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aInstitute of Computational Mathematics, Johannes Kepler University Linz, Linz, Austria; bInstitute
of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech

Republic; cCentre for Informatics and Applied Optimization, School of Science, Information
Technology and Engineering, Federation University of Australia, Ballarat, Australia

(Received 5 December 2014; accepted 31 May 2015)

The paper concerns the computation of the limiting coderivative of the normal-
cone mapping related to C2 inequality constraints under weak qualification
conditions. The obtained results are applied to verify the Aubin property of
solution maps to a class of parameterized generalized equations.
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parameterized generalized equations
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1. Introduction

In sensitivity and stability analysis of parameterized optimization and equilibrium prob-
lems via the tools of modern variation analysis, one often needs to compute the limiting
(Mordukhovich) normal cone to the graph of the mapping N̂�(·), where N̂� stands for the
regular (Fréchet) normal cone to a closed (not necessarily convex) constraint set �. This
research started in the 90s with the paper [1], where the authors obtained an exact formula
for the above-mentioned limiting normal cone in the case when � is a convex polyhedron.
The special case of � being the non-negative orthant paved then the way to efficient
M-stationarity conditions for the so-called mathematical programmes with complementar-
ity constraints (MPCCs), cf. [2]. Later, this formula has been adapted to the frequently arising
case when the polyhedron � is given by affine inequalities.[3] Meanwhile the researchers
started to attack a more difficult case, when � is the pre-image of a closed set � in a
C2-mapping q , arising typically in non-linear or conic programming. It turned on that one
can again obtain an exact formula provided � is a C2-reducible set [4, Definition 3.135]
and the reference point is non-degenerate with respect to q and �.[4, Definition 4.70] In
the case of non-linear programming (NLP) constraints, this amounts to the standard Linear
independence constraint qualification (LICQ). These results can be found in [5,6]. The
situation, unfortunately, becomes substantially more difficult, provided the non-degeneracy
(or LICQ) condition is relaxed. Such a situation has been investigated in the case of strongly
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2 H. Gfrerer and J.V. Outrata

amenable � in [7] and [8] and in the case of NLP constraints under Mangasarian–Fromovitz
constraint qualification (MFCQ) in [9]. In both cases, one needs to impose still another so-
called second-order qualification condition (SOCQ) to obtain at least an upper estimate of
the desired limiting normal cone which is quite often not very tight. By combining results
from [9] and [10], one can further show that in the NLP case the validity of SOCQ is implied
by the constant rank constraint qualification (CRCQ) so that one needs in fact both MFCQ
(or its suitable relaxation) and CRCQ.[9] The result of [8] has been further developed in
[11], where under a strengthened SOCQ exact formula has been obtained provided the
indicatory function of � is (convex) piecewise linear.

In all above-mentioned works the authors employ essentially the generalized differential
calculus of B. Mordukhovich as it is presented in [12,13]. In recent years, however, this
calculus has been enriched by H. Gfrerer, who introduced, among other things, a directional
variant of the limiting normal cone. This notion has turned out to be very useful in fine
analysis of constraint and variational systems, cf. [14–17].

The aim of the present paper is to compute the limiting normal cone to the graph of
N̂�(·) with � given by NLP constraints under a different set of assumptions compared
with the above quoted literature. In particular, as in [18], MFCQ is replaced by the metric
subregularity of the perturbation mapping at the reference point combined with a uni-
form metric regularity of this multifunction on a neighbourhood, with the reference point
excluded. This condition is clearly weaker (less restrictive) than MFCQ. Furthermore, as
another ingredient, we employ the notion of 2-regularity, introduced in a slightly different
context by Avakov [19]. This notion enables us to introduce a new CQ called 2-LICQ
which ensures an amenable directional behaviour of active constraints. On the basis of
these two conditions, we then compute the directional limiting normal cones (or their upper
estimates) to the graph of N̂� , which eventually leads to the desired exact formula for the
limiting normal cone to the graph of N̂� at the given reference pair.

The plan of the paper is as follows. In Section 2, we collect the needed notions from
variational analysis and some essential statements from the literature which are extensively
used throughout the whole paper. Furthermore, this section contains a motivating example
showing that under mere MFCQ, the desired object cannot be generally computed via first
and second derivatives of the problem functions. Section 3 is devoted to 2-LICQ. Apart
from the definitions, one finds there several auxiliary statements needed in the further
development. The main results are then collected in Section 4, whereas Section 5 deals
with an application of these results to testing of the Aubin property of solution maps to
parameterized equilibrium problems, when � arises as a constraint set.

Our notation is basically standard. For a cone K with vertex at 0, K ◦ denotes its negative
polar cone, gph F stands for the graph of a mapping F and B signifies the closed unit ball.
Finally, d(x,�) denotes the distance of the point x to the set �.

2. Background from variational analysis and preliminaries

Given a closed set � ⊂ R
d and a point z̄ ∈ �, define the (Bouligand–Severi) tan-

gent/contingent cone to � at z̄ by

T�(z̄) := Lim sup
t↓0

� − z̄

t
=
{

u ∈ R
d
∣∣∣ ∃ tk ↓ 0, uk → u with z̄ + tkuk ∈ � ∀ k}. (1)
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Optimization 3

The (Fréchet) regular normal cone to � at z̄ ∈ � can be defined by

N̂�(z̄) :=
⎧⎨⎩v∗ ∈ R

d
∣∣∣ lim sup

z
�→z̄

〈v∗, z − z̄〉
‖z − z̄‖ ≤ 0

⎫⎬⎭ (2)

or equivalently by
N̂�(z̄) := (T�(z̄))◦.

The limiting (Mordukhovich) normal cone to � at z̄ ∈ �, denoted by N�(z̄), is defined
by

N�(z̄) := Lim sup
z

�→z̄

N̂�(z). (3)

The above notation ‘Lim sup’ stands for the outer set limit in the sense of Painlevé–
Kuratowski, see e.g. [13, Chapter 4]. Note that the regular normal cone and the limiting
normal cone reduce to the classical normal cone of convex analysis, respectively, when the
set � is convex. An interested reader can find enough material about the properties of the
above notions e.g. in the monographs.[12,13]

The following directional version of (3) has been introduced in [17]. Given a direction
u ∈ R

d , the limiting (Mordukhovich) normal cone to � in the direction u at z̄ ∈ � is defined
by

N�(z̄; u) := {z∗|∃tk ↓ 0, uk → u, z∗
k → z∗ : z∗

k ∈ N̂�(z̄ + tkuk)∀k}.
A closely related notion to N�(z̄; u) has been defined in [20].

Considering next a closed-graph set-valued (in particular, single-valued) mapping � :
R

d ⇒ R
s , we will describe its local behaviour around a point from its graph by means of

the following notion.
Given (z̄, w̄) ∈ gph�, the limiting coderivative of � at (z̄, w̄) is the multifunction

D∗�(z̄, w̄) : R
s ⇒ R

d defined by

D∗�(z̄, w̄)(w∗) := {z∗|(z∗,−w∗) ∈ Ngph�(z̄, w̄)}, w∗ ∈ R
s .

In connection with multifunctions arising in the sequel, we will extensively employ the
stability properties defined next.

Definition 1 Let � : R
d ⇒ R

s be a multifunction, (ū, v̄) ∈ gph � and κ > 0. Then

(1) � is called metrically regular with modulus κ near (ū, v̄) if there are neighbourhoods
U of ū and V of v̄ such that

d(u, �−1(v)) ≤ κd(v,�(u)) ∀(u, v) ∈ U × V . (4)

(2) � is called metrically subregular with modulus κ at (ū, v̄) if there is a neighbourhood
U of ū such that

d(u, �−1(v̄)) ≤ κd(v̄, �(u)) ∀u ∈ U. (5)

Consider now the set � ⊂ R
m defined by

� = {y|qi (y) ≤ 0, i = 1, 2, . . . , l}, (6)
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4 H. Gfrerer and J.V. Outrata

where the functions qi are twice continuously differentiable. We could conduct our analysis
without much additional effort also for � given by inequalities and equalities, but for the
sake of brevity we prefer to stick only to (6). Note that we do not impose any kind of
convexity assumptions. A central object in this paper is the regular normal-cone mapping
N̂�(·) with � from (6). If the perturbation mapping

Mq(y) := q(y) − R
l− (7)

is metrically subregular at (y, 0), then the regular normal cone N̂�(y) can be represented
as

N̂�(y) = ∇q(y)T N
R

l−(q(y)) = {∇q(y)T λ | λ ∈ R
l+, q(y)T λ = 0}.

Given elements y ∈ � and y∗ ∈ N̂�(y) we define by

�(y, y∗) := {λ ∈ N
R

l−(q(y)) | ∇q(y)T λ = y∗},
the set of Lagrange multipliers associated with (y, y∗). Moreover, with I(y) := {i ∈
{1, . . . , l} | qi (y) = 0} being the index set of active constraints,

T lin
� (y) := {v | ∇qi (y)v ≤ 0, i ∈ I(y)}

and

K (y, y∗) := T�(y) ∩ (y∗)⊥

stand for the linearized cone to � at y and critical cone to � at y with respect to y∗,
respectively. Under metric subregularity of Mq at (y, 0), the cones T lin

� (y) and T�(y)

coincide.
Given index sets I + ⊂ I ⊂ {1, . . . , l}, we write

PI +,I := {μ ∈ R
l |μi = 0, i �∈ I, μi ≥ 0, i ∈ I \ I +}

and

K I +,I(y) := {w ∈ R
m | ∇qi (y)w = 0, i ∈ I +, ∇qi (y)w ≤ 0, i ∈ I \ I +}.

Note that K I +,I(y)◦ = ∇q(y)T PI +,I . Finally, for λ ∈ R
l+, we denote by I +(λ) :=

{i | λi > 0} the index set of positive components of λ.
To simplify the notation, for a given reference pair (ȳ, ȳ∗), ȳ ∈ �, ȳ∗ ∈ N̂�(ȳ), fixed

throughout this paper, we will shortly set Ī := I(ȳ), �̄ := �(ȳ, ȳ∗), K̄ := K (ȳ, ȳ∗) and
K̄ I +,I := K I +,I(ȳ).

The formulas collected in the next statement have been proved in [5] and [13, Chapter
13].

Theorem 1 Assume that LICQ is fulfilled at ȳ and let �̄ = {λ̄} denote the unique
multiplier associated with (ȳ, ȳ∗). Then

Tgph N̂�
(ȳ, ȳ∗) = {(v, v∗) | v∗ ∈ ∇2(λ̄T q)(ȳ)v + NK̄ (v)},

N̂gph N̂�
(ȳ, ȳ∗) = {(w∗, w) |w ∈ K̄ , w∗ + ∇2(λ̄T q)(ȳ)w ∈ K̄ ◦}
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Optimization 5

and

NgphN̂�
(ȳ, ȳ∗) = {(w∗, w)|w∗ + ∇2(λ̄T q)(ȳ)w

∈ ∇q(ȳ)T D∗N
R

l−(q(ȳ), λ̄)(−∇q(ȳ)w)}. (8)

Since the last term on the right-hand side of (8) can be expressed in terms of problem
data, one also has

NgphN̂�
(ȳ, ȳ∗) =

⋃
I +(λ̄)⊂I +⊂I⊂Ī

{(w∗, w) |w ∈ K̄ I +,I, w∗ + ∇2(λ̄T q)(ȳ)w ∈ K̄ ◦
I +,I}.

(9)
If we drop LICQ, a natural option would be to require MFCQ at ȳ, i.e. the metric

regularity of the perturbation mapping Mq given by (7) near (ȳ, 0). As in [18], however,
our work will be based on a weaker notion.

Definition 2 Let ȳ ∈ �. We say that Mq is metrically regular in the vicinity of ȳ, if there is
some neighbourhood V of ȳ and some constant κ > 0 such that for every y ∈ M−1(0)∩ V ,
y �= ȳ, the multifunction Mq is metrically regular near (y, 0) with modulus κ .

This property is, in particular, implied in the following way:

Definition 3 We say that the second order sufficient condition for metric subregularity
(SOSCMS) holds at ȳ ∈ �, if for every 0 �= u ∈ T lin

� (ȳ) one has

λ ∈ ker(∇q(ȳ)T ) ∩ N̂
R

l−(q(ȳ)), uT ∇2(λT q)(ȳ)u ≥ 0 =⇒ λ = 0.

Proposition 1 ([21, Theorem 6.1], [18, Proposition 3]) Let ȳ ∈ �. Under SOSCMS,
the mapping Mq is metrically subregular at (ȳ, 0) and metrically regular in the vicinity
of ȳ.

