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ABSTRACT 

In this paper a highly scalable parallel formulation of the 
primal-dual technique is presented for index-3 constrained 
flexible multi-body dynamics system. The key features of the 
primal-dual approach are constraint preservation, preserving the 
original order of accuracy of time integration operators that are 
employed, and faster convergence rates of nonlinear iterations 
for the solution of flexible multi-body dynamical systems. In 
addition, this technique not only preserves the underlying 
properties of time integration operators for ordinary differential 
equations, but also eliminates the need for index reduction, 
constraint stabilization and regularization approaches. The key 
features of the parallel formulation of rigid and flexible 
modeling and simulation technology are capabilities such as 
adaptive high/low fidelity modeling that is useful from the 
initial design concept stage to the intermediate and to the final 
design stages in a single seamless simulation environment. The 
examples considered illustrate the capabilities and scalability of 
the proposed high performance computing (HPC) approach for 
large-scale simulations. 
 
Keywords: Flexible multibody dynamics; Differential-
algebraic equations; Index-3 systems; Constrained systems; 
Index reduction; Order reduction; Order preserving; Constraint 
stabilization; Primal-Dual technique, Parallel formulation. 

 
INTRODUCTION 

Traditionally, dynamic analyses of a multi-body system 
employing high performance computing (HPC) platforms are 
performed considering the components of the system as rigid. 
For example, see [1] for HPC computations of vehicle system 
dynamics for providing an understanding and controlling of the 
gross motion of the system such as the roll angle, pitch angle, 
steering angle for ride quality, etc. The assumption that the 
bodies are rigid is reasonable as the traditional systems are big 
and heavy. To consider the components of lightweight modern 
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multi-body systems, operating at high speeds, to be rigid could 
render the prediction of system performance erroneous. The 
study of dynamics of flexible multi-body systems has become 
increasingly important in recent years due to the challenges 
posed in the design of light weight terrain vehicles, and in other 
applications such as robotic manipulators, large scale mobile 
lightweight robots, space stations, space crafts and machine 
components subjected to dynamic high speed operating 
conditions. 

The rigid and flexible modeling environment has 
traditionally been one in which independently developed and 
validated codes were used to analyze different sub-systems. 
This is accomplished by coupling two different codes, namely, 
rigid-body dynamic analysis capabilities with finite element 
analysis software.  It is increasingly being recognized that there 
is no shortage of multi-disciplinary software codes available 
especially on serial computing environments to perform various 
simulations. However, what is desired is fewer codes that can 
solve more problems for the design engineer in a HPC 
computing environment. More importantly, a unified and 
seamless coupled approach is required to address the issues of 
parallel scalability in addition to avoiding any errors in 
interfacing multi-physics codes, as there is no unique way of 
coupling them [2]. These errors in the uncoupled approach are 
highlighted in the literature and few of them are citied here. For 
example: 1) the deformation of single bodies cannot be 
computed accurately by means of an uncoupled rigid multiple 
body system, using the computed inertial forces of the multiple 
body system [3], 2) accurate stress computations requires 
special treatment. For example, proper design of the so-called 
quasi-comparison functions (combination of eigenfunctions and 
static deformation modes to represent body deformation in the 
small deformation regime) has shown to improve stress 
representation in the flexible bodies [4], 3) standard approaches 
in commercial software for 3D multiple body systems that use 
component mode synthesis in order to reduce the number of 
1 Copyright © 2005 by ASME 
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degrees of freedom shows a lack in the modeling of contact and 
material non-linearities, 4) they are not readily suitable for 
bodies undergoing large deformations [5]. These issues need to 
be addressed in modern flexible multi-body dynamic systems 
because the design of these systems can consist of many sub-
system designs, and an integrated modeling and testing 
environment may suffer from these inaccuracies. A typical 
illustration of a complex system is described in Fig. 1. 

