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HYPERBOLIC PROGRAMS,
AND THEIR DERIVATIVE RELAXATIONS

JAMES RENEGAR

ABSTRACT. We study the algebraic and facial structures of hyperbolic programs,
and examine natural relaxations of hyperbolic programs, the relaxations them-
selves being hyperbolic programs.

1. INTRODUCTION

Hyperbolic programming was introduced by Giiler [0] in the context of interior-
point methods. His inspiration drew partly from work arising in the study of
hyperbolic pde’s; in particular, from work of Garding [5].

The richness of hyperbolic programming was further explored by Bauschke,
Giiler, Lewis and Sendov [I]. They initiated an intriguing theory in the vein of
general convex analysis.

We continue the exploration of hyperbolic programming, influenced greatly by
the above works. The present paper lays out some of the basic structure of hyper-
bolic programs.

For coherence, we reprove some results found in the above papers. Perhaps
noteworthy in this regard is that we reprove Garding’s key results, with arguments
that while entirely inspired by his proofs, are considerably briefer.

2. FUNDAMENTALS

Let £ denote a finite-dimensional Euclidean space.

A homogeneous polynomial p : £ — R is said to be hyperbolic if
there exists a direction e € &, p(e) # 0, with the property that for
each x € £, the univariate polynomial ¢ — p(z + te) has only real
roots (i.e., each root has no imaginary part). The polynomial is said
to be hyperbolic in direction e.
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2 J. RENEGAR

In this work, p always denotes a hyperbolic polynomial of degree at least 1. We
assume p(e) > 0 (replace p with —p if necessary).

Particularly relevant examples pertain to:

e Linear Programming (LP): & =R", p(z) =21 x,,
e = any vector with only positive coordinates.

e Semi-Definite Programming (SDP):
E = S (vector space of n x n symmetric matrices), p(z) = det(x),
e = any symmetric matrix with only positive eigenvalues.

Clearly, if p; and p, are hyperbolic in direction e, then so is pips.

The reader should keep in mind that because of homogeneity, we could equiva-
lently define a hyperbolic polynomial by replacing “for each z € &, t — p(z + te)
has only real roots,” with “for each x € £, t — p(e + tz) has only real roots.”

For motivation, we rely on terminology familiar from SDP.

The univariate functional A — p(Ae — z) is the characteristic poly-
nomial of x (with respect to p, in direction e). The roots of the
characteristic polynomial are the eigenvalues of x.

Thus, a hyperbolic polynomial is a homogeneous polynomial with the property
that for each x, all of the eigenvalues are real (with respect to some direction e,
where p(e) > 0).

Let n denote the degree of p. Write the eigenvalues of z as A\ (x) < ... <\, (2),
counting multiplicities. For clarity, we sometimes write the smallest eigenvalue as
Amin<w)-

Two observations:

shj(z)+t  ifs>0
Y te) =4 7
s(s2 + te) {s)\nj(x) +t if s <0,

p(a) = () [[ (@),

The eigenvalues are continuous in x. Indeed, for any family of univariate polyno-
mials A — > a;(x)A" in which the coefficients a;(x) vary continuously with z, and
in which the leading coefficient is constant, the (complex) roots vary continuously
with = (c.f., [9], Thm. 1.3.1).

The set A, := {x : Auin(x) > 0} is the hyperbolicity cone (for p in
direction e).

Obviously, e € A,,. Note that if v € A,,, then p(x) > 0 (because p(z) =
p(e) IT; Aj(x)). Also, observe A, is indeed a cone, i.e., if z € A, then tx € A,
for all t > 0.
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In LP, where p(z) = z1--- 2, and e is any vector each of whose coordinates is
positive, A, = R", the strictly positive orthant. In SDP, where p(x) = det(x) and
e is any n X n symmetric matrix each of whose eigenvalues is positive, A, = S"*"

++ 0
the set of all n X n symmetric matrices each of whose eigenvalues is positive.

Proposition 1. The hyperbolicity cone is the connected component of
{z : p(x) # 0} containing e.

Proof. Let S denote the connected component containing e.

Since z has 0 as an eigenvalue only if p(x) = 0, and since e € A, it follows
from continuity of eigenvalues that S C A .

To understand why A, is a subset of S, consider z € A,, and let ¢ be the
line segment with endpoints x, e. For sufficiently large ¢ > 0, all y € ( satisfy
p(y + te) > 0. Also, since z,e € A,,, we know = + te,e + te € A, whenever
t > 0, implying p(x + te),p(e + te) > 0 whenever ¢ > 0. Thus, the segments
{r+te:0<t<t}, {y+te:yel}, and {e+te:0 <t <t} form a path from x
to e on which p remains strictly positive. [l

Define
A, ={z: Apin(z) > 0}.
This is the closure of A,,. Indeed, if x € A,, then x +te € A,, for all t > 0,
showing A, is contained in the closure. That the eigenvalues vary continuously
with x implies A, contains the closure.