Since MFCQ can be equivalently characterized by the condition

λ ∈ ker(∇q(ȳ)T ) ∩ N̂
R

l−(q(ȳ)) =⇒ λ = 0,

MFCQ implies SOSCMS.
To present the respective results about TgphN̂�

and N̂gphN̂�
, we introduce some additional

notation.
Given (y, y∗) ∈ gph N̂� , we introduce the index set I +(y, y∗) := ⋃

λ∈�(y,y∗) I +(λ).
With a direction v ∈ T lin

� (y), let us now associate the index set I(y; v) := {i ∈ I(y) |
∇qi (y)v = 0} and the directional multiplier set �(y, y∗; v) as the solution set of the linear
optimization problem

max
λ∈�(y,y∗)

vT ∇2(λT q)(y)v. (10)

The collection of the extreme points of the polyhedron �(y, y∗) is denoted by E(y, y∗) and
we set �E (y, y∗; v) := �(y, y∗; v)∩conv E(y, y∗). Recall that λ ∈ �(y, y∗) is an extreme
point of �(y, y∗) if and only if the family ∇qi (y), i ∈ I +(λ), is linearly independent. Since
there are only finitely many subsets of {1, . . . , l} it follows that for every y ∈ � there is
some constant κ such that

D
ow

nl
oa

de
d 

by
 [

C
ze

ch
 A

ca
de

m
y 

of
 S

ci
en

ce
s]

 a
t 0

4:
30

 2
9 

Ju
ly

 2
01

5 



6 H. Gfrerer and J.V. Outrata

‖λ‖ ≤ κ‖y∗‖ ∀y∗ ∈ R
m∀λ ∈ E(y, y∗) (11)

We now define for each v ∈ N (y) := {v ∈ R
m | ∇qi (y)v = 0, i ∈ I(y)}, i.e. the null

space of the gradients of the active inequalities, the sets

W(y, y∗; v) := {w ∈ K (y, y∗) |wT ∇2((λ1 − λ2)T q)(y)v = 0,∀λ1, λ2 ∈ �(y, y∗; v)},

�̃E (y, y∗; v) :=

⎧⎪⎨⎪⎩
�E (y, y∗; v) if v �= 0,

conv

( ⋃
0�=u∈K (y,y∗)

�E (y, y∗; u)

)
if v = 0, K (y, y∗) �= {0},

and for each w ∈ K (y, y∗) the set

L(y, y∗; v;w)

:=
{

{−∇2(λT q)(y)w | λ ∈ �̃E (y, y∗; v)} + (K (y, y∗))◦ if K (y, y∗) �= {0}
R

m if K (y, y∗) = {0}.
Again we will simplify the notation for quantities depending on ȳ or (ȳ, ȳ∗) by using
an overline, i.e. we will write Ī(v), �̄(v), W̄(v), etc. instead of I(ȳ; v), �(ȳ, ȳ∗; v),
W(ȳ, ȳ∗; v) etc.

Theorem 2 [18, Theorems 1,2] Let (y, y∗) ∈ gph N̂� and assume that Mq is metrically
subregular at (y, 0). Then

Tgph N̂�
(ȳ, ȳ∗) ⊃ {(v, v∗) | ∃λ ∈ �̄(v) : v∗ ∈ ∇2(λT q)(ȳ)v + NK̄ (v)} (12)

and

N̂gph N̂�
(y, y∗) ⊂

⎧⎨⎩(w∗, w) |w ∈
⋂

v∈N (y)

W(y, y∗; v),w∗ ∈
⋂

v∈N (y)

L(y, y∗; v; w)

⎫⎬⎭ .

(13)
Equality holds in (12) if, in addition, Mq is metrically regular in the vicinity of y and
(13) holds with equality if Mq is metrically regular in the vicinity of y and either for any
0 �= v1, v2 ∈ K (y, y∗) it holds �E (y, y∗; v1) = �E (y, y∗; v2) or I +(y, y∗) = I(y).

Very little is known about the limiting normal cone, if we drop the assumption of
LICQ. The following example demonstrates that in general we cannot describe the limiting
normal cone Ngph N̂�

(ȳ, ȳ∗) by first-order and second-order derivatives of q at ȳ, if the only
constraint qualification we assume is MFCQ.

Example 1 Let

� :=
{

y ∈ R
3 | q1(y) := y3 − y3

1 ≤ 0
q2(y) := y3 − a3 y3

2 ≤ 0

}
,

where a > 0 denotes a fixed parameter, and (ȳ, ȳ∗) = (0, 0). Obviously MFCQ is fulfilled
at ȳ. Straightforward calculations yield
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Optimization 7

N̂�(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(−3y2
1λ1, 0, λ1) | λ1 ≥ 0} if y1 < ay2, y3 = y3

1 ,

{(0,−3a3 y2
2λ2, λ2) | λ2 ≥ 0} if y1 > ay2, y3 = a3 y3

2 ,

{(−3y2
1λ1,−3a3 y2

2λ2, λ1 + λ2) | λ1, λ2 ≥ 0} if y1 = ay2, y3 = y3
1 ,

{(0, 0, 0)} if y3 < min{y3
1 , a3 y3

2},
∅ if y3 > min{y3

1 , a3 y3
2}.

By applying Theorems 1, 2 we obtain for an arbitrary pair (y, y∗) ∈ gph N̂� that the set
N̂gph N̂�

(y, y∗) consists of the collection of all (w∗, w) ∈ R
3 × R

3 satisfying

(1) w3 = 3y2
1w1, w

∗
1 = 6λ1 y1w1 − 3w∗

3 y2
1 , w∗

2 = 0, if y1 < ay2, y3 = y3
1 , y∗ =

(−3y2
1λ1, 0, λ1), λ1 > 0,

(2) w3 ≤ 3y2
1w1, w

∗
1 = −3w∗

3 y2
1 , w∗

2 = 0, w∗
3 ≥ 0, if y1 < ay2, y3 = y3

1 , y∗ = 0,
(3) w3 = 3a3 y2

2w2, w
∗
1 = 0, w∗

2 = 6λ2a3 y2w2 − 3w∗
3a3 y2

2 , if y1 > ay2, y3 = a3 y3
2 ,

y∗ = (0,−3a3 y2
2λ2, λ2), λ2 > 0,

(4) w3 ≤ 3a3 y2
2w2, w

∗
1 = 0, w∗

2 = −3w∗
3a3 y2

2 , w∗
3 ≥ 0, if y1 > ay2, y3 = a3 y3

2 ,
y∗ = 0,

(5) w3 = 3y2
1w1, w1 ≤ aw2, w∗

2 ≤ 0, w∗
3 = − 1

3y2
1
(w∗

1 − 6λ1 y1w1 + w∗
2

a ), if 0 �= y1 =
ay2, y3 = y3

1 , y∗ = (−3y2
1λ1, 0, λ1), λ1 > 0,

(6) w3 = 3a3 y2
2w2, w1 ≥ aw2, w∗

1 ≤ 0,w∗
3 = − 1

3a3 y2
2
(w∗

2 − 6λ2a3 y2w2 + aw∗
1), if

0 �= y1 = ay2, y3 = y3
1 , y∗ = (0,−3a3 y2

2λ2, λ2), λ2 > 0,

(7) w3 = 3y2
1w1, w1 = aw2, w∗

3 = − 1
3y2

1
(w∗

1+ w∗
2

a −6y1w1(λ1+λ2)), if 0 �= y1 = ay2,

y3 = y3
1 , y∗ = (−3y2

1λ1,−3a3 y2
2λ2, λ1 + λ2), λ1, λ2 > 0,

(8) w3 ≤ 3 min{y2
1w1, a3 y2

2w2}, w∗
1, w∗

2 ≤ 0, w∗
3 = − 1

3y2
1
(w∗

1 + w∗
2

a ), if 0 �= y1 = ay2,

y3 = y3
1 , y∗ = 0,

(9) w3 = 0, w∗
1 = w∗

2 = 0, if y = 0, y∗ �= 0,
(10) w3 ≤ 0, w∗

1 = w∗
2 = 0, w∗

3 ≥ 0, if y = y∗ = 0,
(11) w∗ = 0, if y3 < min{y3

1 , a3 y3
2}.

To compute the limiting normal cone Ngph N̂�
(ȳ, ȳ∗), let (w∗, w) ∈ Ngph N̂�

(ȳ, ȳ∗) and
consider sequences (yk, yk

∗) → (ȳ, ȳ∗), (w∗
k , wk) → (w∗, w) with (w∗

k , wk) ∈ N̂gph N̂�

(yk, y∗
k ). Then, for infinitely many k the pair (yk, y∗

k ) belongs to one of the above subcases
and we obtain

• w3 = 0, w∗
1 = w∗

2 = 0 in case of 1., 3., 9.,
• w3 ≤ 0, w∗

1 = w∗
2 = 0, w∗

3 ≥ 0 in case of 2., 4., 8., 10.,
• w3 = 0, w1 ≤ aw2, w∗

2 = −aw∗
1 ≤ 0 in case of 5.,

• w3 = 0, w1 ≥ aw2, w∗
2 = −aw∗

1 ≥ 0 in case of 6.,
• w3 = 0, w1 = aw2, w∗

2 = −aw∗
1 in case of 7.,

• w∗ = 0 in case of 11.

We can further conclude that

Ngph N̂�
(ȳ, ȳ∗) = ({(0, 0, w∗

3)} × {(w1, w2, 0)}) ∪ ({(0, 0, 0)} × {(w1, w2, w3)})
∪({(0, 0, w∗

3) |w∗
3 ≥ 0} × {(w1, w2, w3) |w3 ≤ 0})
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8 H. Gfrerer and J.V. Outrata

∪({(w∗
1,−aw∗

1, w∗
3) |w∗

1 ≥ 0} × {(w1, w2, 0) |w1 ≤ aw2})
∪({(w∗

1,−aw∗
1, w∗

3) |w∗
1 ≤ 0} × {(w1, w2, 0) |w1 ≥ aw2}).

We see that the limiting normal cone depends explicitly on the parameter a as contrasted
with the first-order and second-order derivatives of our problem functions qi at ȳ. Hence,
in this situation, it is not possible to get a point-based representation of the limiting normal
cone by first-order and second-order derivatives.

3. 2-Regularity and 2-LICQ

In [19], Avakov introduced the following concept of 2-regularity.

Definition 4 Let g : R
m → R

p be twice Fréchet differentiable at ȳ ∈ R
m . We say that g

is 2-regular at the point ȳ in a direction v ∈ R
m , if for all α ∈ R

p the system

∇g(ȳ)u + vT ∇2g(ȳ)w = α, ∇g(ȳ)w = 0. (14)

has a solution (u, w) ∈ R
m × R

m .

Note that Avakov [19] used this concept only for directions v satisfying ∇g(ȳ)v = 0,
vT ∇2g(ȳ)v ∈ Range ∇g(ȳ).

Given a direction v ∈ R
n and positive scalars ε, δ, the set Vε,δ(v) is defined by

Vε,δ(v) :=
{

{0} ∪ {u ∈ εB \ {0} |
∥∥∥ u

‖u‖ − v
‖v‖

∥∥∥ ≤ δ} if v �= 0,

εB if v = 0.

Proposition 2 Let g : R
m → R

p be twice Fréchet differentiable at ȳ ∈ R
m and let

0 �= v ∈ R
m. Then the following statements are equivalent:

(a) g is 2-regular at ȳ in direction v,
(b) the implication

∇g(ȳ)T λ = 0, (vT ∇2g(ȳ))T λ + ∇g(ȳ)T μ = 0 =⇒ λ = 0 (15)

holds true,
(c) there are positive numbers ε, δ and κ such that for all (y, z) ∈ (ȳ, g(ȳ)) +

Vε,δ(v,∇g(ȳ)v)) with y �= ȳ and ‖z − g(y)‖ ≤ δ‖y − ȳ‖2 one has

d(y, g−1(z)) ≤ κ

‖y − ȳ‖‖z − g(y)‖,

(d) there are positive numbers ε̃, δ̃ and κ ′ such that for all y ∈ ȳ + Vε̃,δ̃(v) one has

inf
0�=λ∈Rp

‖∇g(y)T λ‖
‖λ‖ ≥ ‖y − ȳ‖

κ ′ .