In addition to the above, computer modeling and 
simulation of such flexible multi-body dynamical systems 
requires accurate, efficient and robust time integration schemes 
to handle complexities of high index differential-algebraic 
equations (DAE). The concept of the index of a DAE system is 
discussed in [6]. In the generalized co-ordinates of the system, 
the equations of motion of the constrained dynamic systems are 
inherently index-3 differential algebraic equations (DAE). It is 
critical to readily use existing finite element software for 
simulating flexible-rigid multi-body dynamics, and also to 
address the challenging issues pertaining to parallel scalability 
[7]. However, the difficulties associated with the application of 
ordinary differential equation (ODE) methods to the solution of 
such index-3 DAEs are: (i) they are prone to numerical 
instability for simplectic integrators [8, 9] in the presence of 
multiple roots on the unit circle at infinite sampling frequencies 
which leads to unbounded solutions if the high frequencies are 
not resolved, (ii) induce constraint violation leading to 
computationally expensive constraint stabilization methods [10, 
11] to preserve it or the need of various regularization 
approaches such as [12-15], etc., on the reduced index system 
such as index 2 or 1 to stabilize and preserve the constraint of 
the original system (index 3), and (iii) leads to order reductions 
for stiff integrators [16-18, 6]. It is particularly difficult to 
obtain an accurate solution for the algebraic variable, namely 
the Lagrange multipliers. In addition, often, the velocity and 
accelerations suffer from an order reduction. Recently, in 
contrast to symplectic integrators, it was shown that algorithms 
designed to simultaneously preserve the total momentum and 
the energy of the system are shown to be free from 
shortcomings of the instabilities [19] but suffer from order 
reduction in velocity and Lagrange multipliers [17]. Towards 
this end we employ here the primal-dual methodology 
developed in [20], which overcomes many computational 
challenging issues, namely, constraint preservation, preserving 
order of accuracy of the employed time integration operators, 
and obtaining faster convergence rates of nonlinear iterations 
for the solution of multi-body dynamical index-3 DAE. In this 
paper a parallel formulation of the primal-dual technique is 
presented for index-3 constrained flexible multi-body dynamic 
systems. 

The paper is organized as follows. Following the brief 
introduction and literature review, the flexible component 
modeling aspects is described. This is followed by the 
description of rigid-body modeling, wherein, the selected finite 
elements are collapsed to a rigid super-element. The 
constrained system dynamics with attention to both holonomic 
and non-holonomic systems are described next. The primal-
dual technique for the robust simulation of MBD system is 
described followed the by parallel formulations of this 
technique. The results illustrate the capabilities and the 
scalability of the proposed approach followed by pertinent 
concluding remarks. 
 

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: 
 
 
Figure 1: Illustration of complex flexible-rigid multi-body 
system and their partitioning for parallel processing. 

FLEXIBLE COMPONENT MODELING 
The differential equations governing the motion of a 

flexible body Ω are given by 
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where, the boundaryΓ of the body is decomposed into two parts 
σΓ and uΓ , are the displacements, u ρ is the mass density of 

the body Ω , and σ is the true stress, .∇  represents the 
divergence operator with respect to the current coordinates, is 
the body force, t are the prescribed tractions and u are the 
prescribed displacements.  

b
∗

Considering a body as rigid can lead to significant 
computational savings; however it models the motion of a body 
accurately only in the case when the deformations are small. 
Thus, in view of the current objectives of simulating lightweight 
systems under high speed operational conditions, which may 
undergo large deformation, a model consisting solely of rigid 
bodies would not be accurate. One therefore resorts to modeling 
the flexible body by discretizing the equations of motion in 
space using numerical or modal techniques.  