The following theorem is the cornerstone of hyperbolic programming.
Theorem 2 (Garding). Hyperbolicity cones are convex.

Since A, is the closure of A, ,, it follows that A, is convex, too.

We provide a simplified version of Garding’s proof. The arguments go by way
of imaginary numbers. It would be nice if a proof could be made which is more
consistent with the spirit of optimization.

Theorem [2] is a corollary of the following result (which has uses beyond estab-
lishing Theorem .

Theorem 3 (Garding). If x € A, then p is hyperbolic in direction x. Moreover,
the hyperbolicity cone in direction x is A, (i.e., the same cone as in direction e).

Proof. Assume x € A,, and let y be an arbitrary point. We know p(z) > 0. It
remains to show r — p(rz + y) has only real roots.

Let i := /=1 and fix @ > 0. We claim that for all non-negative real numbers
s, all roots of r — p(aie 4+ rx + sy) have negative imaginary part. This is true for
s = 0 due to z € A, and homogeneity (in fact, for s = 0, all roots are purely
negative imaginary). Consequently, if for some s > 0, a root of r — p(aie+rz+sy)
had non-negative imaginary part, then by the continuity of roots with respect to s,
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there would be an intermediate value 0 < s’ < s for which a root 7’ is real. Clearly,
s" would be a root of s — p(aie + r'z + sy), implying t = «i would be a root of
t — p(te+ z), where z := 'z + s'y. However, with 7’ real, z would be a real vector.
In other words, there would exist z € £ for which ¢ — p(te + z) has a non-real
root, contradicting hyperbolicity of p in direction e. Hence, for each s > 0, all of
the roots of r — p(aie + rx + sy) indeed have negative imaginary part.

In particular, all roots of r — p(«aie + rz + y) have negative imaginary part,
regardless of the particular positive value «. Consequently, letting o go to 0,
continuity of roots with respect to a implies all roots of r +— p(rz + y) have
non-positive imaginary part. However, r — p(rz + y) is a real polynomial, and
the non-real roots of real polynomials occur in conjugate pairs. Since no roots of
r — p(rx + y) have positive imaginary part, all roots must thus be real. As y was
an arbitrary point, we have that p is hyperbolic in direction x.

The final statement of the theorem is immediate from Proposition [I} O

Proof of Theorem[3 For z,y € A, and r,s > 0, we wish to show rz + sy € A,,.
Theorem (3| implies that without loss of generality, we may assume y = e. However,
the eigenvalues of 7z + se in direction e are r;(x) + s > 0. g

Later, we consider various directions e € A, as is allowed due to Theorem
When required for clarity, we make dependence on e explicit, writing, for example,
/\j,e (ZE)

The following corollary records a fact immediately evident from the preceed-
ing results. We bother to state the corollary only because doing so provides an
expedient way to refer to the fact in later arguments.

Corollary 4. For every e € A, and for every point x, the univariate polynomial
t — p(e + tx) has only real roots.

The results above provide a mechanism for passing between hyperbolicity de-
veloped in the homogeneous (i.e., conic) setting — the approach we pursue — and
hyperbolicity developed affinely. For the affine setting, one defines a (not neces-
sarily homogeneous) polynomial ¢ to be hyperbolic if there is a point d, ¢(d) # 0,
with the property that for all y, the univariate polynomial ¢ — ¢(d + ty) has only
real roots. One then obtains a polynomial which is hyperbolic according to our
definition simply by homogenizing ¢, that is, by introducing a new variable ¢ and
multiplying all terms of ¢ by the appropriate power of ¢ so as to obtain a polyno-
mial p(x) which is homogeneous, where x = (y, t). In particular, p is hyperbolic in
direction e := (d, 1).

Consequently, from the existence of a point d, ¢(d) # 0, with the property that
t — q(d + ty) has only real roots for each y, it follows — by applying preceeding
results after homogenization — that the same property is possessed by all points
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y in the connected component of {y : q(y) # 0} containing d. Convexity of the
connected component is also immediate.

Henceforth, we refer only the homogeneous setting.
Corollary 5 (Garding). The functional x — Apin(T) is concave.
Proof. Clearly, for a € R,
{z: Apin(z) > a} = ae+ A,
which by Theorem [2|is a convex set. Consequently, if Apin(2) = @ = Apin(y), then
Amin(tz + (1 —t)y) > a = tAnin(2) + (1 = ) Apin(y) for 0 <t < 1.

The corollary is thus proven for the special case Apin(z) = @ = Apin(y).
The general case reduces to the special case by using

Amin(@z + B€) = adpin(z) + 5 for a > 0.
Details are left to the reader. O

The extent of generality of hyperbolicity cones is unknown. Indeed, it has been
conjectured that for each hyperbolicity cone, there is a “slice” of some SDP cone to
which the hyperbolicity cone is linearly isomorphic; more specifically, the conjecture
is that for each hyperbolicity cone A, ., there exist n, a subspace S C S"*", and an
isomorphism L from £ onto S, under which A, is the inverse image of S"*" N S.

