
mutational targets (de Visser et al. 2003) and because of
epistatic interactions among loci. In order to understand
how the total strength of canalizing selection depends on
genetic network structure, we consider three extremes of
network structure: nonepistatic networks, redundant net-
works, and fragile networks (fig. 1).

Mutation Load in Nonepistatic Networks. Consider a hap-
loid genetic network that contains # genes that do not
have epistatic interactions. If the mutation rates at all loci
are the same, then load is givenby L = 1 — (1 — p)" under
very general conditions (Crow 1993; Burger 2000). The
maximum strength of selection on a canalizing element
will thus be
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Figure 1: Possible structures of two-locus genetic networks. In a redun-
dant network, a product is independently produced by two separate loci.
As long as one gene functions, the product is produced, and no loss of
fitness occurs. In a nonepistatic network, each gene produces a separate
product. Fitness is reduced by a selection factor for each gene that does
not function. In a fragile pathway, the product of one gene is acted on
by the other gene. If either gene fails to function, no product will be
produced, and a fitness cost is incurred.
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We can use some approximations to develop a sense for
how the strength of selection depends on u and n. We can
approximate equation (12) under the assumption that
both p and p_ are small and of the same magnitude to get

S S MR pe (13)
Just as in the single-gene duplication case, there is a direct
cost of mutation that the canalizing element must over-
come, represented by the term involving p.. Selection for
canalization increases with # just as the mutation load
does. Equation (13) indicates that selection for genetic
canalization will only be on the order of the mutation rate
but will increase with the number of genes in the network.
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To achieve a selection coefficient of 107°, approximately
100 genes are required when the mutation rate is 107,
while only 10 genes are required to generate a selection
coefficient of 107 (fig. 2). Thus, for nonepistatically in-
teracting genetic networks and reasonable values for the
per-gene mutation rate, genetic robustness is only likely
to evolve when either the network affected is large or
population size is large.

Mutation Load in Redundant Networks. An extreme case
of negative epistasis is exemplified by synthetic lethal, or
synthetic deleterious, phenotypes (Phillips and Johnson
1998). A synthetic lethal phenotype is said to occur when
mutant alleles at several loci are required to produce a
lethal phenotype but each mutant allele in a wild-type
background has the wild-type fitness. In our genetic net-
work context, this means that the network performs its
function perfectly if there is a wild-type allele at one or
more loci but fails to function if no wild-type alleles are
present. We assume that if the network under consider-
ation fails to operate, then organismal fitness is reduced
by s. We show in the appendix (“Mutation Load in Genetic
Networks”) that the maximum load for this system is

L = poin (14)
where p,;, is the minimum mutation rate at any locus in
the network. Note that load does not depend on the cost
per mutation, s. This represents a lower bound to the
mutational load of a network where the load has basically
been collapsed onto a single locus, which is able to keep
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0.004 Fragile Pathway
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Strength of Selection

Redundant Network

-0.001 T
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Number of Genes

Figure 2: Selection for the case of no epistasis calculated from equation
(12), for the redundant network from equation (15), and for the fragile
pathway from equation (17). The mutation rate is set at 10~°. The fragile
pathway generates the most load and so produces the greatest strength
of selection on canalization.
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the network functioning regardless of the mutations that
have accumulated at the other loci. The maximum strength
of selection to first order in the mutation rate is given by
S = Mmin — Be- (15)
Thus, a novel canalizing mutation can only spread if it
can further reduce the mutational target. This is akin to
the evolution of reduced mutation rates, although through
a mechanism that operates on a more local genetic level
(Johnson 1999; Sniegowski et al. 2000). In essence, such
a redundant system is already so canalized that there is
essentially no selection for further canalization.

Mutation Load in Fragile Linear Pathways. Positive epistasis
represents the best-case scenario for the evolution of ro-
bustness because it generates the most genetic load (Phil-
lips et al. 2000). Positive epistasis will occur when the
reduction in fitness of individuals with multiple mutations
is less than would be expected based on a multiplicative
fitness model. This could naturally arise in gene networks
that are simple linear pathways (fig. 1), where any single
knockout disrupts the network. The most extreme case is
when the network fails to function if the wild-type allele
is missing at any locus, causing a loss in total fitness of
magnitude s. In the appendix (“Mutation Load in Genetic
Networks”), we show that when the mutation rates are all
equal, then the maximum load possible in fragile networks
is

n—1

L<mp—or,
- nl”'(n_ l)nfl

(16)

where n is the number of genes in the network. This ex-
pression for L can be substituted into equation (9) to give
an upper bound on the strength of selection for canali-
zation:

n—1

n

5. < n/A( — Ue- 17)

n— 1!