Proof The equivalence (a) ⇔ (b) is an immediate consequence of the fundamental
theorem of linear algebra, which states in particular that for every matrix A the kernel
ker A is the orthogonal complement of the row space Range (AT ). Hence, g is 2-regular at
ȳ in direction v, if and only if
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Optimization 9

R
p × {0}p ⊂ Range

(
vT ∇2g(ȳ) ∇g(ȳ)

∇g(ȳ) 0

)
=
(

ker

(
(vT ∇2g(ȳ))T ∇g(ȳ)T

∇g(ȳ)T 0

))⊥
,

being equivalent to

{0}p × R
p ⊃ ker

(
(vT ∇2g(ȳ))T ∇g(ȳ)T

∇g(ȳ)T 0

)
which is exactly (15). Note that by [16, Definition 1] statement (c) is nothing else than
the statement that the multifunction �(y) := {g(y)} is metrically pseudo-regular of order
2 in direction (v,∇g(ȳ)v) at (ȳ, g(ȳ)) and the equivalence (b) ⇔ (c) has already been
established in [16, Theorem 2, Remark 5]. Next we show the implication (c) ⇒ (d). By
[16, Lemma 1], condition (c) implies that there are ε′, δ′, κ ′ > 0 such that for every ỹ �= ȳ
with (ỹ, g(ỹ)) ∈ (ȳ, g(ȳ)) + Vε′,δ′(v,∇g(ȳ)v) the multifunction � is metrically regular
near (ỹ, g(ỹ)) with modulus κ ′/‖ỹ − ȳ‖. By using the inequality∥∥∥∥ u

‖u‖ − u′

‖u′‖
∥∥∥∥ ≤ 2

‖u − u′‖
max{‖u‖, ‖u′‖} (16)

with u = (ỹ − ȳ, g(ỹ) − ȳ) and u′ = ‖ỹ−ȳ‖
‖v‖ (v,∇g(ȳ)v) and, by taking into account that

g(ỹ) − g(ȳ) = ‖ỹ − ȳ‖(∇g(ȳ) v
‖v‖ + ∇g(ȳ)(

ỹ−ȳ
‖ỹ−ȳ‖ − v

‖v‖ )) + o(‖ỹ − ȳ‖, we obtain∥∥∥∥ (ỹ − ȳ, g(ỹ) − g(ȳ))

‖(ỹ − ȳ, g(ỹ) − g(ȳ))‖ − (v,∇g(ȳ)v)

‖(v,∇g(ȳ)v)‖
∥∥∥∥

≤ 2
‖u − u′‖
‖ỹ − ȳ‖ = 2

∥∥∥∥( ỹ − ȳ

‖ỹ − ȳ‖ − v

‖v‖ ,∇g(ȳ)(
ỹ − ȳ

‖ỹ − ȳ‖ − v

‖v‖ ) + o(‖ỹ − ȳ‖)
‖ỹ − ȳ‖

)∥∥∥∥ .

Hence, we can choose ε̃ > 0 and δ̃ > 0 small enough, such that for all ỹ ∈ ȳ + Vε̃,δ̃(v)

we have (ỹ, g(ỹ)) ∈ (ȳ, g(ȳ)) + Vε′,δ′(v,∇g(ȳ)v). Now statement (d) follows from [13,
Example 9.44]. Finally, we prove the implication (d) ⇒ (b) by contraposition. Assuming
that there are 0 �= λ̄ ∈ R

p, μ̄ ∈ R
p with ∇g(ȳ)T λ̄ = 0 and (vT ∇2g(ȳ))T λ̄+∇g(ȳ)T μ̄ = 0,

we have

∇g(ȳ + tv)T (λ̄ + tμ̄) = ∇g(ȳ)T λ̄ + t ((vT ∇2g(ȳ))T λ̄ + ∇g(ȳ)T μ̄) + o(t) = o(t)

and therefore

inf
0�=λ∈Rp

‖∇g(ȳ + tv)T λ‖
‖λ‖ = o(t)

contradicting (d). �

Remark 1 Statement (d) of Proposition 2 says that for every y ∈ ȳ + Vε̃,δ̃(v) with y �= ȳ
the Jacobian ∇g(y) has full rank and its smallest singular value is bounded below by
‖y − ȳ‖/κ ′. Consequently, for every right-hand side α ∈ R

p the system ∇g(y)u = α has
a solution u satisfying

‖u‖ ≤ κ ′‖α‖
‖y − ȳ‖ .

The following lemma is useful for estimating index sets of active constraints:
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10 H. Gfrerer and J.V. Outrata

Lemma 1 Let g : R
m → R

p be twice Fréchet differentiable at ȳ ∈ R
m, g(ȳ) = 0, let

I ⊂ {1, . . . , p} and let v ∈ R
m with ∇g(ȳ)v = 0 be given. Then there are sequences

(tk) ↓ 0, (vk) → v such that

lim
k→∞ t−2

k gi (ȳ+tkvk) = 0, i ∈ I, lim sup
k→∞

t−2
k gi (ȳ+tkvk) ≤ 0, i ∈ {1, . . . , p}\ I (17)

if and only if there is some z̄ ∈ R
m with

∇gi (ȳ)z̄ + vT ∇2gi (ȳ)v

{
= 0 if i ∈ I

≤ 0 if i ∈ {1, . . . , p} \ I.
(18)

Proof To show the ‘only if’ part, let (tk) ↓ 0 and (vk) → v be given, such that (17) holds
and consider for every b ∈ R

p the set

�(b) := {
z ∈ R

m | ∇gi (ȳ)z + bi = 0, i ∈ I, ∇gi (ȳ)z + bi ≤ 0, i ∈ {1, . . . , p} \ I
}
.

By Hoffman’s Lemma, there is some constant β̃ such that for all z ∈ R
m and all b with

�(b) �= ∅ we have

d(z,�(b)) ≤ β̃

⎛⎝∑
i∈I

|∇gi (ȳ)z + bi | +
∑

i∈{1,...,p}\I

max{∇gi (ȳ)z + bi , 0}
⎞⎠ .

For every k let rk := 2g(ȳ + tkvk)/t2
k − (2∇g(ȳ)(vk − v)/tk + vT ∇2g(ȳ)v). Because of

(vk) → v, g(ȳ) = 0 and ∇g(ȳ)v = 0 we have

0 = lim
k→∞

g(ȳ + tkvk) − (g(ȳ) + tk∇g(ȳ)vk + 1
2 t2

k vT ∇2g(ȳ)v)

t2
k /2

= lim
k→∞ rk .

Setting

bk
i :=

{
vT ∇2gi (ȳ)v + rk

i − 2gi (ȳ + tkvk)/t2
k if i ∈ I

vT ∇2gi (ȳ)v + rk
i − 2 max{gi (ȳ + tkvk), 0}/t2

k if i ∈ {1, . . . , p} \ I,

we have 2(vk − v)/tk ∈ �(bk) and therefore there is some zk ∈ �(bk) satisfying

‖zk‖ = d(0,�(bk)) ≤ β̃

⎛⎝∑
i∈I

|bk
i | +

∑
i∈{1,...,p}\I

max{bk
i , 0}

⎞⎠ .

Because of (17) and (rk) → 0 we have (bk) → vT ∇2g(ȳ)v. Hence, the sequence (zk) is
uniformly bounded and, by eventually passing to a subsequence, (zk) is convergent to some
z̄. Then we also have z̄ ∈ �(vT ∇2g(ȳ)v) and therefore z̄ fulfills (18).

The ‘if’ part follows immediately from the observation that, for every z̄ ∈ R
m , we have

lim
t↓0

t−2g(ȳ + tv + 1

2
t2 z̄) = lim

t↓0
t−2

(
g(ȳ) + t∇g(ȳ)v + 1

2
t2(∇g(ȳ)z̄ + vT ∇2g(ȳ)v)

)
= 1

2
(∇g(ȳ)z̄ + vT ∇2g(ȳ)v)

due to [13, Theorem 13.2]. �
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Optimization 11

The notion defined below represents a crucial CQ, needed in all our main results.

Definition 5 Let v ∈ T lin
� (ȳ). We say that 2-LICQ holds at ȳ in direction v for the

constraints qi (y) ≤ 0, i = 1, . . . , l, if there are positive numbers ε, δ, such that for every
y ∈ (ȳ + Vε,δ(v)) ∩ �, y �= ȳ, the mapping (qi )i∈I(y) is 2-regular at ȳ in direction v.

We now present a second-order sufficient condition for 2-LICQ. We denote by Z̄(v) the
solution set of the linear programme

min
z

−ȳ∗T z subject to ∇qi (ȳ)z + vT ∇2qi (ȳ)v ≤ 0, i ∈ Ī, (19)

which is the dual programme to (10) at (ȳ, ȳ∗), and we denote by �̄(v) the feasible region
of (19). Take z ∈ �̄(v) and define the following index subset

J (z) := {i ∈ Ī(v) | ∇qi (ȳ)z + vT ∇2qi (ȳ)v = 0}.
Consider now the collection of index subsets J̄ (v) := {J (z) | z ∈ �̄(v)}. In what follows
we say that an index set Ĵ ∈ J̄ (v) is maximal , if it is maximal with respect to the inclusion
order, i.e. for any index set J ∈ J̄ (v) such that Ĵ ⊂ J we have Ĵ = J . Note that for each
element J ∈ J̄ (v) we can always find a maximal element Ĵ of J̄ (v) such that J ⊂ Ĵ .

Proposition 3 Let v ∈ T lin
� (ȳ) and assume that for every maximal index set Ĵ ∈ J̄ (v)

the mapping (qi )i∈Ĵ is 2-regular at ȳ in direction v. Then 2-LICQ holds at ȳ in direction
v.

Proof By contraposition. Assuming on the contrary that 2-LICQ does not hold at ȳ in
direction v, there are sequences (tk) ↓ 0, (vk) → v such that (qi )i∈I(yk ) is not 2-regular at
ȳ in direction v, where yk := ȳ + tkvk �= ȳ. By passing to a subsequence, we can assume
that I(yk) = Ĩ holds for all k. It follows that

∇qi (ȳ)v = lim
k→∞

qi (yk) − qi (ȳ)

tk

{
= 0, i ∈ Ĩ
≤ 0, i ∈ Ī \ Ĩ

showing Ĩ ⊂ Ī(v), and by using Lemma 1, there is some z satisfying

∇qi (ȳ)z + vT ∇2qi (ȳ)v

{
= 0, i ∈ Ĩ
≤ 0, i ∈ Ī(v) \ Ĩ.

Putting z̄ = z + αv for α sufficiently large, we obtain

∇qi (ȳ)z̄ + vT ∇2qi (ȳ)v

{
= 0, i ∈ Ĩ
≤ 0, i ∈ Ī \ Ĩ,

showing Ĩ ⊂ J (z̄) ∈ J̄ (v). Choosing Ĵ as a maximal index set with J (z̄) ⊂ Ĵ , the
mapping (qi )i∈Ĵ is 2-regular at ȳ in direction v and we can conclude that (qi )i∈Ĩ is
2-regular at ȳ in direction v, a contradiction. �

Proposition 4 Let v ∈ T lin
� (ȳ) and a maximal index set Ĵ ∈ J̄ (v) be given and assume

that (qi )i∈Ĵ is 2-regular in direction v at ȳ. Then for every subset J ⊂ Ĵ there exists some
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12 H. Gfrerer and J.V. Outrata

τ̄ > 0 and a mapping ŷ : [0, τ̄ ] → � such that ŷ(0) = ȳ, I(ŷ(τ )) = J , LICQ is fulfilled
at ŷ(τ ) for every τ ∈ (0, τ̄ ) and

lim
τ↓0

ŷ(τ ) − ȳ

τ
= v.

Proof Let J ⊂ Ĵ be arbitrarily fixed and consider an element ẑ ∈ �̄(v) with

Ĵ = {i ∈ Ī(v) | ∇qi (ȳ)ẑ + vT ∇2qi (ȳ)v = 0}.
Since (qi )i∈Ĵ is assumed to be 2-regular in direction v and

qi

(
ȳ + τv + 1

2
τ 2 ẑ

)
= qi (ȳ) + τ∇qi (ȳ)v + 1

2
τ 2(∇qi (ȳ)ẑ + vT ∇2qi (ȳ)v) + o(τ 2)

= o(τ 2), i ∈ Ĵ ,

by means of Proposition 2(c), we can find for every sufficiently small τ > 0 some ŷ(τ )

satisfying qi (ŷ(τ )) = 0, i ∈ J , qi (ŷ(τ )) = −τ 4, i ∈ Ĵ \ J and

‖ŷ(τ ) − (ȳ + τv + 1

2
τ 2 ẑ)‖ ≤ κ‖r(τ )‖

‖τv + 1
2τ 2 ẑ‖ = o(τ ),

where

ri (τ ) :=
{

qi (ȳ + τv + 1
2τ 2 ẑ) i ∈ J ,

qi (ȳ + τv + 1
2τ 2 ẑ) + τ 4 i ∈ Ĵ \ J .

