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Pooled Association Tests for Rare Variants
in Exon-Resequencing Studies

Alkes L. Price,1,2,3,6 Gregory V. Kryukov,3,4,6 Paul I.W. de Bakker,3,4 Shaun M. Purcell,3,5 Jeff Staples,3,4

Lee-Jen Wei,2 and Shamil R. Sunyaev3,4,*

Deep sequencing will soon generate comprehensive sequence information in large disease samples. Although the power to detect asso-

ciation with an individual rare variant is limited, pooling variants by gene or pathway into a composite test provides an alternative

strategy for identifying susceptibility genes. We describe a statistical method for detecting association of multiple rare variants in

protein-coding genes with a quantitative or dichotomous trait. The approach is based on the regression of phenotypic values on indi-

viduals’ genotype scores subject to a variable allele-frequency threshold, incorporating computational predictions of the functional

effects of missense variants. Statistical significance is assessed by permutation testing with variable thresholds. We used a rigorous pop-

ulation-genetics simulation framework to evaluate the power of the method, and we applied the method to empirical sequencing data

from three disease studies.
Introduction

GWAS have successfully identified hundreds of loci

harboring common variants that are reproducibly associ-

ated with complex traits. However, common variants iden-

tified to date typically explain only a small fraction of over-

all heritability, motivating interest in low-frequency or rare

variants that may contribute to genetic risk.1,2 Technolog-

ical advances in high-throughput sequencing platforms

will soon make it possible to extend association studies to

low-frequency and rare variants, particularly in targeted re-

sequencing of exons.3,4 Rare variants are predicted to be en-

riched for functional alleles and to exhibit stronger effect

sizes than common variants, consistent with the view

that functional allelic variants are subject to purifying selec-

tion pressure.5–7 Deep-resequencing studies of candidate

genes have already demonstrated the effect of rare alleles

on several complex traits of biomedical relevance.8–14

The statistical power to detect phenotypic association

with an individual rare variant is limited, due to the small

number of observations for any given variant and a more

stringent multiple-test correction as compared to common

variants. This motivates analytical approaches that test the

combined effect of multiple rare variants, but this requires

prior specification of which variants to combine into the

test. To date, most candidate-gene resequencing studies

have compared the number of individuals carrying alleles

exclusive to either of the phenotypic extremes. This strategy

effectively eliminates common alleles from the test because

theywould be present in individuals at both extremes unless

they have enormous effect. For large sample sizes, however,

limiting the association analysis to exclusive alleles may

unnecessarily reduce the statistical power of the test.
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A recently proposed approach is to pick a fixed allele-

frequency threshold and perform an association test on

the set of variants below that threshold, giving them

each equal weight (more generally, variants can be

collapsed into multiple frequency bins).15 Another

approach is to weight counts of each variant on the basis

of the estimated variance under the null hypothesis of

no association.16 This scheme applies much higher

weights to very rare variants, and it implicitly assumes

that the log odds ratio is approximately inversely propor-

tional to the square root of the allele frequency, as we

show below.

Using population-genetics simulations informed by

empirical sequencing data, we analyzed the relationship

between the phenotypic effect and the allele frequency

of a mutation within an evolutionary model that incorpo-

rates purifying selection. These simulations highlighted

the potential value of a statistical approach that uses a vari-

able allele-frequency threshold instead of a fixed

threshold. We have implemented such an approach, as-

sessing statistical significance by permutation testing

with variable thresholds, and we show that this approach

indeed improves statistical power in both simulated and

empirical data sets. In particular, this approach does not

make implicit assumptions about the relationship between

allele frequency and odds ratio.

Next, we have incorporated computational predictions

of the functional effect of amino acid changes17,18 in the

statistical test. The test gives higher weight to allelic vari-

ants predicted to be functionally significant and lower

weight to variants predicted to be functionally insignifi-

cant. We show that incorporating computational predic-

tions of functional importance further boosts power.
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Table 1. Power of Various Approaches Using Quantitative
Phenotypes

T1 T5 WE VT VTP

a ¼ 0.001 0.137 0.182 0.098 0.204 0.259

a ¼ 0.05 0.547 0.503 0.543 0.600 0.686

We display results for T1 (1% allele-frequency threshold), T5 (5% allele-
frequency threshold), WE (weighted), VT (variable threshold), and VTP (VT
plus Polyphen) analyses for a ¼ 0.001 and a ¼ 0.05 significance levels, based
on 10,000 independent simulations.