This was a conjecture even for £ = R3 until recently [7]. The conjecture in this
special case came from Peter Lax. The general case, too, has been called “the Lax
conjecture.” Now that the special case is resolved, we refer to the unrestricted
setting as “the general Lax conjecture.”

The most significant result bearing on the general Lax conjecture was accom-
plished by Chua [2] (related work is [4]). He showed that each homogeneous cone is
a slice of an SDP cone (a homogeneous cone is a convex cone whose automorphism
group — the group of linear isomorphisms that map the cone onto itself — acts tran-
sitively on the cone’s interior). Homogeneous cones are hyperbolicity cones, as was
established in [6].

To end the section in the spirit of the present work, we note that in defining
hyperbolic polynomials, there is the requirement p(e) # 0, which feels to be more
for convenience than for substance. To realize otherwise, consider the homogeneous
polynomial

p(ZL‘l, Za, $3) = X1T2x3 — %(1’1 + i) + 1’3)(1’11‘2 + ToX3 + $3ZL‘1)

and direction e = (1,1,1). Each z has only real “eigenvalues” (indeed, \ —
p(Ae — x) is a non-constant linear map for all = # 0). However, neither of the two
connected components of {x : p(x) # 0} is convex.
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3. BOUNDARY BAsICS

For z € £, define the multiplicity of x — denoted mult(z) — to be the
multiplicity of 0 as an eigenvalue of x.

Later, the value mult(x) is proven to be independent of the derivative direction
e € A, (Proposition 22)).
For non-negative integers m, define

"N, :={z e A, : mult(x) =m}.
Thus, OA, — the boundary of A, — is partitioned by the sets ™A, m > 1.

Theorem 6. The set O'A., if non-empty, is a codimension-1 analytic submanifold

of £.
The proof relies on two lemmas:
Lemma 7. Assume x € ON,. Then x € O'A, iff Dp(x) £ 0.
Proof. We have
(1) axp(Ae = x)[xo0 = Dp(—z)e = (—1)" "' Dp(x)e.

Consequently, if Dp(x) = 0, then mult(x) > 1.

On the other hand, if Dp(z) # 0, then {y : Dp(z)y = 0} is the supporting
hyperplane to the cone A, at x. Thus, Dp(z)e # 0, because e € AS. Hence, by
(1), mult(z) = 1. O

Lemma 8. For each m, the set {x : mult(z) > m} is closed, as is the set
{r e A, :mult(z) >m}U{z ¢ A, : mult(x) >m — 1}.

Proof. A straightforward consequence of the continuity of eigenvalues. O

Proof of Theorem[f: Let U denote the complement in & of the set
{r e A, :mult(z) > 2} U{zx ¢ A, : mult(z) > 1}.

By Lemma [8] U is open.

Consider the map z — p(z) restricted to U, denoted p|y. Clearly, (p|y)~1(0) =
O'A,. Since D (p|y) (z) = Dp(x) # 0 for each x € 9*A, (Lemma [7)), the Implicit
Function Theorem thus shows 9'A, . if non-empty, is a codimension-1 submanifold
of U (hence, of ). O

For z € &'A,, let T, denote the tangent space at x.
Proposition 9. If x € 9'A, and v € T}, then D?*p(z)[v,v] < 0.
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Proof. Of course, = + T, (= T,) is a supporting hyperplane to the convex cone A,
at x. Since for any point y € &£, y + te € A, for sufficiently large ¢, it follows
that for each v € T, there exists ¢(v) > 0 satisfying p(x + v + t(v)e) = 0. Hence,
Amin(z +v) < 0.

For v near 0, the point z + v can not have more than one non-positive eigen-
value, because x has only positive eigenvalues other than the simple eigenvalue 0.
Consequently, for v € T}, near 0,

pla+v) = p(e)dun(z +0) [T A2 +0) <0.

j>1

Since p(z) = 0 and Dp(z)v = 0, it follows that D?*p(z)[v,v] < 0. O

Proposition @ implies that the Hessian V?p(z) has at most one positive eigen-
value. In fact, there is a positive eigenvalue, as will be apparent in §b|

The following theorem shows that in those directions for which &' A, is not linear,
the boundary has definite curvature.

Theorem 10. If x € 'A, and v € T, then one of the following holds:

o p(x + tv) = 0 for all t, and there exists ¢ > 0 such that x + tv € O'A,
whenever —e < t < €;
e D%p(z)[v,v] < 0.

Proof. Assume x € 9'A_, and assume v € T, does not satisfy D?p(x)[v,v] < 0. By
Proposition [0 D?p(z)[v,v] = 0.

To prove the theorem, it suffices to show ¢ — p(x + tv) = 0. Indeed, continuity
of eigenvalues and A;(z) < Ag(z) then imply 0 = A\ (z + tv) < Ay(x + tv) for all ¢
near 0.