We will now show by contraposition that there is some constant c > 0 such that qi (ŷ(τ )) <

−cτ 2, i ∈ Ī(v) \ Ĵ , for all τ > 0 sufficiently small. Assume on the contrary that there is
an index j ∈ Ī(v) \ Ĵ and a sequence (τk) ↓ 0 such that lim inf k→∞ τ−2

k q j (ŷ(τk)) ≥ 0.
Applying Lemma 1 to the mapping (gi )i∈Ĵ ∪{ j} given by gi = qi , i ∈ Ĵ and g j = −q j , we

can find some z with ∇qi (ȳ)z +vT ∇2qi (ȳ)v = 0, i ∈ Ĵ , and ∇q j (ȳ)z +vT ∇2q j (ȳ)v ≥ 0.
The number

α := max{α ∈ [0, 1] | ∇qi (ȳ)((1 − α)ẑ + αz) + vT ∇2qi (ȳ)v ≤ 0, i ∈ Ī(v) \ Ĵ }
is positive because of ∇qi (ȳ)ẑ+vT ∇2qi (ȳ)v < 0, i ∈ Ī(v)\Ĵ . Thus zα := (1−α)ẑ+αz ∈
�̄(v), but by construction, the index set Ĵ is strictly contained in {i ∈ Ī(v) | ∇qi (ȳ)zα +
vT ∇2qi (ȳ)v = 0} contradicting the maximality of Ĵ . Therefore our claim is proved. Since
we also have qi (ŷ(τ )) < ∇qi (ȳ)v/2 < 0, i ∈ Ī \ Ī(v), and qi (ŷ(τ )) < qi (ȳ)/2 < 0,
i �∈ Ī, for all τ > 0 sufficiently small, we see that ŷ(τ ) ∈ � and the constraints active
at ŷ(τ ) are exactly those given by J . Further, our assumption of 2-regularity ensures that
LICQ is fulfilled at ŷ(τ ), cf. Remark 1, and this completes the proof. �

4. Computation of the limiting normal cone

By the definitions, we have the representation

Ngph N̂�
(ȳ, ȳ∗) = N̂gph N̂�

(ȳ, ȳ∗) ∪
⋃

(v,v∗)�=0

Ngph N̂�
((ȳ, ȳ∗); (v, v∗)).
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Optimization 13

We split the calculation of the limiting normal cone in directions of the form (0, v∗) into
two parts:

Ngph N̂�
((ȳ, ȳ∗); (0, v∗)) = N 1

gph N̂�
((ȳ, ȳ∗); (0, v∗)) ∪ N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)),

where

(1) N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)) is the collection of all (w∗, w) such that there are
sequences (tk) ↓ 0, (vk, v

∗
k ) → (0, v∗) and (w∗

k , wk) → (w∗, w) with vk �= 0
and (w∗

k , wk) ∈ N̂gph N̂�
(ȳ + tkvk, ȳ∗ + tkv∗

k ), and
(2) N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)) is the collection of all (w∗, w) such that there are

sequences (tk) ↓ 0, (v∗
k ) → v∗ and (w∗

k , wk) → (w∗, w) with (w∗
k , wk) ∈ N̂gph N̂�

(ȳ, ȳ∗ + tkv∗
k ).

In what follows we use the following notation:

M̄(v, v∗) := {(λ, μ) ∈ �̄(v) × TN
R

l−
(q(ȳ))(λ) | v∗ = ∇2(λT q)(ȳ)v + ∇q(ȳ)T μ},

K̄ I +,I(v) :=
{

w ∈ K̄ I +,I | ∃z ∈ R
m : ∇qi (ȳ)z + vT ∇2qi (ȳ)w

{
= 0 if i ∈ I+,

≤ 0 if i ∈ I \ I+

}
,

Q(v, λ, I+, I) := {(w∗, w) | w ∈ K̄ I +,I(v), w∗ + ∇2(λT q)(ȳ)w ∈ (K̄ I +,I(v))◦},
where I + ⊂ I are arbitrary subsets of Ī. Further, for every (λ, μ) ∈ M̄(v, v∗), we set

I +(λ, μ) = I +(λ) ∪ {i | λi = 0, μi > 0}.

Lemma 2 One has

(K̄ I +,I(v))◦ = {∇q(ȳ)T μ + ∇2(νT q)(ȳ)v |μ, ν ∈ PI +,I , ∇q(ȳ)T ν = 0}.

Proof We have

K̄ I +,I(v) =
{
w | vT ∇2q(ȳ)w ∈ Range ∇q(ȳ) + P◦

I +,I
}

∩ K̄ I +,I

and therefore (K̄ I +,I(v))◦ = cl
({

w | vT ∇2q(ȳ)w ∈ Range ∇q(ȳ) + P◦
I +,I

}◦ + K̄ ◦
I +,I

)
.

Since Range ∇q(ȳ) + P◦
I +,I ,

{
w | vT ∇2q(ȳ)w ∈ Range ∇q(ȳ) + P◦

I +,I
}

, K̄ ◦
I +,I are con-

vex polyhedral cones and hence so are also their polar cones, we obtain

(K̄ I +,I(v))◦ =
{
w | vT ∇2q(ȳ)w ∈ Range ∇q(ȳ) + P◦

I +,I
}◦ + K̄ ◦

I +,I
= (vT ∇2q(ȳ))T (Range ∇q(ȳ) + P◦

I +,I)◦ + ∇q(ȳ)T PI +,I
= (vT ∇2q(ȳ))T (ker ∇q(ȳ)T ∩ PI +,I) + ∇q(ȳ)T PI +,I

and the claimed result follows. �

Lemma 3 Consider convergent sequences (tk) ↓ 0, (vk, v
∗
k ) → (v, v∗), (λk) → λ̃ and

an index set I + such that λk ∈ �(yk, y∗
k ) and I +(λk) = I + for all k, where (yk, y∗

k ) :=
(ȳ, ȳ∗) + tk(vk, v

∗
k ). Then λ̃ ∈ �̄ and there is some μ̃ such that (λ̃, μ̃) ∈ M̄(v, v∗) and

I +(λ̃, μ̃) ⊂ I +.
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14 H. Gfrerer and J.V. Outrata

Proof Obviously, we have λ̃ ∈ �̄ and I +(λ̃) ⊂ I + ⊂ Ī. Now consider for every u∗ ∈ R
m

the set
�(u∗) := {λ ∈ R

l+ |∇q(ȳ)T λ = u∗, λi = 0, i �∈ I +}.
By Hoffman’s error bound, there is some constant β such that for every u∗ with �(u∗) �= ∅
and every λ ∈ R

l one has

d(λ,�(u∗)) ≤ β

⎛⎝‖∇q(ȳ)T λ − u∗‖ +
∑
i �∈I +

|λi | +
∑
i∈I +

max{−λi , 0}
⎞⎠ .

Since λ̃ ∈ �(ȳ∗), for every k there is some λ̃k ∈ �(ȳ∗) satisfying

‖λ̃k − λk‖ ≤ β‖∇q(ȳ)λk − ȳ∗‖ = β‖(∇q(ȳ) − ∇q(yk))
T λk + tkv

∗
k ‖

= β(tk‖v∗
k − ∇2(−λk T

q)(ȳ)vk‖ + o(tk)),

showing that the sequence μk := (λk − λ̃k)/tk is bounded. By passing to a subsequence if
necessary we can assume that the sequence (μk) converges to some μ̂. If μ̂ ∈ TN

Rl−
(q(ȳ))(λ̃),

we can take μ̃ = μ̂. Otherwise the index set L := {i ∈ I + \ I +(λ̃) | μ̂i < 0} is not empty
and we fix some index k̄ such that μk̄

i < μ̂i/2 ∀i ∈ L and set μ̃ := μ̂ + 2(λ̃k̄ − λ̃)/tk̄ . Then
for all i with λ̃i = 0 we have μ̃i ≥ μ̂i and for all i ∈ L we have

μ̃i = μ̂i + 2(λ̃k̄
i − λ̃i )/tk̄ ≥ μ̂i + 2(λ̃k̄

i − λk̄
i )/tk̄ ≥ 0

and therefore μ̃ ∈ TN
R

l−
(q(ȳ))(λ̃). Taking into account that λ̃ ∈ �̄, λ̃k̄ ∈ �(ȳ∗) ⊂ �̄ and

thus ∇q(ȳ)T μ̂ = ∇q(ȳ)T μ̃, we obtain

∇q(ȳ)T μ̃ = lim
k→∞

∇q(ȳ)T (λk − λ̃k)

tk
= lim

k→∞
y∗

k + (∇q(ȳ) − ∇q(yk))
T λk − ȳ∗

tk
= v∗ − ∇2(λ̃T q)(ȳ)v

showing (λ̃, μ̃) ∈ M̄(v, v∗). By the construction of μ̃, it is clear that I +(λ̃, μ̃) ⊂ I + and
this finishes the proof. �

On the basis of these auxiliary results, we may now state the first of the main results of this
paper. Note that for the calculation of the directional limiting normal cone, we only have to
take into account directions (v, v∗) ∈ Tgph N̂�

(ȳ, ȳ∗) because of Ngph N̂�
((ȳ, ȳ∗); (v, v∗)) =

∅ whenever (v, v∗) �∈ Tgph N̂�
(ȳ, ȳ∗).

Theorem 3 Let 0 �= (v, v∗) ∈ Tgph N̂�
(ȳ, ȳ∗) and assume that Mq is metrically subreg-

ular at ȳ and metrically regular in the vicinity of ȳ.

(1) If v �= 0, assume that 2-LICQ holds at ȳ in direction v. Then

Ngph N̂�
((ȳ, ȳ∗); (v, v∗)) ⊂

⋃
(λ,μ)∈M̄(v,v∗)

J ∈J̄ (v)

⋃
I +(λ,μ)⊂I +⊂I⊂J

Q(v, λ, I +,I) (20)

and this inclusion holds with equality if for every maximal index set J ∈ J̄ (v) the
mapping y → (qi (y))i∈J is 2-regular at ȳ in direction v.
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Optimization 15

(2) If v = 0, assume that 2-LICQ holds at ȳ in every direction 0 �= u ∈ K̄ . Then

N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗))

⊂
⋃
ṽ∈K̄

‖ṽ‖=1

⋃
(λ,μ)∈M̄(0,v∗):λ∈�̄(ṽ)

J ∈J̄ (ṽ)

⋃
I +(λ,μ)⊂I +⊂I⊂J

Q(ṽ, λ, I +,I). (21)

Now equality holds if for every direction 0 �= u ∈ K̄ and every maximal index set
J ∈ J̄ (u) the mapping y → (qi (y))i∈J is 2-regular at ȳ in direction u.

Proof In the first part of the proof, we show the inclusions (20) and (21), respectively. Con-
sider (w̄∗, w̄) ∈ Ngph N̂�

((ȳ, ȳ∗); (v, v∗)) if v �= 0, and (w̄∗, w̄) ∈ N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗))
if v = 0, respectively. Then there are sequences (w∗

k , wk) → (w̄∗, w̄), (tk) ↓ 0, (vk, v
∗
k ) →

(v, v∗) such that vk �= 0 and (w∗
k , wk) ∈ N̂gph N̂�

(yk, y∗
k ) where (yk, y∗

k ) := (ȳ, ȳ∗) +
tk(vk, v

∗
k ). Next we define ṽk := vk/‖vk‖, t̃k := tk‖vk‖, if v = 0, and ṽk := vk , t̃k := tk , if

v �= 0. By eventually passing to some subsequence in case v = 0, we can assume that ṽk

converges to some ṽ and we will now show that there are multipliers (λ̃, μ̃) ∈ M̄(v, v∗)
with λ̃ ∈ �̄(ṽ) and index sets Ĩ +,Ĩ, J with I +(λ̃, μ̃) ⊂ Ĩ + ⊂ Ĩ ⊂ J ∈ J̄ (ṽ) such that
w̄ ∈ K̄ Ĩ +,Ĩ(ṽ), w̄∗ + ∇2(λ̃T q)(ȳ)w̄ ∈ (K̄ Ĩ +,Ĩ(ṽ))◦.