Table 2. Power of Various Approaches Using Dichotomous
Phenotypes

T1 T5 WE VT VTP

a ¼ 0.001 0.089 0.150 0.078 0.161 0.213

a ¼ 0.05 0.482 0.458 0.488 0.533 0.625

As in Table 1, we display results for T1, T5, WE, VT, and VTP analyses for
a ¼ 0.001 and a ¼ 0.05 significance levels, based on 10,000 independent
simulations.
Material and Methods

Simulation Framework
The demographic history and distribution of selection coefficients

associated with de novo missense mutations were determined by

analyzing resequencing data from individuals of European

ancestry, as described previously.4 The parameters of the demo-

graphic-history model included ancestral population size,

bottleneck population size, final population size, and duration

of exponential growth. The missense-to-synonymous ratio for de

novo mutations was assumed to equal 2.3 (see 4). The model was

shown to recapitulate the site-frequency spectrum of nonsynony-

mous human SNPs. We note that exponential population growth

and purifying selection are critical features of the model for the

analysis of rare alleles. We used this population-genetics model

to generate 9 kb of sequence data in each of 10,000 individuals.

We considered only missense mutations; nonsense, frameshift,

and splice-site mutations were not simulated. Corresponding

phenotypes were generated as follows: individuals that harbored

a missense mutation with an associated selection coefficient

greater than s had a normal distribution of quantitative trait

values, with the same variance as noncarriers but with a mean

shifted by d standard deviations. Although the use of a discrete

cutoff on selection coefficients for assigning function is clearly

an oversimplification, we believe that this will not affect our

results because selection coefficients do not explicitly enter into

any of our association tests, which consider only weakly related

variables. We generated data for 10,000 independent simulations

for each of s ¼ 0.0001, s ¼ 0.001, and s ¼ 0.01. (We note that

the choice of s affects not only the average selection coefficient

associated with damaging missense mutations but also the frac-

tion of missense mutations that affect phenotypes.) In each case,

we simulated 3 kb of sequence for each of d ¼ 0.125, d ¼ 0.25,

and d ¼ 0.5. Our main results (Tables 1 and Table 2) focus on

d ¼ 0.25, which is intermediate between values characteristic for

relatively common SNPs segregating in the population (< 0.05

standard deviations [SD]) and mutations associated to Mendelian

syndromes (> 1 SD), and on s ¼ 0.001, which is close to the

median value for s estimated from empirical data.4 We note that

values of s and d, rather than average values for segregating alleles,

were specifically chosen to model new missense mutations.

Weighted Approaches Correspond to Implicit

Assumptions about Log Odds Ratios
We derive the result that a log likelihood ratio for a causal model

with specified odds ratios will weight counts of variants in propor-

tion to their log odds ratios. For SNP i (i¼ 1 to m), suppose that the

allele frequency pi in controls is known, let Ri be the odds ratio in

the causal model, and suppose that observed counts in cases are Ci

copies of the reference allele and Ni � Ci copies of the variant

allele. It follows that the allele frequency qi in cases under the

causal model is qi¼ Ripi / [1þ (R� 1)pi], so that the likelihood ratio

for the causal model versus the null model is

Ym
i¼1

�
qi

pi

�Ci
�
1� qi

1� pi

�Ni�Ci

¼
Ym
i¼1

�
Ri

1þ ðRi � 1Þpi

�Ci
�

1

1þ ðRi � 1Þpi

�Ni�Ci

:

Thus, conditional on the total counts Ni, the log likelihood ratio

is proportional to
Pm
i¼1

CilogðRiÞ. It follows that the weights

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ

p
for Ci proposed by 16 correspond to the implicit

assumption that logðRiÞ � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ

p
. (We note that this rela-
The Ame
tionship between log odds ratio and allele frequency was also

assumed in the simulations of 16.)