The fraction in equation (17) increases with # and has a
limiting value of e, the base of the natural logarithm. When
the number of genes in the network is large, the maximum
strength of selection can be approximated by
s. < npe — u.. (18)

Thus, a fragile network can have up to a factor e more
opportunity for canalization than a nonepistatic network.
Because the equilibrium load depends on the selective
cost in this model and because equation (16) only esti-
mates the maximum load, we performed a numerical in-

vestigation of load. Figure 3 shows that load is only in-
creased over the nonepistatic model for a small range of
parameters. This suggests that in practice the load in fragile
pathways is probably not much more than in nonepistatic
networks. Given that this is likely to be the most extreme
form of genetic network from a load perspective, exami-
nation of more specialized network topologies does not
affect our general conclusions about the strength of se-
lection for canalization of the mutation load.

Other Forms of Perturbation

The magnitude of the mutational load in genetic networks
is limited by the size of the network, by the existing ep-
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Figure 3: Numerical calculation of the equilibrium genetic load in a
genetic network. For all curves, the mutation rate was set to 107°. The
top peaked curve is for fragile pathways, the middle curve is for non-
epistatic networks, and the bottom curve is for completely redundant
networks. A shows the equilibrium load for a two-gene network, while
B shows the load for a 10-gene network. Selection for canalization is
always low in the redundant network. The fragile and nonepistatic net-
works have similar levels of load except for a small range of the selection
coefficient near the error threshold.



istatic interactions, and most importantly by the magni-
tude of the deleterious mutation rate. Several other forms
of perturbation, however, are known to generate large fit-
ness loads even when only a small number of genes are
involved (see Crow 1993 for a review). These perturbations
can be caused by genetic phenomena, such as segregation
or migration, or by environmental perturbations on any
number of temporal or spatial scales. We can directly apply
our general results to these scenarios based on the load
that develops due to each alternative source of variation.
Table 2 summarizes our results for the opportunity for
canalization under each type of perturbation.

Segregation Load. The genetic load due to segregation can
be much larger than load due to mutation accumulation
because maladapted individuals are produced at large fre-
quencies (Muller 1950; Dobzhansky 1955; Crow 1993). For
a single locus with two alleles, where the heterozygote has
the greatest fitness, the load is 5/2 and

Sc S - I’Lc’ (19)

N | »ne

where s is the harmonic mean of the selection coefficients
against homozygotes (Crow and Kimura 1970). In the
most extreme case where homozygotes have zero fitness,
the load can be as high as one-half.

One way to canalize the segregation load is through gene
duplication (Hammerstein 1996; Otto and Yong 2002).
Duplication allows each locus to become fixed for a single
allele and allows the stable inheritance of a genotype con-
taining both alleles. Under the assumptions that fitness
depends on having at least one copy of each allele and
that the fitness costs paid by both homozygotes are small
and equal to s, the opportunity for canalization is

s
5. 8=~ R (20)

4

Table 2: Major types of canalization
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(Otto and Yong 2002; see appendix, “Heterozygote Ad-
vantage”). Because the segregation load can be large, se-
lection for canalization via gene duplication can easily
overcome the mutational loss of new duplicates and play
a role in the creation of genetic networks that remove
heterozygote advantage.

Migration Load. Movement of genotypes among environ-
ments that have different selection regimes is similar to
mutation in that genetic variants are constantly intro-
duced. Migration differs from mutation because the rate
of influx can be large, immigrant genotypes may be pre-
dictable, and entire haplotypes are exchanged. Selection to
reduce the deleterious effects of immigrant alleles can be
seen as a form of canalization because the effect of genetic
variation at a spatially polymorphic locus is reduced (Mayr
1960; Bourguet 1999; Otto and Bourguet 1999).