Since yk �= ȳ, as a consequence of the assumption that Mq is metrically regular in
the vicinity of ȳ, with each y∗

k there is associated some multiplier λk ∈ NN
R

l−
(q(ȳ))(q(yk))

with y∗
k = ∇q(yk)

T λk . Due to [13, Example 9.44] we have ‖λk‖ ≤ κ‖y∗
k ‖. Hence the

sequence (λk) is uniformly bounded. By passing to subsequences if necessary we can
assume that the sequence (λk) converges to some λ̃ and that there are index sets Ĩ + ⊂ Ĩ
such that Ĩ = I(yk), Ĩ + = I +(λk) ∀k. By virtue of Lemma 3, we can find some μ̃ such
that (λ̃, μ̃) ∈ M̄(v, v∗) and I +(λ̃, μ̃) ⊂ Ĩ +.

Taking into account that

∇qi (ȳ)ṽ = lim
k→∞

qi (yk) − qi (ȳ)

t̃k

{
= 0 if i ∈ Ĩ,

≤ 0 if i ∈ Ī \ Ĩ,

we obtain ṽ ∈ T lin
� (ȳ). This, together with λ̃ ∈ �̄ and I +(λ̃) ⊂ Ĩ + ⊂ Ĩ, implies that

ȳ∗T
ṽ = λ̃T ∇q(ȳ)ṽ = 0 showing ṽ ∈ K̄ . Further, for each λ ∈ �̄ and every k we have

λT q(yk) ≤ 0 = λ̃T q(yk) and together with λT q(ȳ) = λ̃T q(ȳ) = 0 and λT ∇q(ȳ) =
λ̃T ∇q(ȳ) = ȳ∗T

, we conclude

0 ≤ lim
k→∞

(λ − λ̃)T q(yk)

t̃2
k

= lim
k→∞

(λ − λ̃)T q(ȳ) + t̃k(λ − λ̃)T ∇q(ȳ)ṽk + t̃2
k
2 ṽT

k ∇2((λ − λ̃)T q)(ȳ)ṽk + o(t̃2
k )

t̃2
k

= 1

2
ṽT ∇2((λ − λ̃)T q)(ȳ)ṽ

showing λ̃ ∈ �̄(ṽ).
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16 H. Gfrerer and J.V. Outrata

By Lemma 1, there is some z̄ ∈ R
m with

∇qi (ȳ)z̄ + ṽT ∇qi (ȳ)ṽ

{
= 0 if i ∈ Ĩ
≤ 0 if i ∈ Ī(ṽ) \ Ĩ.

By adding some multiple of ṽ to z̄, we can also assume that ∇qi (ȳ)z̄ + ṽT ∇qi (ȳ)ṽ ≤ 0
holds for all i ∈ Ī \ Ī(ṽ). Using the inclusions I +(λ̃) ⊂ Ĩ + ⊂ Ĩ again we obtain

0 =
l∑

i=1

λ̃i (∇qi (ȳ)z̄ + ṽT ∇qi (ȳ)ṽ) = ȳ∗T
z̄ + ṽT ∇2(λ̃T q)(ȳ)ṽ

showing z̄ ∈ Z̄(ṽ). Defining J := {i ∈ Ī(ṽ) | ∇qi (ȳ)z̄ + ṽT ∇qi (ȳ)ṽ = 0}, we obtain
I +(λ̃) ⊂ Ĩ + ⊂ Ĩ ⊂ J ∈ J̄ (ṽ). By our assumption of 2-LICQ in direction ṽ the mapping
y → (qi (y))i∈Ĩ is 2-regular in direction ṽ and therefore the gradients ∇qi (yk), i ∈ Ĩ, are
linearly independent by Proposition 2(d). Hence, by Theorem 1, we have

wk ∈ K (yk, y∗
k ) = {w | ∇qi (yk)w = 0, i ∈ Ĩ +,∇qi (yk)w ≤ 0, i ∈ Ĩ \ Ĩ +},

w∗
k + ∇2(λk T

q)(yk)wk ∈ (K (yk, y∗
k ))◦

and it follows that w̄ ∈ K̄ Ĩ +,Ĩ . Now consider for every s = (si )i∈Ĩ and z∗, z̃∗ ∈ R
m the set

�(s, z∗, z̃∗)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩(z, μ, ν) ∈ R
m × PĨ +,Ĩ × PĨ +,Ĩ |

∇qi (ȳ)z + ṽT ∇2qi (ȳ)w̄

{
= si , i ∈ Ĩ +,

≤ si , i ∈ Ĩ \ Ĩ +,

∇q(ȳ)T μ + ∇2(νT q)(ȳ)ṽ = z∗,
∇q(ȳ)T ν = z̃∗

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Defining sk
i := (−∇qi (yk)wk + ∇qi (ȳ)wk + t̃k ṽT ∇2qi (ȳ)w̄)/t̃k , i ∈ Ĩ, we have

limk→∞ sk
i = 0 because of (∇qi (yk)−∇qi (ȳ)− t̃k ṽT ∇2qi (ȳ))/t̃k → 0 and wk → w̄. Since

(K (yk, y∗
k ))◦ = {∇q(yk)

T μ |μ ∈ PĨ +,Ĩ}, we can find for each k some vector μk ∈ PĨ +,Ĩ
such that

∇q(yk)
T μk = w∗

k + ∇2(λk T
q)(yk)wk =: z∗

k .

It follows that the sequence ∇q(yk)
T μk is uniformly bounded by some constant c and by

Proposition 2(d) we obtain that there is some constant κ ′ such that ‖μk‖ ≤ κ ′c/t̃k ∀k.
Setting r∗

k := (∇q(yk) − ∇q(ȳ) − t̃k ṽT ∇2q(ȳ))T μk , we have

lim
k→∞ r∗

k =
(
(∇q(yk) − ∇q(ȳ) − t̃k ṽ

T ∇2q(ȳ))T /t̃k
)

(t̃kμ
k) = 0,

because (∇q(yk) − ∇q(ȳ) − t̃k ṽT ∇2q(ȳ))/t̃k → 0 and t̃kμk is bounded. Defining z̃∗
k :=

t̃k∇g(ȳ)T μk , we have

lim
k→∞ z̃∗

k = lim
k→∞ z̃∗

k − t̃k z∗
k = lim

k→∞(∇q(ȳ) − ∇q(yk))
T (tkμ

k) = 0.

Taking into account that wk ∈ K (yk, y∗
k ) we have (wk/t̃k, μk, t̃kμk) ∈ �(sk, z∗

k − r∗
k , z̃∗

k )

and therefore, by invoking Hoffman’s lemma, for every k there is some (zk, μ̃
k, ν̃k) ∈

�(sk, z∗
k − r∗

k , z̃∗
k ) satisfying
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Optimization 17

‖(zk, μ̃
k, ν̃k)‖ = d(0,�(sk, z∗

k − r∗
k , z̃∗

k ))

≤ β

⎛⎝∑
i∈Ĩ

|sk
i − ṽT ∇2qi (ȳ)w̄| + ‖z∗

k − r∗
k ‖ + ‖z̃∗

k‖
⎞⎠

with some constant β independent of k. Since the sequences (sk), (z∗
k − r∗

k ) and (z̃∗
k ) are

bounded, so also is the sequence (zk, μ̃
k, ν̃k) and, by passing to a subsequence, it converges

to some (ẑ, μ̂, ν̂). Since limk sk = 0, limk z∗
k−r∗

k = w̄∗+∇2(λ̃T q)(ȳ)w̄ and limk z̃∗
k = 0, we

have (ẑ, μ̂, ν̂) ∈ �(0, w̄∗+∇2(λ̃T q)(ȳ)w̄, 0) showing the desired inclusions w̄ ∈ K̄ Ĩ +,Ĩ(ṽ)

and w̄∗ + ∇2(λ̃T q)(ȳ)w̄ ∈ (K̄ Ĩ +,Ĩ(ṽ))◦. This completes the first part of the proof.
In the second part of the proof, we show equality in the inclusions (20), (21) under

the stated assumptions. In case v = 0, we choose any ṽ from K̄ with ‖ṽ‖ = 1, otherwise
we set ṽ := v. Then we consider multipliers (λ̃, μ̃) ∈ M̄(v, v∗) with λ̃ ∈ �̄(ṽ), index
sets Ĩ +, Ĩ, J with I +(λ̃, μ̃) ⊂ Ĩ + ⊂ Ĩ ⊂ J ∈ J̄ (ṽ) and elements w̄, w̄∗ with
w̄ ∈ K̄ Ĩ +,Ĩ(ṽ), w̄∗ + ∇2(λ̃T q)(ȳ)w̄ ∈ (K̄ Ĩ +,Ĩ(ṽ))◦. We will show that for every t > 0
sufficiently small there are (yt , y∗

t , wt , w
∗
t ) with yt �= ȳ, (w∗

t , wt ) ∈ N̂gph N̂�
(yt , y∗

t ) such
that limt↓0(yt , y∗

t , wt , w
∗
t ) = (ȳ, ȳ∗, w̄, w̄∗), limt↓0((yt , y∗

t ) − (ȳ, ȳ∗))/t = (v, v∗) and
hence the claimed inclusion (w̄∗, w̄) ∈ Ngph N̂�

((ȳ, ȳ∗); (v, v∗)) follows. We can assume

without loss of generality that J is a maximal element in J̄ (ṽ) with Ĩ ⊂ J . Then, by
Proposition 4, there exists some τ̄ > 0 and a mapping ŷ : [0, τ̄ ] → � such that ŷ(0) = ȳ,
I(ŷ(τ )) = Ĩ, LICQ is fulfilled at ŷ(τ ) for every τ ∈ (0, τ̄ ) and

lim
τ↓0

ŷ(τ ) − ȳ

τ
= ṽ.

We now define

τ(t) := t
t2 + ‖v‖
t + ‖v‖ , yt := ŷ(τ (t))

and observe that limt↓0(yt − ȳ)/t = v. Next we define the multipliers λt by

λt
i :=

{
λ̃i + tμ̃i + t2, i ∈ Ĩ +,

0, i �∈ Ĩ +

and then it follows from μ̃ ∈ TN
R

l−
(q(ȳ))(λ̃) that λt ≥ 0 for all t > 0 sufficiently small.

Defining y∗
t := ∇q(yt )

T λt , we obtain

lim
t↓0

y∗
t − ȳ∗

t
= lim

t↓0

(∇q(yt ) − ∇q(ȳ))T λ̃

t
+∇q(yt )

T μ̃ = ∇2(λ̃T q)(ȳ)v+∇q(ȳ)T μ̃ = v∗,

and, since I(yt ) = Ĩ and I +(λt ) = Ĩ +, we have K (yt , y∗
t ) = {w | ∇qi (yt )w = 0, i ∈

Ĩ +, qi (yt )w ≤ 0, i ∈ Ĩ \ Ĩ +}, and (K (yt , y∗
t ))◦ = ∇q(yt )

T PĨ +,Ĩ . Let z be some element
associated with w̄ by the definition of K Ĩ +,Ĩ(ṽ). Then

∇qi (ŷ(τ ))(w̄ + τ z)

= (∇qi (ȳ) + τ ṽT ∇2qi (ȳ))T (w̄ + τ z) + o(τ )

= ∇qi (ȳ)w̄ + τ(∇qi (ȳ)z + ṽT ∇2qi (ȳ)w̄) + o(τ )

{
= o(τ ), i ∈ Ĩ +,

≤ o(τ ), i ∈ Ĩ \ Ĩ +,
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18 H. Gfrerer and J.V. Outrata

implying ‖s(τ )‖ = o(τ ) where si (τ ) := −∇qi (ŷ(τ ))(w̄ + τ z) for i ∈ Ĩ + and si (τ ) :=
− max{∇qi (ŷ(τ ))(w̄ + τ z), 0} for i ∈ Ĩ \ Ĩ +. Using 2-regularity of (qi )i∈Ĩ in direction
ṽ, by means of Proposition 2(d), we can find for all τ > 0 sufficiently small some eτ with
∇qi (ŷ(τ ))eτ = s(τ ) and

lim
τ↓0

‖eτ‖ ≤ lim
t↓0

κ ′

‖ŷ(τ ) − ȳ‖‖s(τ )‖ = 0,

implying wt := w̄ + τ(t)z + eτ(t) ∈ K (yt , y∗
t ) and limt↓0 wt = w̄.