To show t — p(x + tv) = 0, we assume otherwise and obtain a contradiction.

For s € R, let ¢4(t) := p(x + se + tv). Note ¢y # 0 (by assumption).

Since p(x) = 0 = Dp(z)v = D*p(x)[v, v], the multiplicity of ¢ = 0 as a root of ¢
ism > 3.

Choose § > 0 such that ¢ = 0 is the only root ¢t € C satisfying |t| < . By
continuity of roots, there exists € > 0 such that whenever 0 < s < ¢, the polynomial
¢s has precisely m roots t € C — counting multiplicities — satisfying |t| < 4, and
has no roots satisfying |¢t| = 0.

Of course x + se € A, whenever s > 0. Thus, by Corollary [4], all roots of ¢4 are
real when s is positive. Consequently, for 0 < s < ¢, the polynomial ¢, has m > 3
roots — counting multiplicities — in (—6,0), and ¢s(—0) # 0 # ¢4(0). In particular,
these properties hold for s = e.
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Trivially, ¢ = 0 is not a root of ¢. (because x4+ ee € A, ). Hence, ¢, has at least
two roots in the open interval (0,d), or at least two in the open interval (—4,0).
Without loss of generality, assume there are at least two roots in (0, d).

Consider the line segments
G={x+tv:0<t <} and l:={r+se+v:0<s<¢e}.

These two segments create a path between x and x + ee + dv. By choice of € and
J, the only point y on the path which satisfies p(y) =0 is y = z.

For each point y on the path, define w(y) := (x + ee) — y. Consider 1,(t) :=
p(y+tw(y)), the univariate polynomial obtained by restricting p to the line through
y and = + ee. Since x + ee € Ay, 1, has only real roots (Corollary .

We know ,(0) # 0 when y # z, i.e., we know z is the only zero of p on the
path. Also, for all y on the path, ¢,(1) = p(x + ee) # 0, because x +ee € A ..

When y = x + ee + 0v, 9, (t) = ¢(6(1 —t)). Hence, for this choice of y, ¢, has
at least two roots in the interval 0 < ¢ < 1.

It follows — by continuity of roots in y — that for each y # = on the path, the
polynomial ¢, has at least 2 roots in the open interval (0, 1). Hence, in the limit, ¢,
has at least 2 roots in the closed interval [0, 1]. But v, (t) # 0 whenever 0 < ¢ <1,
because then = + tw(zx) = x + tee € A,,. Consequently, ¢t = 0 is a root of 1, of
multiplicity at least 2.

Finally, observe p(Ae — ) = (—1)”1%(—%)\), and hence A = 0 is an eigenvalue of
x with multiplicity at least 2, contradicting z € 9'A,. O

Recall that the lineality space of a closed convex cone is the maximal subspace
contained in the cone.

Proposition 11. The lineality space of A, is precisely O"A, .

Proof. Assume x € 9"A,. Thus, p(Ae — ) = p(e)\". Hence, by homogeneity,
ple —vyzx) = p(e) # 0 for all v. Consequently, {e — vz : v € R} C A,,, showing z
is in the lineality space of A,.

Conversely, assume z is in the lineality space. Thus, {e — vz : v € R} C A,
implying p(e — vyx) > 0 for all v. However, the polynomial v +— p(e — vx) has only
real roots (Corollary [4]). Consequently, it must be a constant, i.e., p(e —vz) = p(e)
for all v. By homogeneity, p(Ae — z) = p(e)\", that is, x € 0"A,. O

4. THE DERIVATIVE CONE

Continuity implies, of course, that between any two roots of ¢(t) := p(x + te),
there lies a root of ¢/(t) = %p(:v +te) = Dp(x + te)e. Since ¢’ has precisely one

less root (counting multiplicities) than does ¢, it follows that ¢ having only real
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roots implies ¢’ has only real roots. Consequently, the multivariate polynomial
p'(x) = gp(z + te)|—o = Dp(z)e

is hyperbolic in direction e. This is the derivative polynomial (of p in direction e).
When necessary for clarity, we write p..

Denote the hyperbolicity cone of p' by A, (or by A, ), the derivative cone.

Generally, the cones A', | _ vary with e. For example, when £ = R? and p(xy, 12) =
x1T9, the derivative cone is the open halfspace with boundary orthogonal to e (for
any vector e whose coordinate are non-zero).

Observe

p(he—z)=Lp(he — ).

The eigenvalues \,(z) with respect to p’ thus interlace the eigenvalues with respect
to p:

A(x) < Nj(z) < Xa(x) < .o <N (2) < N\ (o),
where
(2)  (N(2) = N(2) or Nj(z) = Njsa(2)) & Ajlw) = Nj(@) = A (@)
As a simple consequence of the interlacing, we have
Ay CN

++7

i.e., the derivative cone A’ is a relaxation of A, .

Theorem 12. For integers m > 2,
oA, = OMTIA L
Also,
(81A’+) NA, =0%A,.