In the classic mainland-island scenario (Wright 1931),
migration load is generated by input of nonadapted alleles
through migration. The load is highest when the mal-
adapted immigrant allele is dominant, giving a load of
approximately twice the migration rate (m) under weak
migration. When the homogenizing effect of migration at
the modifier locus is taken into account (see appendix,
“Migration Load”), the opportunity for canalization be-
comes

s.<m— . (21
The strength of selection on this dominance modifier is
reduced to less than half of the load because of the as-
sumption that immigrants never carry the modifier allele.
Because migration rates can be much higher than mutation
rates, the migration load can generate strong selection for
canalization.

The genetic perturbation caused by mutation generates
load that can be canalized by creating a genetic network.
Migration pressure causes the evolution of genetic cana-

Maximum
Type of perturbation  value of s, Effect
Single gene 0 No selection because mutation cost is equal to potential benefit.
Dominance w Weak selection. Similar to a two-locus network.
Mutation in networks  pe(n—1)  Generally weak but increases with the number of interacting genes.
Segregation load s/4 Strong, can generate large quantities of load.
Individual variation L Variable. Selection maximizes mean fitness. Load will be large when the fre-
quency and fitness effects of disturbance are high.
Seasonal variation L Variable. Selection maximizes geometric mean of fitness and reduces variance
in fitness, but may select for phenotypic variance.
Migration load m Strong, increasing with the migration rate.

Note: s, is the maximum strength of selection for canalization.
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lization, which itself would be difficult to distinguish from
canalization of the mutation load. However, because the
influx of genetic variants caused by migration is more
predictable than the genetic perturbations due to muta-
tion, networks that canalize the migration load may be
more feasible than networks that canalize the mutation
load (fig. 4).

Individual Environmental Variance. When the environment
varies on a small spatial scale, we expect individuals to
experience different environmental conditions than other
members of their population. This could occur because
the external microhabitat that individuals inhabit differs
or because of differences in the internal “environment”
during embryogenesis, which may not be easily attribut-
able to any measurable feature of the external environ-
ment. This developmental noise may differ functionally
from fine-scale spatial variance but produces the same type
of selection (Frank and Slatkin 1990; Yoshimura and Clark
1991). In the adaptationist literature, this form of variance
is thought of as selecting for the increase in mean fitness
an individual would obtain after averaging over the pos-
sible environmental states (as long as population size is
reasonably large; Gillespie 1974; Bulmer 1984; Yoshimura
and Clark 1991; Proulx 2000).

Previous work on canalization of environmental vari-
ation has focused on the genetic features of canalization
and pleiotropic interactions between canalization and en-
vironmental adaptation (Gavrilets and Hastings 1994;
Wagner et al. 1997). Because this form of selection gen-
erally leads to the presence of a single strategy (Seger and
Brockmann 1987; Ellner 1996), we assume that a single
genotype at the environmental adaptation locus is present
at equilibrium and therefore that the fitness load is due
entirely to environmental variation. The opportunity for
canalization is thus given by

s. < 2. sle)ple), (22)

where e represents the environmental variable, s(e) is the
fitness decrement paid when raised in environment e, and
ple) is the frequency of environment e. In this context, the
reference background is defined by the environment (or
more generally, an environment and a genotype) that pro-
duces the largest fitness. Canalization can act by increasing
fitness in some environments while leaving fitness in the
reference environment unchanged. To utilize our matrix
approach, we define the transition between classes based
on the process describing the environmental variation (as
long as the environmental pattern can be represented by
a Markov process).

In this context, a reduction in s(e) will increase mean
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Figure 4: Selection for canalization under migration-selection balance.
The parameter values for the curves are s = 0.1,0.2, 0.3, 0.4, and 0.5.
The actual values of s, are plotted along with the small 2 approximation
(dotted line).

fitness and can be considered canalization, at least at the
level of organismal fitness. In the context of developmental
noise, the mean of s could be reduced by classical cana-
lization; that is, a genetic change that allows the phenotype
to remain closer to the optimum would reduce s and in-
crease mean fitness. The amount of load produced by
individual environmental variance can be large because it
is not limited by the mutation rate. The fitness load can
be high either because the rate of environmental distur-
bance is large or because the fitness effects of disturbance
are large (P4l and Hurst 2000).