Fixed-Threshold Approach

For dichotomous phenotypes, we computed the score
Pm
i¼1

xiCi, in

which i indexes SNPs, Ci is the reference allele count of SNP i in

cases, and xi is an indicator variable that is equal to 1 if the

frequency of SNP i is below a specified threshold (1% or 5%) and

is equal to 0 otherwise. Statistical significance was assessed by

permutations on phenotypes. We generalize this to quantitative

phenotypes by computing
Pm
i¼1

Pn
j¼1

xiCijpj, in which j indexes

samples, Cij is the reference allele count of SNP i in sample j, and

pj is the phenotype of sample j.

Weighted Approach
For dichotomous phenotypes, following 16 we computed the score

Pm
i¼1

xiCi, in which xi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ

p
is the inverse square root of ex-

pected variance based on allele frequencies pi computed from

controls only, with pseudocounts (see Equation 1 of 16). Statistical

significance was assessed by permutations on phenotypes. We

generalize this to quantitative phenotypes by computing

Pm
i¼1

Pn
j¼1

xiCijpj, in which xi is now based on allele frequencies

pi computed from all samples, with pseudocounts.

Variable-Threshold Approach
We propose a variable-threshold approach. The intuition behind

this approach is that there exists some (unknown) threshold T

for which variants with a minor allele frequency (MAF) below T

are substantially more likely to be functional than are variants

with an MAF above T. Thus, we compute a z-score z(T) for each

allele-frequency threshold T, define zmax as the maximum z-score

across values of T, and assess statistical significance of zmax by

permutations on phenotypes, allowing zmax in permuted data to

be attained at values of T different than those in unpermuted

data to ensure the validity of the permutation test. In contrast to
rican Journal of Human Genetics 86, 832–838, June 11, 2010 833



the fixed-threshold approach, it is necessary for z(T) to account

for the fact that the variances of relevant sums vary with different

values of T, which will be compared when computing zmax. Thus,

for either dichotomous or quantitative phenotypes, we compute

z(T) as the z-score of a regression across samples of phenotypes

versus counts of mutations meeting the allele-frequency threshold

T. For computational speedup, we use linear regression instead of

logistic regression, letting xT
i be an indicator variable that is equal

to 1 if the frequency of SNP i is below the threshold T and equal

to 0 otherwise, letting p be the mean value of pj across samples

j, and defining zðTÞ ¼
Pm
i¼1

Pn
j¼1

xT
i Cijðpj � pÞ=½

Pm
i¼1

Pn
j¼1

ðxT
i CijÞ2�1=2, which

is proportional to a standard normal variable.

We used 1000 permutations in all of our simulations. In the case

of dichotomous phenotypes, ties between zmax in permuted and

unpermuted data may arise. These ties were broken randomly to

ensure an appropriate uniform distribution for permutation statis-

tics under null data. We define a p value as (x þ 1) / (P þ 1), in

which P is the total number of permutations and x is the number

of permutations for which zmax is higher in unpermuted data than

in permuted data.

The use of multiple allele-frequency thresholds in a permuta-

tion-testing framework raises questions as to the computational

complexity of this approach. However, by aggregating partial

sums for increasing values of allele frequency T, starting with

singleton mutations and continuing with only those values of T

corresponding to allele frequencies of actual SNPs, the computa-

tional cost for analyzing a single gene is proportional only to the

total number of minor alleles observed times the number of

permutations tested. For each of our simulations involving one

gene, 10,000 individuals, and 1000 permutations, running time

was roughly 1 s, which is scalable to genome-wide studies of

20,000 genes. Although a larger number of permutations may be

desired for the achievement of genome-wide significance, these

can be limited to genes with suggestive evidence of association

on the basis of 1,000 permutations, a standard approach to permu-

tation testing in GWAS.

Cheating Approach to Incorporating 4(p)
We investigated the potential advantage of explicitly capturing

the relationship between allele frequency and functional effect,

via a ‘‘cheating’’ approach that weights variants according to the

probability 4(p) that an allele of frequency p is functional, as in-

ferred by using the same simulated data used to evaluate power.