Proof. Straightforward consequences of the interlacing of eigenvalues and the equiv-

alence . O

A closed, convex cone is regular if both it has non-empty interior and its lineality
space is {0}. Trivially, however, A, has non-empty interior (e € A, ).

Proposition 13. If n > 3, then the lineality spaces of A, and A, are identical
(thus, if n > 3 and A, is reqular, A’ is reqular, too).

Proof. Immediate from Theorem [12| and Proposition |11} O

To understand the structure of hyperbolicity cones, attention need only be given
to when A, is regular. Indeed, by choosing a subspace S which both complements
the lineality space and contains e, the restriction of p to S is a hyperbolic polynomial
whose hyperbolicity cone S N A, is regular. The faces of A,, for example, are
precisely Minkowski sums of the lineality space with the faces of SN A,.
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Theorem 14. Assume A, is a reqular and n > 3.
Assume x € (O*A,)\ A, and v € T, (tangent space to O*N').
If v is not a scalar multiple of x, then D*(z)[v,v] < 0.

(That is, the boundary of A’ has strict curvature at « except in the single direction
v = x where, as a cone, the boundary must be linear.)

Proof. Assume x1, x5 are linearly independent and have the property that the line
segment connecting them — denoted [z, z5] — lies entirely in 9'A’,. To prove the
theorem, it suffices — by Theorem [10| applied to p’ — to show xy, x5 € A,.

Since A, is regular (Proposition , there exist positive values t1,t, for which
the line through ¢z, and t,z, intersects A’ in a segment of finite length. Let
Y1, Yo be the endpoints of the segment. To show xy,z9 € A, it suffices to show
y1,y2 € A, (because A, is a convex cone).

For t € R, consider the univariate polynomial

Gi(A) = p'(Ae —tyr — (1 —t)y).

We claim A = 0 is a root of ¢; for all ¢. Indeed, [y1,y2] C ON, C {y : p'(y) = 0}
and hence ¢(0) = 0 for all 0 < ¢ <1 (in particular, for infinitely many values of ¢).
But ¢t — ¢,(0) is a polynomial, and thus has finitely many roots or is identically 0.
Thus, t — ¢;(0) = 0, establishing the claim.

If t ¢ [0,1], then ty; + (1 — t)yo ¢ A, and hence ¢, has a negative root. Thus,
since ¢;(0) = 0, ¢; has at least 2 non-positive roots if ¢ ¢ [0, 1].

By continuity of roots, ¢y and ¢; thus each have at least 2 non-positive roots,
counting multiplicities. However, since y;,y, € A’ , all roots of ¢y and ¢; are non-
negative. Hence, 0 is a root of multiplicity at least 2 for each of ¢y and ¢;. That
is, 0 is an eigenvalue — with respect to p’ — of multiplicity at least 2 for both ; and

Y. Theorem [12] now shows y;,y. € A, completing the proof. O

Corollary 15. Assume A, is regular and n > 3. If v € (ON, )\ A,, then x € ' N,
and x is an (exposed) extreme direction of A, .

Proof. Immediate from Theorems [12] and [14] O

5. HIGHER DERIVATIVES

Taking the derivative repeatedly gives a sequence of hyperbolic polynomials
PO =p pM =y p@ . p™D with nested hyperbolicity cones

A, =AY c At . CcAlY.

++ =

The cone A(ﬁ_l) is an open halfspace.
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Trivially, results from §4|can be generalized by induction. For example, if m > 2,
then by Theorem [12]

oA = o TIAGTD = = gt Al),
For this result, and for the following proposition and its corollary, the derivatives

need not all be in the same direction. That is, one can choose a sequence of
directions ey, ..., e,, let pM := p. . and inductively define p(*V := (p®). . the

] €417
only requirement being that e;,; lie in the hyperbolicity cone for p®.

Proposition 16. If x € (aAS_i)) N A(f*l) for some1<i<n-—1, thenx € A,.

Proof. Under the hypothesis, Theorem |12 applied to Agf_l) shows x € 8mA$_1) for
some m > 2. Thus, x € 9™T~1A_, also by Theorem . O

Corollary 17. Assume A, is reqular and 1 <i<n—2. Ifz € (8A$)) \ A,, then
x € 81/\9 and x is an (exposed) extreme direction of As_l).
Proof. Under the hypothesis, A(f) is regular Proposition, and z € (3A$))\A(+i_1)
(Proposition . Consequently, Corollary |15/ can be applied to Agf), concluding the
proof. O

Hereafter, we assume there is a single derivative direction e, not a sequence of
directions.

Let o, denote the elementary symmetric polynomial of degree k,

oMy ) = ) N A
J1<<Jk

For convenience, define gq = 1.