Finally, we choose μ̄, ν̄ ∈ PĪ +, Ī such that ∇q(ȳ)T ν̄ = 0 and w̄∗ + ∇2(λ̃T q)(ȳ)w̄ =
∇q(ȳ)T μ̄ + ∇2(ν̄T q)(ȳ)ṽ. Taking μτ := μ̄ + ν̄/τ , we have μτ ∈ PĨ +,Ĩ and

lim
τ↓0

∇q(ŷ(τ ))T μτ = lim
τ↓0

(∇q(ȳ) + τ ṽT ∇2q(ȳ) + o(τ ))T μτ

= lim
τ↓0

τ−1∇q(ȳ)T ν̄ + ∇q(ȳ)T μ̄ + ∇2(ν̄T q)(ȳ)ṽ

= ∇q(ȳ)T μ̄ + ∇2(ν̄T q)(ȳ)ṽ.

Defining w∗
t = ∇q(ŷ(τ (t)))T μτ(t) − ∇2(λt T q)(yt )wt we have limt↓0 w∗

t = w̄∗ and,
because of ∇q(ŷ(τ (t)))T μτ(t) ∈ (K (yt , y∗

t ))◦, one has (w∗
t , wt ) ∈ N̂gph N̂�

(yt , y∗
t ). This

completes the proof. �

To compute a suitable estimate of Ngph N̂�
((ȳ, ȳ∗); (0, v∗)), we turn now our attention

to the cone N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)).

Proposition 5 Let v∗ �= 0 such that (0, v∗) ∈ Tgph N̂�
(ȳ, ȳ∗) and assume that Mq is

metrically subregular at ȳ. If K̄ �= {0}, then

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗))

⊂
⋂

ṽ∈N (ȳ)

⎛⎜⎜⎜⎜⎝
⋃

(λ,μ)∈M̄(0,v∗):λ∈ ¯̃
�E (ṽ)

J ∈J̄ (ṽ)

⋃
I +(λ,μ)⊂I +⊂I⊂J

Q0(ṽ, λ, I +,I)

⎞⎟⎟⎟⎟⎠ , (22)

where

Q0(v, λ, I +,I) := {(w∗, w) |w ∈ K̄ I +,I(v), w∗ + ∇2(λT q)(ȳ)w ∈ ∇q(ȳ)T PI +,I}.
Further, if K̄ = {0}, then

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) ⊂ R
m × {0}. (23)

Proof Let (w̄∗, w̄) ∈ N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) and consider sequences (w∗
k , wk) →

(w̄∗, w̄), (tk) ↓ 0, (v∗
k ) → v∗ such that (w∗

k , wk) ∈ N̂gph N̂�
(ȳ, y∗

k ) where y∗
k := ȳ∗ + tkv∗

k .
Consider first the case when K̄ �= {0} and K (ȳ, y∗

k ) �= {0} for infinitely many k and let
ṽ ∈ N (ȳ) be fixed. We will now show that there are multipliers (λ̃, μ̃) ∈ M̄(0, v∗) with
λ̃ ∈ �̄E (ṽ) and index sets Ĩ +,Ĩ, J with I +(λ̃, μ̃) ⊂ Ĩ + ⊂ Ĩ ⊂ J ∈ J̄ (ṽ) such that
w̄ ∈ K̄ Ĩ +,Ĩ(ṽ) and w̄∗ + ∇2(λ̃T q)(ȳ)w̄ ∈ ∇q(ȳ)T PĨ +,Ĩ .
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Optimization 19

By passing to a subsequence, we can assume that K (ȳ, y∗
k ) �= {0} holds for all k. By

Theorem 2, we have

wk ∈ W(ȳ, y∗
k ; ṽ) := {w ∈ K (ȳ, y∗

k ) | wT ∇2((λ1 − λ2)T q)(ȳ)ṽ = 0 ∀λ1, λ2 ∈ �(ȳ, y∗
k ; ṽ)}

and there is some

λk ∈ �̃E (ȳ, y∗
k ; ṽ) :=

⎧⎪⎨⎪⎩
�E (ȳ, y∗

k ; ṽ) if ṽ �= 0,

conv

( ⋃
0�=u∈K (ȳ,y∗

k )

�E (ȳ, y∗
k ; u)

)
if ṽ = 0,

such that

w∗
k ∈ −∇2(λk T

q)(ȳ)wk + (K (ȳ, y∗
k ))◦.

By (11), there is some κ > 0 such that E(ȳ, y∗
k ) is contained in a ball with radius κ‖y∗

k ‖.
Hence the sequence (λk) is uniformly bounded. By passing to subsequences if necessary we
can assume that the sequence (λk) converges to some λ̃ and that there is some index set Ĩ +
such that Ĩ + = I +(λk) ∀k. By Lemma 3, we can find some μ̃ such that (λ̃, μ̃) ∈ M̄(0, v∗)
and I +(λ̃, μ̃) ⊂ Ĩ +. Since

K (ȳ, y∗
k ) =

{
v ∈ R

m | ∇qi (ȳ)v = 0, i ∈ I +(λk)

∇qi (ȳ)v ≤ 0, i ∈ Ī \ I +(λk)

}
,

for every k, there is some μ ∈ PĨ +,Ī with w∗
k +∇2(λk T

q)(ȳ)wk = ∇q(ȳ)T μ. Now consider
the linear optimization problem

min
μ

−ṽT ∇2(μT q)(ȳ)ṽ subject to w∗
k + ∇2(λk T

q)(ȳ)wk = ∇q(ȳ)T μ,μ ∈ PĨ +,Ī .

(24)
This problem has some solution, since the feasible region is not empty and the objective is
bounded below on the feasible region. Indeed, otherwise there would be some ν ∈ PĨ +,Ī
such that ∇q(ȳ)T ν = 0, ṽT ∇2(νT q)(ȳ)ṽ > 0 and consequently λk + αν ∈ �(ȳ, y∗

k ) and

ṽT ∇2((λk + αν)T q)(ȳ)ṽ > ṽT ∇2(λk T
q)(ȳ)ṽ for α > 0 sufficiently small contradicting

λk ∈ �E (ȳ, y∗
k ; ṽ). By duality theory of linear programming, the dual problem

max
z

(w∗
k + ∇2(λk T

q)(ȳ)wk)
T z subject to ∇qi (ȳ)z + ṽT ∇2qi (ȳ)ṽ

{
= 0, i ∈ Ĩ +,

≤ 0, i ∈ Ī \ Ĩ +

also has a solution zk which, together with any solution μ of (24) fulfills the complementarity
condition μi (∇qi (ȳ)zk + ṽT ∇2qi (ȳ)ṽ) = 0, i ∈ Ī. We now select μk among the solutions
of the problem (24) such that the cardinality of the index set J+(μk) := {i ∈ Ī \ Ĩ + : μk

i >

0} is minimal. Then

∇q(ȳ)T ν = 0, ν ∈ PĨ +, Ĩ +∪J+(μk )
⇒ νi = 0, i ∈ J+(μk),

because otherwise we can find some scalar α such that μk +αν ∈ PĨ +, Ĩ +∪J+(μk )
⊂ PĨ +,Ī is

feasible for (24) and J+(μk +αν) ⊂ J+(μk). This shows that μk +αν is a solution of (24)
because the complementarity condition remains fulfilled, and |J+(μk + αν)| < |J+(μk)|,
contradicting the minimality of |J+(μk)|.
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20 H. Gfrerer and J.V. Outrata

By eventually passing to a subsequence once more, we can assume that J+(μk) = J+
holds for all k and we set Ĩ := Ĩ +∪ J+. Fixing z = z1, we obtain from the complementarity
condition that

∇qi (ȳ)z + ṽT ∇2qi (ȳ)ṽ

{
= 0 if i ∈ Ĩ
≤ 0 if i ∈ Ī \ Ĩ,

(25)

and therefore

λ̃i (∇qi (ȳ)z + ṽT ∇2qi (ȳ)ṽ) = lim
k→∞ λk

i (∇qi (ȳ)z + ṽT ∇2qi (ȳ)ṽ) = 0.

Hence the pair (λ̃, z) is feasible for (10) and its dual (19) at (ȳ, ȳ∗) and fulfills the
complementarity condition, implying by duality theory of linear programming that λ̃ ∈ �̄(ṽ)

and z ∈ Z̄(ṽ). Since ṽ ∈ N (ȳ), we have Ī(ṽ) = Ī and we put J := {i ∈ Ī | ∇qi (ȳ)z +
ṽT ∇2qi (ȳ)ṽ) = 0}.

In a next step, we show that λ̃ ∈ ¯̃
�E (ṽ). The multiplier λk is the convex combination

of finitely many extreme points λ̂k, j ∈ �(ȳ, y∗
k ; uk

j ) ∩ E(ȳ, y∗
k ), j = 1, . . . , pk , where

0 �= uk
j ∈ K (ȳ; y∗

k ), where uk
j = ṽ ∀k, j if ṽ �= 0, and, since �(y, y∗;αu) = �(y, y∗; u)

∀α > 0, we can assume that ‖uk
j‖ = 1 in case ṽ = 0. By passing to subsequences, we can

also assume that pk = p̄ ∀k and uk
j → ū j , j = 1, . . . , p̄, as k → ∞ and I +(λ̂k, j ) = I +

j ,

j = 1, . . . , p̄, holds for all k. It follows that for each j the sequence λ̂k, j converges to some
λ̂ j ∈ �̄ with I +(λ̂ j ) ⊂ I +

j and thus λ̂ j is an extreme point of �̄. Hence, λ̃ is a convex

combination of these λ̂ j , j = 1, . . . , p̄, ū j ∈ K̄ and since λ̂ j ∈ �̄(ū j ), j = 1, . . . , p̄,

because of [22, Theorem 5.4.2(2)], we obtain λ̂ j ∈ �̄E (ū j ) and thus λ̃ ∈ ¯̃
�E (0). In case

that ṽ �= 0, we have uk
j = ṽ ∀ j, k and λ̃ ∈ ¯̃

�E (ṽ) follows.

It remains to show that w̄ ∈ K̄ Ĩ +,Ĩ(ṽ) and w̄∗ +∇2(λ̃T q)(ȳ)w̄ ∈ ∇q(ȳ)T PĨ +,Ĩ . Let us
first prove by contradiction that w̄ ∈ K̄ Ĩ +,Ĩ(ṽ).Assuming that w̄ �∈ K̄ Ĩ +,Ĩ(ṽ), by the Farkas’
Lemma, there is some ν ∈ PĨ +,Ĩ with ∇q(ȳ)T ν = 0 and ṽT ∇2(νT q)(ȳ)w̄ > 0, yielding
ṽT ∇2(νT q)(ȳ)wk > 0 for all k sufficiently large. From (25), we deduce ṽT ∇2(νT q)(ȳ)ṽ =
0. Hence, for every k sufficiently large there is αk > 0 such that λk +αkν ∈ �(ȳ, y∗

k ; ṽ) and
wT

k ∇2(((λk +αkν)−λk)T q)(ȳ)ṽ > 0, contradicting wk ∈ W(ȳ, y∗
k ; ṽ). Hence, the desired

inclusion w̄ ∈ K̄ Ĩ +,Ĩ(ṽ) holds true. Finally note that, by the way we constructed the index

set Ĩ, for every k there is some μk ∈ PĨ +,Ĩ satisfying w∗
k +∇2(λk T

q)(ȳ)wk = ∇q(ȳ)T μk .
Utilizing Hoffman’s Error Bound, there is some constant β such that for every k there is
also an element μ̃k ∈ PĨ +,Ĩ such that w∗

k + ∇2(λk T
q)(ȳ)wk = ∇q(ȳ)T μ̃k and ‖μ̃k‖ ≤

β‖w∗
k + ∇2(λk T

q)(ȳ)wk‖. Thus, the sequence (μ̃k) is bounded and we can assume that it
converges to some μ̃ ∈ PĨ +,Ĩ satisfying w̄∗ +∇2(λ̃T q)(ȳ)w̄ = ∇q(ȳ)T μ̃. This completes
the proof of the case when K (ȳ, y∗

k ) �= {0} for all k.
In a next step we consider the case that K̄ �= {0} and K (ȳ, y∗

k ) �= {0} only holds for
finitely many k. Without loss of generality, we can assume that we have K (ȳ, y∗

k ) = {0}
and consequently wk = 0 ∀k. We observe that we always have N (ȳ) ⊂ K (ȳ, y∗

k ) and thus
N (ȳ) = {0} and we will proceed as in the first part of the proof with the only difference in
the choice of the sequence (λk). Pick an arbitrary 0 �= u ∈ K̄ . Then, since Mq is metrically
subregular at (ȳ, 0), by [21, Theorem 6.1(2b)] for every λ ∈ NRl−(q(ȳ) with ∇q(ȳ)T λ = 0

we have uT ∇2(λT q)(ȳ)u ≤ 0. We obtain that the linear programme
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Optimization 21

max uT ∇2(λT q)(ȳ)u subject to λ ∈ �(ȳ, y∗
k ) (26)

has a solution and we select λk ∈ �(ȳ, y∗
k ; u) ∩ E(ȳ, y∗

k ). This can be done since among
the solutions of a linear optimization problem, there is always an extreme point, provided
the feasible region has at least one extreme point. Then the same arguments as before
yield the assertion.