The major limitation to the evolution of environmental
canalization is really the feasibility of achieving canaliza-
tion without compromising other systems (Wagner et al.
1997). The opportunity for canalization in this case does
not depend directly on the number of genes that contribute
to phenotype, but the genetic network structure may itself
determine the feasibility of canalization.

Population Level Environmental Variance. In addition to
the unique environment experienced by each individual,
populations experience environmental fluctuations in both
space and time. When all individuals in the population
face the same environment but environmental fluctuations
affect each generation differently, then selection acts on
the entire distribution of fitness effects (Dempster 1955;
Levins 1962; Gillespie 1974; Tuljapurkar 1990). For infinite
populations without overlapping generations, selection
acts to maximize the geometric mean of fitness (Caswell
2001; but see Proulx and Day 2001 for a discussion of the
geometric mean criterion in finite populations). The geo-
metric mean of fitness is increased by reducing the variance
in fitness, and this again leads to canalization when re-



duced phenotypic variance results in reduced variance in
fitness.

As in the case of developmental noise, only a single
genotype is expected to persist, so long as generations are
not overlapping and there is no overdominance of the
geometric mean (Chesson and Warner 1981; Ellner 1984;
Chesson and Ellner 1989). The load can be calculated using
an equation similar to equation (22) but using the geo-
metric mean of fitness. The opportunity for canalization
is

s.<1— Az losli—s(a1p(a} (23)
Because the geometric mean of a random variable is always
lower than its arithmetic mean, the load due to seasonal
variance will be larger than the load due to developmental
noise for the same underlying pattern of variation. This
causes selection against variance per se. In this case, can-
alization could occur even at the expense of mean fitness.
For example, if there is a trade-off between genotypes that
produce stable phenotypes in the face of environmental
variance and genotypes that produce higher fitness phe-
notypes in the most common environment, then the stable
genotype could have a higher geometric mean fitness.

An important caveat here is that seasonal variation can
select for variable developmental strategies even as it selects
for reduced variance in fitness and reduces genetic vari-
ation (Levins 1962; Gillespie 1973; Seger and Brockmann
1987). The evolution of canalization in response to sea-
sonal variance will depend on whether a single develop-
mental strategy produces the highest geometric mean fit-
ness or whether a so-called adaptive coin-flipping strategy
produces the highest geometric mean fitness (Kaplan and
Cooper 1984). In this case, even though variance in fitness
is selected against, increased phenotypic variance (albeit
nongenetic) can be selected for.

These considerations suggest that a single genotype that
limits the effect of seasonal variance can spread both be-
cause of an increase in mean fitness and a decrease in
fitness variance. Kawecki (2000) showed that in some sit-
uations, genetic canalization can limit the short-term evo-
lutionary responses to selection and allow a single geno-
type with a high geometric mean fitness to persist. As in
the case of environmental variance at the individual level,
the number of genes contributing to the phenotype do
not determine the load directly. However, the evolution
of buffering mechanisms that depend on integrating en-
vironmental information and using feedback probably re-
quire the creation of genetic networks.

Discussion

Canalization is a difficult process to model because it ex-
plicitly depends on variance. Many theoretical treatments
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of evolutionary processes minimize the role of variance
either by ignoring it entirely or by assuming that it is small
and regular (e.g., Lande 1976; Yoshimura and Clark 1991;
Dieckmann and Law 1996; Taylor and Day 1997). This
has lead workers to develop specific, explicitly genetical,
dynamic models of canalization to understand how can-
alization evolves in a variety of contexts (Clark 1994; Gav-
rilets and Hastings 1994; Nowak et al. 1997; Wagner et al.
1997; Eshel and Matessi 1998; Wagner 1999; Kawecki 2000;
Otto and Yong 2002; de Visser et al. 2003; Hermisson et
al. 2003). We have taken an alternative approach and de-
rived a simple expression for the maximum strength of
selection on a rare canalizing element. This approach ap-
plies to a range of scenarios and allows us to compare
genetic and environmental canalization on the same
footing.

Because canalization is the stabilization of the pheno-
type in the face of a perturbation, it can at most return
fitness to that of an individual in the “best” state. We can
approximate the maximum selection for canalization as
simply L — u (load minus mutation rate). This is because
the fitness benefit of the canalizing modifier is at most
equal to the fitness load in the population and because all
genes must pay a direct cost of mutation. This direct cost
of mutation is left out of most evolutionary models be-
cause it is generally assumed to be much smaller than the
selection coefficient. This assumption is not valid, how-
ever, when mutation is the main force driving evolution
(Johnson 1999).