Proposition 18. For each 0 < i < n,
P (@) = il ple)on—i(A(@))
(consequently, x — op(A(z)) is a hyperbolic polynomial of degree k).
Proof. The proposition is immediate from p®(z) = %p(w + te)|i—o and
p(x +te) = p(te — (—x))

=p(e) [ J(t = As(=2))
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Let )\gi)(x) <...< )\,(f)ﬂ(x) denote the eigenvalues of x in direction e with respect
to p®.
Corollary 19. For0<i<n and 0 <k <n—1,

()erxe = (" F)entro

(where on the left, oy is in n — i variables).

Proof. Follows easily from Proposition U

The following theorem provides a useful characterization of A,. Essentially, the
theorem is only a restatement of the standard fact that a univariate real polynomial
with only real roots has only negative roots iff all of its coefficients are positive.

Theorem 20. A, ={z:04(\(z)) >0, k=1,...,n}

Proof. Trivially, if z € A,, then oy(A(z)) > 0 for all k, giving the inclusion “C”.
For the reverse inclusion, note that if oy (A(x)) > 0 for all k, and if A < 0, then

pQe =) = ple) [ (A = A;(2))

J

=p(e) Y _(=1) ar(A(z)A" "

= (—=1)"p(e) Y _ or(Ax))|A"*
£0.

Since A is an arbitrary negative number, all eigenvalues of x must thus be non-
negative, i.e., r € A,. O

Of the inequalities o (A(z)) > 0 appearing in the characterization provided by
Theorem 20} o,,(A(z)) > 0 is most crucial. Indeed, A, is the connected component
of {z : ,(A(z)) > 0} containing e (Proposition [1)). The role of the remaining
inequalities (i.e., ox(z) > 0, k < n) is only to isolate the particular connected
component.

The theorem yields the characterizations
A ={x:0,(Mx)) >0 and ox(A(x)) >0, 1 <k <n}
={z:0r(A\(z)) >0, k=1,...,n},
where the second identity is due to the first identity and the positivity of eigenvalues
for x € A, .. Furthermore, applying the theorem to A(f ) and relying on Corollary

AD ={z:o,(MN2)) >0, k=1,...,n—i},

+

(3) OAND ={z:0,_;(Mx)) =0 and op(\(z)) >0, 1 <k <n—i}.

+



HYPERBOLIC PROGRAMS 13

Corollary 21. Fori=1,...,n,
O"A, ={z e, :0,_n(ANx)) >0 and 0,11 (A(z)) = 0}.

Proof. Clearly,
O"AL = A, N ((OATIY N (9ATM)).
However, from ,

(OATD)\ (9A™) =
{x e Al 6 (M) =0 and 0, (M(2)) > 0},
yielding the corollary (because A, C A"y, O

In relation to the corollary, it should be noted that for x € A, if 0,11 (A(z)) =
0, then oy (A(z)) = 0 for all £ > n —m + 1 (simply because the first equality is
equivalent, when all eigenvalues are non-negative, to 0 being an eigenvalue for
x of multiplicity at least m). Similarly, if x € A, and o,_,,(A(x)) > 0, then
or(A(x)) > 0 for all k < n —m.

The remainder of the section is devoted to establishing two claims made in §2.

Just after Proposition EL we claimed that V2p(z) has a positive eigenvalue when
r € O'A, (the proposition implied at least n — 1 of the eigenvalues to be non-
positive). Establishing that there is a positive eigenvalue can now be accomplished
with brevity:
(e, Vp(x)e) = p@(2) = 2p(e)az(A(x)) > 0,
the inequality coming from Theorem 20| and p® () # 0 (because x € 9'A,).

The other claim from §2 which remains unjustified is handled by the following
proposition.

Proposition 22. For x € A, the value mult(x) is independent of the direction
ec A, ,.

Proof. Assume e,é € A, .. For arbitrary x € A,, let m (resp., m) denote the
multiplicity of 0 as an eigenvalue with respect to the direction e (resp., €). We
assume m < m and proceed by induction.

Trivially, if m = 0 — that is, if p(z) # 0 — then m = 0.

Assume m > 1. Clearly, = is a simple root for pém_l) in direction e. Since
e,ee A, C A(ﬁ;l), Lemma |7|thus implies z is a simple root for pém_l) in direction
¢ as well as in direction e. However,

(pm=D) = (p)m=D),
(1))(m71)

:)e (z) #0, that is, for the hyperbolic polynomial p

¢, the point
)

++,€7

and hence, (p
x is a root of multiplicity at most m — 1 for direction e. Ase,é € A,, CA
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inductive hypothesis thus applies to x and pg), yielding
(pél))lfl(x) #0 for some [ < m.

[

él))lé_l = pg) and m < m, it follows that m = m. N

Since (p

6. FACES EXPOSED

Truong and Tungel [I2] showed that all boundary facesﬂ of homogeneous cones
are exposed, i.e., the faces coincide precisely with the sets H N K, where H ranges
over all supporting hyperplanes for the cone K. Later, the exposure became a
corollary to the exposure of all faces of S"*", when Chua established that each
homogeneous cone is a slice of an SDP cone. The following theorem would likewise
become a corollary if the general Lax conjecture was established as true.