We implemented the cheating approach for quantitative pheno-

types, using the weighted score
Pm
i¼1

Pn
j¼1

xiCijpj, in which xi ¼ 4ðpiÞ

was computed with the use of binned values from simulations.

Statistical significance was assessed by permutations on pheno-

types.

Incorporation of Computational Predictions

of Functional Effects
We investigated whether incorporation of PolyPhen-2 scores

improves our statistical test.17,18 We calculated distribution of Pol-

yPhen-2 probabilistic scores for neutral and damaging amino acid

changes. For the neutral set we used amino acid substitutions that

were fixed in the human lineage after divergence from chim-

panzee, and for the damaging set we used known disease-causing

missense mutations that cause the same phenotype as do

nonsense mutations in the same gene. From these two distribu-
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tions we determined posterior probabilities p(S) of being func-

tional for each SNP, given raw PolyPhen-2 probabilistic score S.

These recalibrated posterior probabilities p(S) were applied as

weights in the regression. We used the PolyPhen-2 predictions

only for rare variants (MAF < 1%), applying a constant weight

of 0.5 for low-frequency or common variants (1.0 for nonsense,

frameshift, and splice-site variants, which are extremely likely to

be functional), so that average PolyPhen-2 weight was indepen-

dent of allele frequency.

To evaluate the incorporation of computational predictions

within our simulation framework, we needed to generate simu-

lated PolyPhen-2 predictions. We did this by sampling Poly-

Phen-2 scores from their known distributions for functional and

neutral variants (which are defined in our simulations according

to selection coefficient threshold s). The functional and neutral

distributions of PolyPhen-2 scores for damaging and neutral muta-

tions provide a reasonable approximation to PolyPhen-2 scores

that would be generated from empirical sequence data.
Application to Empirical Data Sets
We analyzed resequencing data providing established associations

between multiple rare or low-frequency variants and triglyceride

levels, type 1 diabetes, and obesity, as described in previous

work.11,13,14 Data for triglyceride level were split into six groups ac-

cording gender and ethnicity (Non-Hispanic Whites, Non-

Hispanic Blacks, and Hispanics), and normalized rank within the

group was used as a quantitative trait value. For this data set,

following 14 we also considered a discrete phenotype defined by

membership in top or bottom quartiles, with data from remaining

samples ignored for the discrete phenotype analysis. Functional

predictions for each missense variant were calculated with Poly-

Phen-2.17,18 PolyPhen-2 scores were used for computing Bayesian

posterior probabilities, and weights were applied as described

above. Statistical tests were applied to previously associated gene

sets: ANGPTL3 (MIM 604774), ANGPTL4 (MIM 605910),

ANGPTL5 (MIM 607666) for triglyceride levels, IFIH1 (MIM

606951) for type 1 diabetes, and a set of 21 genes for obesity.11,13,14

For each statistical test, the number of permutations was increased

to 100,000, 10,000,000, and 100,000 for the analyses of triglyc-

eride level, type 1 diabetes, and obesity, respectively, for increased

precision in p values.
Results

Simulation Framework

We used population-genetics simulations to characterize

the allele-frequency spectrum of rare variants involved in

complex traits and to motivate statistical strategies to iden-

tify such alleles (see Material and Methods). We primarily

focus on the parameter values d ¼ 0.25 and s ¼ 0.001, the

most realistic values, but we also consider other values to

explore robustness of the model characteristics with respect

to these parameters (see Material and Methods).4 All simu-

lations involved a sample size of 10,000 individuals.

We first investigated how phenotypic effects vary with

allele frequency for nonsynonymous variants in this simu-

lation framework. In Figure 1A, we plot the probability 4(p)

that a nonsynonymous variant is functional (i.e., has

a selection coefficient greater than s) as a function of the
2010



Figure 1. Probability 4(p) that a Nonsynonymous Variant Is
Functional as a Function of Allele Frequency p
Results are based on 10,000 independent simulations in which we
vary the selection parameter s: s ¼ 0.01 (log10s ¼ �2), s ¼ 0.001
(log10s ¼ �3), or s ¼ 0.0001 (log10s ¼ �4). We also plot the value
4(p) ~1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
(as implicitly assumed by the weighted

approach). All probabilities are normalized by the corresponding
probability for singleton mutations. Panels (A) and (B) are iden-
tical except for the different range of the allele frequency p, with
panel (B) restricted to very rare alleles.
allele frequency p, normalized by the value 4(1/2N) for

singleton variants (N ¼ 10,000). Because our model

assumes that the phenotypic distribution is shifted for

these variants, 4(p) is directly related to the expected

phenotypic effect of an allele with frequency p (the distinc-

tion between quantitative and dichotomous phenotypes is
The Ame
addressed below). For comparison, we also plot the value