The amount of load generated by any perturbation de-
pends on the amount of canalization that has already oc-
curred. For instance, even if environmental conditions are
constantly in flux, the current strength of selection will
depend on the fitness cost associated with the environ-
mental variance. Similarly, canalization of the mutation
load can reduce the magnitude of the fitness load by mod-
ifying the epistatic interactions between existing allelic var-
iants. However, once a canalizing modifier has gone to
fixation, novel mutations may appear that are not yet can-
alized. This could lead to a constant cycle of the buildup
of load followed by the canalization of that load.

The approach we have taken contrasts with recent mod-
els of canalization in that we model only the invasion of
a rare canalizing gene. This allows us to create more gen-
eral models and compare the strength of selection on can-
alization through different modes of selection. The draw-
back of this approach is that it does not guarantee that a
canalizing gene with a large selection coefficient when rare
will spread to fixation. However, our main goal is to iden-
tify limits to selection on canalization, and selection is
likely to be strongest when the canalizing allele is rare.

We model the spread of new genetic elements when
they are rare because any new gene must survive this pe-
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riod if it is to persist. While nonlinear dynamics may affect
the eventual fixation of a canalizing element, these effects
are only important if canalizing genes are not lost when
rare. Because our analysis reveals that selection for can-
alization of genetic networks is usually weak, it is not clear
that it is worth further effort modeling the evolution of
canalization in particular genetic networks. Future effort
would be better spent on determining the direct selective
advantage that different network structures provide, and
this work will require explicit modeling of genetic network
dynamics.

The Evolution of Genetic Networks

Genetic networks are likely to be involved in canalization
of both genetic and environmental perturbations. For ge-
netic canalization, genetic networks are involved almost
by definition. Although a form of genetic canalization can
act through only a single locus (or single linkage unit;
Eigen and Schuster 1977; Nowak 1992; van Nimwegen et
al. 1999; Wilke et al. 2001), genetic canalization is only
likely to evolve when many genes interact epistatically
(Wagner et al. 1997; Hermisson et al. 2003). Genetic can-
alization involves modification of the epistatic interactions
between genes, which can occur either through allelic
changes at existing loci or through the incorporation of
new genes into the network. For example, in the classic
example of the evolution of dominance, Fisher (1928) in-
voked a modifier of the dominance interaction at the ma-
jor locus. The addition of a dominance modifier creates
a two-gene network that epistatically determines the trait
value. Likewise, the evolution of redundancy and reduc-
tion of the segregation load can occur through gene du-
plication, again producing a two-gene network (Clark
1994; Nowak et al. 1997; Otto and Bourguet 1999; Wagner
1999; Otto and Yong 2002).

While gene duplication can bring about canalization
through redundancy, regulatory mechanisms can canalize
both genetic and environmental perturbations. For in-
stance, if genetic or environmental perturbations alter the
rate at which an enzyme catalyzes a reaction or the binding
efficiency of a signaling protein, then regulation through
feedback can maintain global properties of the system.
Examples of this include the chemotaxis network of bac-
teria, the segment polarity network, and metabolic systems
regulated by the substrate, such as the lac operon and
galactose metabolism (Barkai and Leibler 1997; von Das-
sow et al. 2000; Ideker et al. 2001). Canalization via reg-
ulation is implicit in Waddington’s (1942) description of
canalization but has to some degree been neglected in
recent attempts to explain the congruence of environ-
mental and genetic canalization based on enzyme kinetics
and structural stability (Ancel and Fontana 2000; Hurst

and Randerson 2000; Meiklejohn and Hartl 2002; de Visser
et al. 2003). Canalization through feedback regulation can
only work on perturbations that affect quantitative com-
ponents of networks (as opposed to structural compo-
nents) and is likely to canalize both genetic and environ-
mental perturbations.