Theorem 23. All boundary faces of A, are exposed.
Towards proving the theorem, we introduce two propositions.

Proposition 24. Assume A, is reqular. Fori=0,...,n — 2, each boundary face

of A(f) either is a face of A, or is an exposed extreme direction not contained in
AL

Proof. Let F @) be a boundary face of A(f). Since Corollary asserts that each
T € (8/\@) \ A is an exposed extreme direction of AY| we may assume F@ C A, .
However, then F is trivially a face of A, , because A, C Ag‘). O

For a face F, let relint(F') denote its relative interior.

Proposition 25. Assume F is a boundary face of A, other than the lineality space.
If x € relint(F') and m := mult(zx), then F is a face of A,

Proof. We may assume A, is regular (via the observations just prior to Theo-
rem [14)).

Assume z € relint(F'). Thus, F' is the unique face of A, containing z in its
relative interior.

Since F' is not the lineality space, x is not in the lineality space. Hence, m :=
mult(z) < n —1 (Proposition [L1)).

Let G be the face of As,mfl) containing x in its relative interior. Since m — 1 <
n — 2, Proposition [24] shows G is a face of A,. By uniqueness of F', we conclude
G=F. O

IThe faces of a convex set S are its subsets F with the property that for each open line segment
in S that intersects F, the closure of the segment lies in F'. (For results on the facial structure of
general convex sets, we recommend [I1], Chaps. 1, 2.)
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Proof of Theorem [23: The lineality space is, of course, an exposed face. Thus, we
may assume F'is a boundary face other than the lineality space.

Choose z € relint(#'). By Proposition F is a face of A"V where m =
mult(x). Consequently, since z has multiplicity 1 in Ai’”*”, Theorem m shows the
tangent space to Ai’”*” at x exposes F' as a face of Aimfl). Since A, C Aimfl), F
also is thusly exposed as a face of A,. O

For faces F' of A, define

mult(F) := min mult(z).

The next result gives some insight into the algebraic structure of faces.

Theorem 26. Assume F is a face of A, and x € F. Then
mult(z) = mult(F) iff 2 € relint(F).

Proof. Trivially, the statement is true for F' = A .

If F is the lineality space, then F' = relint(F); hence, the statement of the
theorem is immediate from Proposition |11}

Finally, assume F' is a boundary face other than the lineality space.

Assume z € relint(F'). By Proposition , F c OA™ | where m := mult(z).
Since, trivially, z & A" we have mult(z) = mult(F).

Now assume z is in F', but not in the relative interior. Let L denote a line
through x which intersects the relative interior.

For all y € L Nrelint(F), we know, from above, that mult(y) = mult(F). Con-
sequently, for all these points y, we have p(y) = 0 if i < mult(F). Since there

are infinitely many such points, the polynomials p, i < mult(F), must thus be
identically 0 on L.

On the other hand, p®(z) > 0 for i > mult(z) (i.e., z € A for i > mult(z)).

If it was the case that mult(x) = mult(F'), these observations would imply, for
all i = 1,...,n, that p@(2) > 0 for all z in an open interval of L containing .
The open interval would be contained in A, (Proposition and Theorem ,
and thus, contained in any face of A, containing x — in particular, contained in F.
However, z is an endpoint of L N F'. Hence, mult(z) > mult(F). O

7. HYPERBOLIC PROGRAMS

A hyperbolic program — or “hyperbolic instance” — is an optimization problem
instance of the form .
min c*z
st. Ar=0b
r e,
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Define
trace(x) := Z Aj(z),
J

a functional which, by Proposition is linear. As this functional — like all of the
hyperbolic polynomials z +— ox(A(z)) for 1 < k < n — depends on the derivative
direction e, we sometimes write trace, for clarity.

Let A% denote the dual cone (the set of linear functionals which are non-negative
everywhere on A,). The following theorem shows that under the standard opti-
mization assumption of strict dual feasibilityﬂ, c*x can be replaced by trace, for
some e € AS. Under slightly different guise (made apparent by the proof), the
theorem is central to the general duality theory of interior-point methods ([8]; also
see [10]).

Theorem 27. If A, is regular, then
(A%)° = {trace. :e € A, }.

Proof. The mapping A,, — R given by e — —Inp(e) is a self-concordant barrier
functional (c.f., [10], p.70), and consequently, e — DInp(e) is a bijection between
A, and (A*)° (c.f, [10], Prop. 3.3.2). However, for all z,

Dlnp(e)x = ﬁ%p(e + tx)] =0

and
ple + tz) = p(e) H Aj(e+tz) = p(e) H(l +tAj(x)),
implying D In p(e)z = trace.(z). O

8. RELAXATIONS

When ¢* = trace = trace., the derivative cones A(f) = AS?E provide natural
relaxations to a hyperbolic program, the relaxations themselves being hyperbolic
programs:

min trace(x)

st. Axr =0
x € ASf).