4(p) ~1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
, as implicitly assumed by the approach

of 16 (see Material and Methods). Figure 1A indicates that

4(p) is a decreasing function of p, but decreasing at a rate

that may differ substantially from1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
, depending

on the value of s. Furthermore, 4(p) is not robust with

respect to model parameters and is likely to vary across

genes and phenotypes.

Of particular interest are variants whose individual

phenotypic association can be confirmed in a well-powered

follow-up genotypic study in a larger sample. These variants

should be of strong phenotypic effect and sufficient popu-

lation frequency (even though still can be classified as

low-frequency variants). We refer to these variants as ‘‘goldi-

locks’’ variants. For example, an allele with a frequency

of 0.5% could be easily detected by resequencing of 1000

samples. Assuming an effect size of d ¼ 0.25, follow-up

genotyping of 10,000 samples has 57% power to identify

a significant association at p ¼ 0.001 (92% power at p ¼
0.05). Our simulations suggest that goldilocks alleles can

be quite common under our simple mutation-selection-

drift model. For d ¼ 0.25 and s ¼ 0.001, we find that about

one-eighth of genes affecting the trait are expected to

have at least one functional allele in the frequency range

between 0.5% and 2%. However, this depends on the

strength of selection: functional alleles in this frequency

range are expected to be present in a substantial fraction

of genes with variants under weak selection (s ¼ 0.0001)

affecting the trait, but absent from the population under

strong selection (s ¼ 0.01) (Figure S1, available online). It

is important that methods for detecting association be

effective either in the presence or in the absence of goldi-

locks alleles; otherwise, true associations may be missed.
A Variable-Threshold Approach for Pooling Multiple

Rare Variants

On the basis of these results, we were motivated to develop

a statistical strategy for associating multiple rare variants to

a quantitative trait that can adapt to properties of indi-

vidual genes. Different genes may have very different rela-

tionships between allele frequency and functional effect

(Figure 1). In addition, some genes may harbor functional

alleles at higher frequencies, whereas other genes may

have only private functional variants (Figure S1). In our

variable-threshold approach, we group rare alleles together

by optimizing an allele-frequency threshold that maxi-

mizes the difference (as quantified by a z-score; see

Material and Methods) between distributions of trait

values for individuals with and without rare alleles. The

value of the optimal allele-frequency threshold often varies

considerably, even for fixed simulation parameter values,

but the optimal score is robust to the shape of the z-score

versus frequency-threshold curve. To control type I error,

we apply the same optimization procedure to permuted

data to obtain an exact p value for association (see Material

and Methods and Web Resources).
rican Journal of Human Genetics 86, 832–838, June 11, 2010 835



Incorporation of Computational Predictions of

Functional Effects

A major limitation of statistical tests combining multiple

variants is that, without prior functional information

about individual alleles, nonfunctional alleles are

combined together with functional alleles. Statistical

power can in principle be improved by the incorporation

of functional predictions,11,19 and this motivates a system-

atic effort to evaluate formal methods for incorporating

these predictions. We previously developed the PolyPhen

software for predicting the effect of amino acid

changes.17,18 We incorporated PolyPhen-2 scores into our

statistical method as described above (see Material and

Methods). We used the PolyPhen-2 predictions only for

rare variants (MAF < 1%) so as not to exclude the signals

of low-frequency or common variants (see Material and

Methods). (PolyPhen-2 is most effective in predicting the

functional effect of rare variants, which are more likely

to be deleterious than are low-frequency variants, and

the cost of misprediction becomes too high and may

reduce power if the test is dominated by a few low-

frequency variants.)