Canalization of the mutation load can occur through
dominance modification, gene duplication, modulariza-
tion, or modification of genetic interactions. Duplication
of a single haploid locus cannot be explained by selection
for canalization of the mutation load, however, because
the direct cost of mutation on the duplicated locus will
outweigh the benefit of even complete canalization. Nev-
ertheless, dominance modification at a single locus can be
selected for because a single diploid locus is equivalent to
a two-gene network and can generate load that is greater
than the mutation rate. However, the strength of selection
on canalization of the mutation load through dominance
modification is only on the order of the mutation rate.
Even placed in the context of larger genetic networks,
dominance modification and gene duplication will not be
associated with large selection coefficients if the locus in
question interacts nonepistatically with other members of
the network. Although other network structures will ac-
cumulate load differently, the opportunity for canalization
will necessarily be lower than the upper bound described
here. Unless a new gene buffers mutations at a large num-
ber of loci, selection for canalization of the mutation load
will be negligibly weak.

Extending these results to specific genetic networks is
simultaneously trivial and difficult. Our main results deal
with the genetic networks that realize the least and greatest
mutational loads for a given number of genes. Other ge-
netic networks will fall in between the extremes of com-
pletely fragile and completely redundant, so they have less
opportunity for canalization than fragile networks. To il-
lustrate, we briefly consider the effects of epistatic mod-
ularity in a genetic network. We call two modules in a
network epistatically modular if total fitness is a product
of module specific fitness. The load in epistatically modular
networks is approximately the sum of the load in each
module (see appendix, “Epistatically Modular Networks”).
This makes it easy to show that in epistatically modular
networks consisting of 7 loci in two components of equal
size, the opportunity for canalization is bounded by

(n/z)n/zfl

(n/Z _ 1)71/271 4 (24)

s. S un

which is less than s, for a fragile network with a total of
n genes. However, there is no guarantee that modulari-
zation will reduce the load. For instance, if the original



network is already redundant, then modularization can
actually increase the load.

If selection for gene duplication and dominance mod-
ification are unlikely to explain the addition of genes to
networks, is there a role for canalization of the mutation
load in the creation of genetic networks? It seems that high
selection coefficients can only be generated when the can-
alizing gene interacts directly with a large number of pre-
existing genes. This requires a single evolutionary step that
reduces load due to many genes. The event could be the
modification of an existing gene that already interacts with
many partners or a genome-wide event such as polyploid-
ization. For example, Otto and Whitton (2000) have
shown that polyploidization can temporarily reduce the
mutation load as a form of canalization.

One group of proteins that interact with many other
partners is the heat shock proteins (Hsp). Heat shock pro-
teins aid in protein folding for a large group of proteins
that do not necessarily interact with each other (Ruther-
ford and Lindquist 1998; Bergman and Siegal 2003). Figure
2 shows that if an Hsp interacts with approximately 100
genes that have mutation rates of 107°, then even in a
relatively small population on the order of 2,000, the se-
lection coefficient of 107 would be large enough to over-
come drift and cause fixation of the canalizing gene. Of
course, the maximum selection coefficients that we have
derived here could only be realized if robustness was per-
fect, so larger population sizes are probably required for
more realistic levels of robustness.

Migration and Genetic Canalization

While mutation load can play a role in altering large ge-
netic networks, migration load can have a significant effect
even when local adaptation is conferred by a small number
of genes. Dominance modifiers can evolve when a single
locus is in migration selection balance, allowing the de
novo creation of a two-gene network. In a scenario where
there is mixing between two habitats, Otto and Bourguet
(1999) have shown that dominance modifiers that favor
the allele with the highest reproductive value will evolve.
Likewise, the mainland-island approach taken here allows
the evolution of dominance modifiers, suggesting that spa-
tial heterogeneity may generally result in genetic canali-
zation. Thus, spatial heterogeneity may be responsible for
the observation of genetically canalized networks, and can-
alization of the mutation load may simply be a by-product.