Finally, let us consider the case K̄ = {0}. Given an arbitrary element (w∗, w) ∈
N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)), we consider sequences (tk) ↓ 0, v∗

k → v∗ and (w∗
k , wk) →

(w∗, w) such that (w∗
k , wk) ∈ N̂gph N̂�

(ȳ, y∗
k ), where y∗

k := y∗ + tkv∗
k . We will now show

by contraposition that K (ȳ, y∗
k ) = {0} holds for all k sufficiently large. Assume on the

contrary that for every k there is some zk ∈ K (ȳ, y∗
k ) with ‖zk‖ = 1. Then, by passing to

a subsequence, we can assume that (zk) converges to some z. Because zk ∈ T lin
� (ȳ) and

T lin
� (ȳ) is closed, we have z ∈ T lin

� (ȳ) and, since ȳ∗T
z = lim y∗

k
T zk = 0, it follows that

0 �= z ∈ K̄ , a contradiction. Hence, from K (ȳ, y∗
k ) = {0} and from (13), we conclude

N̂gph N̂�
(ȳ, y∗

k ) ⊂ R
m × {0}. It follows that wk = 0 implying w = 0 and this completes the

proof. �

We do not give a characterization when equality holds in (22) and (23), respectively,
because in many cases, we have N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)) ⊂ N 1

gph N̂�
((ȳ, ȳ∗); (0, v∗)) and

for the latter set an exact description is known. This issue is clarified in the next statement.

Proposition 6 Assume that Mq is metrically subregular at (ȳ, 0) and metrically regular
in the vicinity of ȳ. Further assume that for every direction 0 �= u ∈ K̄ and every maximal
index set J ∈ J̄ (u) the mapping y → (qi (y))i∈J is 2-regular at ȳ in direction u and
assume that N (ȳ) �= {0}. Then for every v∗ �= 0 one has

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) ⊂ N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)).

Proof By Lemma 2 one has that ∇q(ȳ)T PI +,I ⊂ (K̄ I +,I(v))◦ and, consequently,
Q0(v, λ, I +,I) ⊂ Q(v, λ, I +,I). Now it is easy to see that in case N (ȳ) �= {0} the
set on the right-hand side of the inclusion (22) is a subset of the set on the right hand side
of (21). Hence, the inclusion N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)) ⊂ N 1

gph N̂�
((ȳ, ȳ∗); (0, v∗)) follows

from Theorem 3 and Proposition 5. �

We summarize these results in the following theorem to give a complete description of
the limiting normal cone:

Theorem 4 Assume that Mq is metrically subregular at (ȳ, 0) and metrically regular in
the vicinity of ȳ. Further assume that for every direction 0 �= u ∈ K̄ and every maximal
index set J ∈ J̄ (u) the mapping y → (qi (y))i∈J is 2-regular at ȳ in direction u and
assume that N (ȳ) �= {0}. Then

Ngph N̂�
(ȳ, ȳ∗)

= N̂gph N̂�
(ȳ, ȳ∗) ∪

⋃
(v,v∗)∈Tgph N�

(ȳ,ȳ∗)
v �=0

⋃
(λ,μ)∈M̄(v,v∗)

J ∈J̄ (v)

⋃
I +(λ,μ)⊂I +⊂I⊂J

Q(v, λ, I +,I).
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22 H. Gfrerer and J.V. Outrata

Proof The statement follows from Theorem 3 and Proposition 6 together with the obser-
vation that for any element (w∗, w) ∈ N 1

gph N̂�
((ȳ, ȳ∗); (0, v∗)) there is some ṽ ∈ K̄ with

‖ṽ‖ = 1, (λ, μ) ∈ M̄(0, v∗) with λ ∈ �̄(ṽ) and index sets J ∈ J̄ (ṽ), I + and I with
I +(λ, μ) ⊂ I + ⊂ I ⊂ J such that (w∗, w) ∈ Q(ṽ, λ, I +,I). Consequently, (λ, μ) ∈
M̄(ṽ, v∗ + ∇2(λT q)(ȳ)ṽ), showing (w∗, w) ∈ Ngph N̂�

((ȳ, ȳ∗); (ṽ, v∗ + ∇2(λT q)(ȳ)ṽ)).
�

We conclude this section with two illustrative examples, the results of which will then
be used in the next section.

Example 2 Let � ⊂ R
2 be given by

q(y) =
⎛⎝−y2

1 + y2

−y2
1 − y2
y1

⎞⎠ .

Put ȳ = (0, 0), ȳ∗ = (0, 1) and let us compute Ngph N̂�
(ȳ, ȳ∗). Obviously, MFCQ is

violated at ȳ. Owing to [18, Example 4] we have K̄ = R− × {0},
�̄ = {λ ∈ R

3+ | λ1 − λ2 = 1, λ3 = 0}
and

�̄(v) =
{ {λ ∈ �̄ | λ1 = 1, λ2 = 0} if 0 �= v ∈ K̄

�̄ if v = 0.

Further, Mq is metrically subregular at (0, 0) and metrically regular in the vicinity of 0 and
by Theorem 2, we obtain

Tgph N̂�
(ȳ, ȳ∗) = {(v, v∗) | v1 ≤ 0, v2 = 0, v∗

1 = −2v1} ∪ ({0, 0} × R+ × R)

and

N̂gph N̂�
(ȳ, ȳ∗) = {(w∗, w) |w1 ≤ 0, w2 = 0, w∗

1 ≥ 2w1}.
Now consider 0 �= v ∈ K̄ . It follows that v = (v1, 0) with v1 < 0, Ī(v) = {1, 2} and

that J̄ (v) consists of the collection of all index sets J ⊂ {1, 2} such that there exists z with

∇q1(ȳ)z + vT ∇2q1(ȳ)v = z2 − 2v2
1 ≤ 0 (27)

∇q2(ȳ)z + vT ∇2q2(ȳ)v = −z2 − 2v2
1 ≤ 0 (28)

∇q3(ȳ)z + vT ∇2q3(ȳ)v = z1 ≤ 0

and J contains the active inequalities of (27), (28). Hence, J̄ (v) = {∅, {1}, {2}}. Since
∇qi (y) = (−2y1,±1) �= 0, i = 1, 2, for every J ⊂ J̄ (v) the mapping (qi )i∈J is 2-regular
in direction v, implying that 2-LICQ holds in direction v by Proposition 3.

Further, for every (v, v∗) ∈ Tgph N̂�
(ȳ, ȳ∗) with v �= 0 we have v ∈ K̄ , v∗

1 = −2v1 and
thus

M̄(v, v∗) = {(1, 0, 0)} × {(μ1, μ2, μ3) |μ2 ≥ 0, μ1 − μ2 = v∗
2 , 0 ≤ μ3 = v∗

1 + 2v1}
= {(1, 0, 0)} × {(μ1, μ2, 0) |μ2 ≥ 0, μ1 − μ2 = v∗

2},
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Optimization 23

yielding

Ngph N̂�
((ȳ, ȳ∗); (v, v∗)) = Q(v, (1, 0, 0), {1}, {1})

by Theorem 3, where we have taken into account that the only index set J ∈ J̄ (v) with
I +(1, 0, 0) = {1} ⊂ J is J = {1}. Straightforward calculations give

K̄{1},{1}(v) = K̄{1},{1} = R × {0},
Q(v, (1, 0, 0), {1}, {1}) = {(w∗, w) |w2 = 0, w∗

1 = 2w1}.
In the next step, we want to analyze N 1

gph N̂�
((ȳ, ȳ∗); (0, v∗)) for (0, 0) �= (0, v∗) ∈

Tgph N̂�
(ȳ, ȳ∗). It follows that v∗

1 ≥ 0 and for every ṽ ∈ K̄ , ‖ṽ‖ = 1, we obtain

{(λ, μ) ∈ M̄(0, v∗) | λ ∈ �̄(ṽ)} = {(1, 0, 0)} × {(μ1, μ2, v
∗
1) |μ2 ≥ 0, μ1 − μ2 = v∗

2}.
Since J̄ (ṽ) = {∅, {1}, {2}}, if v∗

1 > 0 we obtain N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)) = ∅. On the other
hand, if v∗

1 = 0, similar arguments as before yield

N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)) = {(w∗, w) |w2 = 0, w∗
1 = 2w1}.

Finally, we consider N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) for (0, 0) �= (0, v∗) ∈ Tgph N̂�
(ȳ, ȳ∗). We

have N (ȳ) = {0}, ¯̃
�E (0) = {(1, 0, 0)},

{(λ, μ) ∈ M̄(0, v∗) | λ ∈ ¯̃
�E (0)} = {(1, 0, 0)} × {(μ1, μ2, v

∗
1) |μ2 ≥ 0, μ1 − μ2 = v∗

2}
and J̄ (0) = {{1, 2}, {1, 2, 3}}.

Using Proposition 5, we obtain

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) ⊂
{⋃

{1}⊂I +⊂I⊂{1,2,3} Q0(0, (1, 0, 0), I +,I) if v∗
1 = 0⋃

{1,3}⊂I +⊂I⊂{1,2,3} Q0(0, (1, 0, 0), I +,I) if v∗
1 > 0.

By the definition, we have Q0(0, (1, 0, 0), I +,I) = {(w∗, w) |w ∈ K̄ I +,I , w∗−(2w1, 0) ∈
K̄ ◦

I +,I} and

K̄ I +,I =

⎧⎪⎨⎪⎩
(0, 0) if {1} ⊂ I + ⊂ I ⊂ {1, 2, 3} ∧ 3 ∈ I +,

R− × {0} if {1} ⊂ I + ⊂ I ⊂ {1, 2, 3} ∧ 3 ∈ I \ I +,

R × {0} if {1} ⊂ I + ⊂ I ⊂ {1, 2}.
Hence, we get the inclusions

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗))

⊂

⎧⎪⎨⎪⎩
(R × R) × {(0, 0)} ∪ {(w∗, w) |w2 = 0, w∗

1 = 2w1}
∪{(w∗, w) |w1 ≤ 0, w2 = 0, w∗

1 ≥ 2w1} if v∗
1 = 0

(R × R) × {(0, 0)} if v∗
1 > 0

(29)

and two-sided estimates

L ⊂ Ngph N̂�
(ȳ, ȳ∗) ⊂ L ∪ (R × R) × {(0, 0)} (30)
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24 H. Gfrerer and J.V. Outrata

with

L := N̂gph N̂�
(ȳ, ȳ∗) ∪ Ngph N̂�

((ȳ, ȳ∗); ((−1, 0), (2, 0))

= {(w∗, w) |w1 ≤ 0, w2 = 0, w∗
1 ≥ 2w1} ∪ {(w∗, w) |w2 = 0, w∗

1 = 2w1}.
Let us now compute N 2

gph N̂�
((ȳ, ȳ∗); (0, v∗)) exactly by the definition. By using

Theorem 2, we obtain

N̂gph N̂�
(ȳ, y∗) =

⎧⎪⎨⎪⎩
(R × R) × {(0, 0)} if y∗

1 > 0, y∗
2 > 0,

{(w∗, w) |w1 ≤ 0, w2 = 0, w∗
1 ≥ 2w1} if y∗

1 = 0, y∗
2 > 0,

∅ if y∗
1 < 0, y∗

2 > 0

and consequently

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗))

=
{

(R × R) × {(0, 0)} ∪ {(w∗, w) |w1 ≤ 0, w2 = 0, w∗
1 ≥ 2w1} if v∗

1 = 0,

(R × R) × {(0, 0)} if v∗
1 > 0,

showing that the inclusion (29) is strict in case v∗
1 = 0 and that the assertion of Proposition

6 does not hold due to N (ȳ) = {0}. Nevertheless, the second inclusion in (30) holds with
equality.