Evaluation of Statistical Tests on Simulated Data Sets

We evaluated several approaches: a fixed allele-frequency

threshold approach (1% or 5%), a weighted approach

generalizing 16, and our variable-threshold approach with

or without incorporation of simulated PolyPhen predic-

tions (see Material and Methods). We first applied these

approaches to quantitative phenotypes, using the simula-

tion framework described above. In each case we

computed statistical significance for each of 10,000 inde-

pendent simulations by applying the same test to 1000

different sets of permuted phenotypes, ensuring a properly

controlled type I error rate. We computed power to detect

associations at a significance level of either a ¼ 0.05 or a ¼
0.001. (These significance levels correspond to candidate-

gene studies that are currently being carried out; whole-

exome studies would require much larger sample sizes to

be well-powered at these effect sizes4). Results are displayed

in Table 1. We see that the variable-threshold approach

outperforms the fixed-threshold approach and the

weighted approach; the improvement is highly statistically

significant on the basis of 10,000 independent simulations

(p << 10�12). Our results indicate a further increase in

power for incorporating PolyPhen-2 predictions, which is

generally similar to or greater than the benefit of the vari-

able-threshold approach (Table 1). These results are based

on d ¼ 0.25 and s ¼ 0.001 (values considered most real-

istic4), but a wider range of simulations using d ¼ 0.125,

0.25, or 0.50 and s ¼ 0.0001, 0.001, or 0.01 yielded similar

relative results (Table S1). We also obtained similar results

in a simulation in which phenotypes are independent of

selection coefficient (Table S2a), and we verified that

results are improved by incorporation of PolyPhen-2

predictions arising from either high-quality or low-quality

sequence alignments (Table S2b).
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We repeated the comparison using a dichotomous case-

control phenotype defined by the > 75% and < 25%

percentiles of our simulated quantitative phenotype. We

again see that the variable-threshold approach outper-

forms the weighted approach and that incorporating Poly-

Phen-2 predictions further improves power (Table 2). As

above, all of these results are based on d ¼ 0.25 and

s ¼ 0.001, but a wider range of simulations using

d ¼ 0.125, 0.25, or 0.50 and s ¼ 0.0001, 0.001, or 0.01

yielded similar relative results (Table S3). We also see that

the power that can be attained by using sequence data

from all individuals (Table 1) is higher than the power at-

tained by using sequence data from the top and bottom

phenotype quartiles only (Table 2). We finally note that

all approaches (not just the variable-threshold approach)

benefited from the incorporation of PolyPhen-2 predic-

tions (Table S4).

The variable-threshold approach was motivated by the

observation that the relationship between allele frequency

and functional effect is not robust with respect to simula-

tion parameters (Figure 1). However, we wondered

whether it could be advantageous to explicitly capture

this relationship for a fixed set of parameters. To investi-

gate this, we implemented a ‘‘cheating’’ approach that

weights variants according to allele frequency p on the

basis of the values of f(p) from our simulations (see Mate-

rial and Methods). Our results should be viewed as an

upper bound on the true power that could be attained by

this specific approach, because we used the same data to

compute f(p) and to evaluate power. Nonetheless, power

was no better than the variable-threshold approach:

0.187 for a ¼ 0.001 and 0.595 for a ¼ 0.05 (compare to

Table 1). This suggests that the variable-threshold

approach performs well relative to approaches that explic-

itly model the relationship between allele frequency and

functional effect.

Evaluation of Statistical Tests on Empirical Data Sets

We analyzed data from a previous study showing that

multiple rare or low-frequency variants in the ANGPTL3,

ANGPTL4, and ANGPTL5 genes are collectively associated

to low triglyceride levels in a multiethnic population

from the Dallas Heart Study.14 Resequencing data and log

triglyceride levels (adjusted for ethnicity and gender)

were obtained for 3476 samples (see Material and

Methods). We evaluated all statistical approaches as

described above. Although the relative results should be

viewed with caution in light of the small size of these

and other empirical data sets, the variable threshold with

PolyPhen-2 approach performed well (Table 3). Consistent

with our simulations, statistical significance was reduced

when using a discrete phenotype defined by top and

bottom quartiles only (p value increases from 0.002 to

0.009 for the weighted approach, from 0.0004 to 0.005

for the variable-threshold approach).