2For readers unfamiliar with the notion of strict dual feasibility: A hyperbolic instance equiv-
alent to HP is obtained by replacing c*x with s*x, where s* is any linear functional for which
there exists y* satisfying y* A+ s* = ¢*. Indeed, ¢* (21 — x2) = $*(x1 — 22) for all z1, 25 satisfying
Az = b, so the ordering on feasible points induced by the objective function is identical for the
two instances. The instance HP is said to be strictly dual feasible if s* can be chosen from (A*)°,
the interior of the dual cone.
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The sequence of relaxations obviously is ripe for induction, especially in light of
the relations

trace(x) := Z )\j@) — % Z )\gz’) (z)
Jj=1 j=1

(by Proposition . We give one example of results that can be derived from the
preceeding development.

Let Q) denote the optimal solution set of the i** relaxation. Thus, the optimal
solution set for the original hyperbolic program is Q.

Theorem 28. Assume A, is regular, and assume the original hyperbolic program
is feasible. Then QW £ 0, i =0,...,n — 1. Furthermore, fori=0,...,n — 2,

either QU consists of a unique point, and QD N QY =0 for j £ 1,
or QW =00 = =00

Proof. Trivially, all of the relaxations are feasible.

Proposition implies A(f) is regular for i=0,...,n—2 Consequently, since
trace = > ;Aj Is a positive multiple of > ; )\y), Theorem [27| applied to AEZ) shows
the i*" relaxation to be strictly dual feasible for i = 0,...,n — 2.

Being both feasible and strictly dual feasible, the i** relaxation, i = 0,...,n —2,
has at least one optimal solution, a consequence of standard duality theory for
convex optimization (c.f., [10], §3.2).

By Proposition Q@ (i =0,...,n — 2) thus either consists of a unique point
not in A, or is a face of A,. Since A, C Agf), in the latter case it is easily argued
that Q0 = QO,

Finally, A"V = {x : trace(z) > 0} (Corollary |19 and Theorem [20)), from which
it trivially follows that Q1) =£ (. O

9. OrF COMPUTATION

It might appear that most higher derivatives would be exorbitantly expensive
to compute, in which case the relaxed hyperbolic programs would be practically
useless. In LP, for example, where p(x) = y---x,, we have that p®(z) is a
constant multiple of o,,—;(£*, ..., #), a polynomial with (") terms (exponentially
many terms when ¢ is in the mid-range between 0 and n).

Effective computation of the derivatives can be made, however, via interpolation,
assuming the desired outcome to be, say, values of derivatives — or values of their

gradients and Hessians — at a specified point .

To illustrate, first recall that a univariate polynomial ¢(t) = > "1, a;t" is deter-
mined by the values ¢(¢;) for any set of n + 1 distinct complex numbers ¢, ..., t,.
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Indeed, assuming ¢y = 0 (so ag = ¢(to)), the coefficients a;, i = 1,...,n, are the
unique solution for the following linear equations involving a Vandermonde matrix:

ot oy |

o(t1) — ¢(0)

tz tzil ety . QS(tn) - ¢(0)
ai

This already makes apparent that computing all of the coefficients a; — equivalently,
computing all of the derivative values qﬁ(i)(O) — requires no more work than solving
an n X n system of linear equations (plus the effort required for the evaluations
¢(0)7 (b(tl)’ R (b(tn))

By choosing t; = w’, where w is a primitive n'" root of unity, the inverse of the
Vandermonde matrix becomes of particularly simple form:

1 1 e 1 1

1 w w2 oo w2(n_1) 1
n| o : . : :
wnfl w(n71)2 oo w(nfl)(nfl) 1

(there are only n distinct entries in the matrix, the n'* roots of unity). Now,
determining the coefficients ay is only a matter of matrix-vector multiplication.

Cooley and Tukey [3] showed even further reduction in computational effort
can be made due to the pattern of entries in the inverse when n is a power of
2 (one can always pad a polynomial to make its degree be a power of 2). The
resulting algorithm — the (inverse) Discrete Fourier Transform — computes all of
the coefficients a; with O(nlog”n) arithmetic operations (given the values ¢(0),
P(w?)).

To relate this to hyperbolic programming, let ¢(t) := p(x + te), where z is
specified. Then, a; = Z.l!p(")(:zr). Consequently, the values of all derivatives at x are
efficiently computable if the values p(x) and p(z +w/e) can be quickly determined.
(In LP, for example, the values certainly can be quickly determined; p(z + w’e) =
(r1 +w?) - (2, + W9).)

This strategy extends to computing not only the values of the derivative polyno-
mials p, but also their gradients and Hessians. Indeed, noting fori = 1,...,n—1
that 377 | w” = 0 (because Y 7 | # = t(t" — 1)/(t — 1)), the matrix-vector multi-
plication gives

pO(x) = &3 wip(e +wie)  i=1,...n-1,
j=1
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and hence,

Vp(z) =12 Z WIVp(x 4+ wie),

j=1
Vi (z) =2 Z WIV?p(z + We).
j=1
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