Example 3 Now let � ⊂ R
2 be given merely by

q(y) =
(−y2

1 + y2

−y2
1 − y2

)
,

ȳ = (0, 0) and ȳ∗ = (0, 1). Again MFCQ is violated at ȳ, but Mq is metrically subregular
at (0, 0) and metrically regular in the vicinity of 0. Straightforward calculations yield K̄ =
R × {0},

�̄ = {λ ∈ R
2+ | λ1 − λ2 = 1},

�̄(v) =
{

{(1, 0)} if 0 �= v ∈ K̄ ,

�̄ if v = 0,

Tgph N̂�
(ȳ, ȳ∗) = {(v, v∗) | v2 = 0, v∗

1 = −2v1}
and

N̂gph N̂�
(ȳ, ȳ∗) = {(w∗, w) | w2 = 0, w∗

1 = 2w1}.
Similarly, as in Example 2, we obtain for every 0 �= v ∈ K̄ , that J̄ (v) = {∅, {1}, {2}}

and that for every J ⊂ J̄ (v) the mapping (qi )i∈J is 2-regular in direction v.
Further, for every (v, v∗) ∈ Tgph N̂�

(ȳ, ȳ∗) with v �= 0 we have

M̄(v, v∗) = {(1, 0)} × {(μ1, μ2) |μ2 ≥ 0, μ1 − μ2 = v∗
2}

yielding
Ngph N̂�

((ȳ, ȳ∗); (v, v∗)) = Q(v, (1, 0), {1}, {1})
by Theorem 3. As in Example 2, we can derive

K̄{1},{1}(v) = K̄{1},{1} = R × {0}, Q(v, (1, 0), {1}, {1}) = {(w∗, w) |w2 = 0, w∗
1 = 2w1}

and N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)) = {(w∗, w) |w2 = 0, w∗
1 = 2w1}.

D
ow

nl
oa

de
d 

by
 [

C
ze

ch
 A

ca
de

m
y 

of
 S

ci
en

ce
s]

 a
t 0

4:
30

 2
9 

Ju
ly

 2
01

5 



Optimization 25

Now we consider N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)). N (ȳ) amounts to K̄ = R × {0}, ¯̃
�E (ṽ) =

{(1, 0)} ∀ṽ ∈ N (ȳ) and

{(λ, μ) ∈ M̄(0, v∗) | λ ∈ ¯̃
�E (ṽ)} = {(1, 0)} × {(μ1, μ2) | μ2 ≥ 0, μ1 − μ2 = v∗

2 } ∀ṽ ∈ N (ȳ),

J̄ (ṽ) = {∅, {1}, {1}}, 0 �= ṽ ∈ N (ȳ) and J̄ (0) = {{1, 2}}. Using Proposition 5, we obtain

N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) ⊂ Q0(ṽ, (1, 0), {1}, {1}) = {(w∗, w) |w2 = 0, w∗
1 = 2w1}.

This verifies the inclusion N 2
gph N̂�

((ȳ, ȳ∗); (0, v∗)) ⊂ N 1
gph N̂�

((ȳ, ȳ∗); (0, v∗)) as
stated in Proposition 6. Moreover, all the assumptions of Theorem 4 are fulfilled and

Ngph N̂�
(ȳ, ȳ∗) = {(w∗, w) |w2 = 0, w∗

1 = 2w1}.

Note that the results of Examples 2 and 3 cannot be obtained by any technique developed
to this purpose so far.

5. Stability of parameterized equilibria

In this section, we consider a parameter-dependent equilibrium governed by the GE

0 ∈ F(x, y) + N̂�(y), (31)

where x ∈ R
n is the parameter, y ∈ R

m is the decision variable, F : R
n × R

m → R
m is

continuously differentiable and � is given by (6). Our aim is to analyse local stability of
the respective solution map S : R

n ⇒ R
m defined by

S(x) := {y ∈ R
m |0 ∈ F(x, y) + N̂�(y)} (32)

around a given reference point (x̄, ȳ) ∈ gphS. In particular, we will examine the so-
called Aubin property of S around (x̄, ȳ) which is an efficient Lipschitz-like property for
multifunctions.

Definition 6 [23] S has the Aubin property around (x̄, ȳ) provided there are neighbor-
hoods U of x̄ , V of ȳ and a non-negative modulus κ such that

S(x1) ∩ V ⊂ S(x2) + κ ‖x1 − x2‖ B for all x1, x2 ∈ U .

This property can be viewed as a graph localization of the classical local Lipschitz
behaviour and is closely related to the metric regularity defined in Section 2.

The Aubin property of solution maps has already been investigated in numerous works;
let us mention at least [12, Section 4.4.2] and [8], where the authors have dealt with general
parametric equilibria including (31) as a special case. In what follows, however, we will
confine ourselves with GE (31), make use of the results from the preceding section and
obtain a new set of conditions ensuring the Aubin property of S around (x̄, ȳ).

As in the most works about Lipschitz stability our main tool is the Mordukhovich
criterion D∗S(x̄, ȳ)(0) = {0} which is a characterization of the Aubin property around
(x̄, ȳ) [12, Theorem 4.10], [13, Theorem 9.46]. In our case it leads directly to the following
statement.
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26 H. Gfrerer and J.V. Outrata

Proposition 7 Let the mapping N̂� have a closed graph around (ȳ,−F(x̄, ȳ)) and
assume that the implication

0 ∈ ∇y F(x̄, ȳ)T b + D∗ N̂�(ȳ,−F(x̄, ȳ))(b) ⇒ b = 0 (33)

holds true. Then S has the Aubin property around (x̄, ȳ).
If ∇x F(x̄, ȳ) is surjective, then the above condition is not only sufficient but also

necessary for S to have the Aubin property around (x̄, ȳ).

Proof The first statement is a specialization of [12, Corollary 4.61]. The second one follows
directly from [12, Theorem 4.44(i)]. �

Combining Theorem 4 with the above statement, we arrive at the following criterion
for the Aubin property of S around (x̄, ȳ).

Theorem 5 Consider GE (31) and the reference point (x̄, ȳ) and assume that Mq is
metrically subregular at (ȳ, 0) and metrically regular in the vicinity of ȳ. Put ȳ∗ :=
−F(x̄, ȳ) and suppose that for every nonzero direction u from K̄ (= K (ȳ, ȳ∗)) and every
maximal index set J ∈ J̄ (u), the mapping y �→ (qi (y))i∈J is 2-regular at ȳ in the direction
u and N (ȳ) �= {0}.

Then the validity of the implication

−
[∇y F(x̄, ȳ)T b

b

]
∈

⋃
(v,v∗)∈T

gphN̂�
(ȳ,ȳ∗)

v �=0

⋃
(λ,μ)∈M̄(v,v∗)

J ∈J̄ (v)

⋃
I +(λ,μ)⊂I +⊂I⊂J

Q(v, λ, I ∗,I) ⇒ b = 0

(34)
implies the Aubin property of S around (x̄, ȳ). If ∇x F(x̄, ȳ) is surjective, then implication
(34) is not only sufficient but also necessary for S to have the Aubin property around (x̄, ȳ).

Proof The statement follows immediately from Theorem 4 and Proposition 7, provided
we show that gph N̂� is closed around (ȳ, ȳ∗), i.e. there is a closed ball B around (ȳ, ȳ∗)
such that gph N̂� ∩ B is closed. To this aim, we will consider sequences yk → y, y∗

k →
y∗, y∗

k ∈ N̂�(yk) with (y, y∗) sufficiently close to (ȳ, ȳ∗). Note that Mq is metrically
subregular at any point (a, 0) provided a ∈ � is sufficiently close to ȳ. This implies that

N̂�(a) = ∇q(a)T N
R

l−(q(a)). (35)

Let us distinguish among the following three situations:

(1) y �= ȳ: From (35), we infer the existence of multipliers λk ∈ N
R

l−(q(yk)) such that

y∗
k = ∇q(yk)

T λk .

By virtue of the assumed metric regularity of Mq in the vicinity of ȳ this sequence
is bounded, because otherwise the formula for the modulus of metric regularity in
[13, Example 9.44] would be contradicted. We can thus pass (without relabeling)
to a subsequence which converges to some λ ∈ N

R
l−(y). It follows that
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y∗ = ∇q(y)T λ ∈ N̂�(y)

and we are done.
(2) y = ȳ and yk = ȳ at most finitely many times: Then, by passing to a subsequence

(without relabeling) one can ensure that yk �= ȳ ∀k and proceed exactly in the same
way as in 1.

(3) y = ȳ and yk = ȳ infinitely many times: Then the result follows immediately from
the closedness of N̂�(ȳ).

�

We illustrate now the preceding stability criteria by means of two GEs with the constraint
sets analyzed in Examples 2 and 3.

Example 4 Consider the GE (31) with x, y ∈ R
2 and F(x, y) = x . This GE represents

stationarity conditions of the nonlinear program

min
y

〈y, x〉 subject to y ∈ �. (36)

First let us take � from Example 3 and put x̄ = (0,−1), ȳ = (0, 0). An application of
Proposition 7 leads to the condition

{w ∈ R
2|w2 = 0, w∗

1 = 2w1, w∗
1 = 0} = {(0, 0)}

which is clearly fulfilled. Hence, the respective solution map S has the Aubin property
around (x̄, ȳ).

Now let us consider the same situation with � from Example 2. In this case, the respective
solution map would have the Aubin property around (x̄, ȳ) provided the implication[

0
w

]
∈ L ⇒ w = 0, (37)

holds true. Indeed, for the second term on the right-hand side of (30), the corresponding
implication follows immediately and so it suffices to consider only L . Clearly, (37) amounts
to

w1 ≤ 0,

w2 = 0,

0 ≥ 2w1

⎫⎬⎭ ⇒ w = 0.

This implication is, however, clearly violated e.g. by the vector w = (−1, 0). Since by
virtue of (30) L is a lower estimate of Ngph N̂�

(ȳ, ȳ∗), it follows that the respective solution
map does not possess the Aubin property around (x̄, ȳ).

Example 5 Consider again the GE (31) with x, y ∈ R
2 but F(x, y) = αy − x , where α

is a positive scalar parameter. For α = 1, this GE represents stationarity conditions of the
non-linear program

min
1

2
‖y − x‖2 subject to y ∈ �, (38)
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28 H. Gfrerer and J.V. Outrata

whose (global) solutions are metric projections of x onto �. As the reference point take
x̄ = (0, 1), ȳ = (0, 0). With � from Example 3, we obtain the condition

(αw,w) ∈ {(w∗, w) |w2 = 0, w∗
1 = 2w1} ⇒ w = 0

which evidently holds true, whenever α �= 2. So the Aubin property of the respective S
around (x̄, ȳ) has been established for all α �= 2.

On the other hand, taking � from Example 2, we arrive from (30) at the implication

(αw,w) ∈ L ∪ (R × R) × {(0, 0)} ⇒ w = 0.

An analysis of this implication tells us that for α > 2 the respective solution map does
possess the Aubin property around (x̄, ȳ). On the other hand, for α ≤ 2, there is a nonzero
w such that (αw,w) ∈ L . Since L is a lower estimate of Ngph N̂�

(ȳ, ȳ∗), we conclude that
in this case the solution map does not possess the Aubin property around (x̄, ȳ).

Note that in Example 4 and in Example 5 for α < 2 ȳ is only a stationary point in
the optimization problems (36), (38) for x = x̄ but not a minimum. In (38) for x = x̄
with � from Example 2, we have to do with two stationary points (where the other one
(−0.5

√
2, 0.5) is a (global) minimum). As shown above, the respective S does not behave

in a Lipschitzian way around (x̄, ȳ), but on the basis [18, Theorem 7] one can deduce that
it possesses the isolated calmness property at this point.

Remark 2 In the case of � from Example 3 in both examples the mappings S−1 are even
strongly metrically regular at (ȳ, x̄).[24, p.179] The respective criteria (cf. e.g. [25], [26,
Section 8.3.4]), however, cannot be applied, because of a difficult shape of � around ȳ.

6. Conclusion

In the paper, we have derived a new technique for the computation of the limiting coderiva-
tive of N̂� for � given by C2 inequalities. The needed qualification conditions are fairly
weak and, in contrast to [7,8], one obtains often exact formulas and not only upper estimates.
On the other hand, the computation can be rather demanding, which reflects the complexity
of the problem and corresponds to the results obtained for affine inequalities in [3]. The
results have been used in verifying the Aubin property of parameterized GEs with � as the
constraint set and could be used also in deriving sharp M-stationarity conditions for a class
of MPCCs.
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