Recent work on the evolution and maintenance of poly-
morphism in a spatial context has suggested that spatial
polymorphism should be more common than was pre-
viously thought. This is because traditional population ge-
netic methods considered the allele values that allowed
polymorphism while adaptive dynamic techniques con-
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sider a continuum of alleles (Kisdi and Geritz 1999; Kisdi
2001). Sexual selection can also play a role in expanding
the range of conditions that favor polymorphism by in-
creasing selection on locally adapted alleles (Proulx 1999,
2001, 2002). If spatial polymorphism is expected to be
common on theoretical grounds, then the opportunity for
the creation of genetic networks through canalization
should be high. Two alternative trajectories are possible
given this starting point. First, the creation of genetic net-
works to cope with spatial heterogeneity may, in the long
run, reduce genetic diversity. For example, if dominance
modifiers evolve to regulate the function of other loci, then
the curvature of the fitness function at the adaptation locus
will shift, possibly leading back to monomorphism (Kisdi
2001). Second, populations may evolve increased ecolog-
ical divergence as more genes are recruited to networks
that confer local adaptation, leading to the buildup of
incompatibility between habitats and setting the stage for
reinforcement and speciation (Dobzhansky 1940; Muller
1942; Kirkpatrick and Servedio 1999; Servedio 2000).

Phenotypic Plasticity and Canalization

The concepts of canalization and phenotypic plasticity are
often discussed together and are tightly linked (for a re-
view, see Debat and David 2001), and at some level en-
vironmental canalization must produce phenotypic plas-
ticity (de Visser et al. 2003). Phenotypic plasticity occurs
when a trait varies in response to environmental variation,
while environmental canalization evolves by reducing the
variance in a phenotype when the organism is exposed to
environmental variance. These concepts would seem to be
opposed but in fact share some important features. To
begin, we must consider a point in time where the trait
in question does respond to environmental variance: in
other words, the trait begins as phenotypically plastic. For
canalization to occur, this phenotypic plasticity at the trait
level must be converted to a form of phenotypic plasticity
at an underlying level. In order for development to pro-
duce a final trait that no longer responds to the environ-
ment, some component of development must have
changed, as compared with the ancestral condition.

This idea can be illustrated through an example of the
control of adult body size in insects. Adult body size de-
pends on growth rate during the larval stage and the
amount of time spent in development (Nylin and Gotthard
1999). If we manipulate the temperature of a developing
insect, the growth rate will change, and if the time of
pupation is held constant, then adult body size will show
phenotypic plasticity. Canalization to this environmental
variation can be achieved by altering the timing of pu-
pation so that constant adult body size is maintained.
Thus, the variability of adult body size can be converted
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into variability in the timing of pupation and canalization
of body size. It seems likely that in any developmental
system, canalization of any adult trait must occur through
plasticity of some underlying developmental stage. In gen-
eral, environmental canalization must produce phenotypic
plasticity at some level.

Must plasticity also imply canalization? While pheno-
typic plasticity in general need not lead to canalization,
adaptive phenotypic plasticity must. Adaptive phenotypic
plasticity is defined as variation in a trait that increases
fitness when compared to other fixed phenotypes (Via et
al. 1995). In order for fitness to be increased in plastic
individuals, then the mean fitness averaged over the dis-
tribution of environments encountered must be higher for
the plastic types as compared to all other fixed phenotypes.
If fitness is defined as a function of the phenotype only,
then the variance in fitness will decrease as adaptive plas-
ticity evolves. This means that some life-history variables
must show less variance in that they produce lifetime fit-
ness. Thus, adaptive phenotypic plasticity necessarily im-
plies that some trait is canalized, and environmental can-
alization at the level of an observed trait is likely to involve
plasticity at some underlying level. This means that the
same genetic features that are associated with adaptive
plasticity at one level will be associated with environmental
canalization at another level.

Final Thoughts

These results highlight the fact that ecological interactions
play an important role in shaping genetic systems. The
idea that environmental effects might play a dominant role
in the evolution of canalization has been gaining ground
in recent years (Wagner et al. 1997; Gibson and Wagner
2000; Meiklejohn and Hartl 2002; Stearns 2002; Milton et
al. 2003), and our framework allows a direct comparison
of the opportunity for canalization afforded by distinct
perturbations. A completely genetic explanation for the
evolution of genetic networks through canalization seems
unlikely unless either a single gene can influence the effect
of mutations at many other loci simultaneously or over-
dominance commonly evolves. On the other hand, both
temporally and spatially varying selection can produce
strong selection for canalization and promote the addition
of regulatory genes to existing networks. Such environ-
mental influences may shape genetic network evolution
even when the genetic interactions themselves can not.
This suggests an addition to Dobzhansky’s (1973) famous
quote: nothing in genetics makes complete sense except
in the light of ecology.
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