We further analyzed data from a previous study showing

that that multiple rare or low-frequency variants in the
2010



Table 3. Results for Three Empirical Data Sets

T1 T5 WE VT VTP

Triglyceride level 0.013 0.00007 0.0020 0.00038 0.00002

Type 1 diabetes 0.001 0.0000002 0.0000004 0.0000008 0.0000002

Obesity 0.032 0.053 0.010 0.010 0.0017

We display p values for T1, T5, WE, VT, and VTP analyses on triglyceride level,
type 1 diabetes, and obesity data sets. All p values are one-sided, reflecting the
direction of the originally reported association.
IFIH1 gene are associated with a lower risk of type 1 dia-

betes.13 Resequencing data were obtained for 480 cases

and 480 controls (see Material and Methods). The variable

threshold with PolyPhen approach again performed well

(Table 3). This indicates that the variable-threshold

approach is effective in detecting low-frequency ‘‘goldi-

locks’’ variants associated with phenotype.

Finally, we analyzed data from a previous study showing

that multiple rare or low-frequency variants in 21 genes

(historically associated with monogenic forms of obesity

in humans or mice) are collectively associated to obesity

in a cohort of extremely obese or lean individuals.11 Rese-

quencing data were obtained for 379 extremely obese

samples and 378 lean samples (see Material and Methods).

Once again, the variable threshold with PolyPhen

approach performed well (Table 3). The association signal

in this case is driven primarily by very rare alleles. Overall,

our results on empirical data sets confirm our simulation

results indicating that our approach is robust in detecting

a wide variety of association signals.
Discussion

The motivation for studying rare alleles in complex traits is

based on the hypothesis that rare alleles may have larger

phenotypic effects than common alleles as a consequence

of purifying selection. Although our understanding of the

genetic architecture of complex traits is far from complete,

our simulations suggest that the relationship between

allele frequency and effect size may vary widely with the

intensity of selection, motivating our variable-threshold

approach. We have shown that this approach performs

well on simulated and empirical data, relative to other

methods, and demonstrated that the incorporation of

computational predictions of functional effects provides

a further improvement in power, concordant with recent

work.11,19 The variable-threshold approach is robust to

a range of scenarios, and it will be particularly valuable

when little is known about the likely allele frequencies

and effect sizes of the causal variants. However, there will

always be examples in which other methods perform

better: in the type 1 diabetes example, the true signal is

largely due to MAF > 1% variants, and the inclusion of

lower thresholds (T < 1%) in the variable-threshold test

increases noise and reduces power (Table 3). Conversely,

if the true signal is largely due to singleton or extremely
The Ame
rare variants, then methods that explicitly give higher

weights to extremely rare variants may perform better.

A final caveat is that population stratification may lead to

false-positive associations in this and other approaches. If

sufficient data for inferring genetic ancestry are available,

a solution is to analyze residual phenotypes with respect

to genetic ancestry.

We have focused here on a simplified scenario involving

individual-level resequencing data and an excess of rare

variants at one phenotypic extreme. However, allele

counts obtained from the resequencing of pools of individ-

uals (with concordant phenotypes within each pool) could

be analyzed in a similar fashion, though variation in the

depth of coverage between pools warrants careful statis-

tical treatment. In addition, if functional rare variants are

expected to affect phenotype in either direction, a straight-

forward extension of our method to capture this signal is to

scale the allele counts (in both original and permuted data)

by the direction of each variant’s association to phenotype,

effectively searching for an excess of rare variants of large

absolute effect. Going forward, the wealth of resequencing

data yet to be generated will shed further light on the true

contribution of rare variants to disease risk.

Supplemental Data

Supplemental Data include one figure and four tables and can be

found with this article online at http://www.ajhg.org.
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Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM) http://www.ncbi.

nlm.nih.gov/omim/

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/

VT Test Software for implementing the methods described, http://

genetics.bwh.harvard.edu/rare_variants
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