Considerable research has been done during the past few 
decades for the modeling the equations of motion of 
deformable bodies. Based on the choice of the reference frame 
chosen to represent the deformation of points on flexible 
bodies, these approaches can be classified as: 1) floating frame 
approach [21], in which an intermediate frame, which 
decouples the rigid and flexible motion, is defined for each 
flexible component and the deformations are referred to this 
frame. Although it is a natural way to extending the rigid body 
dynamics, this approach is limited to modeling flexible bodies 
undergoing small deformations, 2) co-rotational approach [22], 
in which an intermediate frame, which decouples the rigid and 
flexible motion, is defined for each finite element. Although 
this approach can be applied for large deformation problems it 
2 Copyright © 2005 by ASME 
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is more appealing in the case of small deformations for which 
linear elasticity can be used, and 3) inertial approach [23], in 
which no intermediate frame is used and all the displacements 
are referred to the inertial frame. In most current software the 
inertial approach is used due to its ability to accurately model 
large deformation and rotations. The equations of motion of a 
flexible body after carrying out the space discretization using 
finite elements, in conjunction with the inertial approach, can 
be written as: 
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where, M is the mass matrix, C is the damping matrix, p is the 
vector of the non-linear internal forces, f is the vector of 
externally applied forces,  is the element connectivity 
matrix, is the vector form of the second Piola-Kirchhoff 
stress, is the shape function matrix, is the compatibility 
matrix which relates strains to nodal displacement for linear 
elasticity and relates the virtual strains to the virtual nodal 
displacements for non-linear elasticity. 
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Figure 2: Rigid body mapped into a rigid super 
element, thereby consistently reducing the finite element 
model and providing the framework for high/low fidelity 
modeling.  
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RIGID COMPONENT MODELING 
For accurate modeling, ideally, one would like to consider 

all the components in a complex system as flexible. Although 
accurate, this approach is not ideally suited for initial and 
intermediate design stages due to the high computational cost 
associated with detailed modeling of complex systems.  To 
reduce the computational cost, one of the popular approaches 
involves the modal reduction, wherein static deformation 
modes are used to represent the small deformations of a 
component. For a more general case of large deformation, the 
modal reduction cannot be used due to the internal forces being 
a non-linear function of displacements. Another approach to the 
cost reduction involves the modeling of components using the 
rigid body hypothesis, which can easily be used in the case 
when other flexible components undergo large deformation. 
For designing a new multi-body system in the shortest possible 
time, one can therefore use the capability of adaptive high/low 
fidelity modeling, whereby the design can first be evaluated by 
assuming most of its components to be rigid. Subsequently, 
after knowing the contribution of each component to the 
flexibility of the model the number of rigid components can be 
reduced in a consistent manner towards the final design stages. 
Thereby adaptively, achieving the objective of accurate 
modeling of new system together with a short development 
cycle. In order to provide the designer with the capability to 
collapse the selected finite elements to a rigid body that reduces 
the computational cost of the model significantly, we have 
adopted the approach presented in [24]. This approach, shown 
in Fig. 2, involves mapping the finite element mesh associated 
with the component, considered rigid, into a single rigid body 
super-element using the standard isoparametric mapping. This 
super-element could be a rod, triangle or a tetrahedron 
depending on the case of modeling edge, surface or volumetric 
rigidity. Thus, the equations of motion of a rigid body by 
collapsing its associated finite elements can be written as 
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where the inertia matrix Mr of the rigid bodies is given by 
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and, are the displacements of the rigid super-element, are 
the constraint equations restricting the edge length of the rigid 
super-element to remain constant, is the constraint 
jacobian, are the Lagrange multipliers imposing the 
constraints, is the equivalent mass matrix of the rigid super-
element,  is the equivalent force vector, is the shape 

function matrix of the element, and is the mass matrix 

of the i element. 
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CONSTRAINTS IN RIGID-FLEXIBLE SYSTEMS 
In a multiple body system such as a vehicle, etc., the 

interactions between flexible and/or rigid bodies are defined by 
constraints. A joint or kinematic pair imposes constraints on the 
3 Copyright © 2005 by ASME 
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relative motion of the two bodies defining the pair. These 
constraints enable the motion of a multiple body system to be 
useful for a particular task by reducing the number of degrees 
of freedom of the system. 

Holonomic Constraints 
Holonomic constraints arise if the constraint equations are 

an implicit function of the nodal displacements and time, which 
have the following representations 

 
(5)                                                                     ), 0uφ =( t

 
If the above equation does not involve the time t, then there 

is no work-done done by these constraints on the system. A 
simple example of a holonomic constraint is a revolute or hinge 
joint which is commonly employed in systems such as vehicles 
or robotic manipulators. A revolute joint is formed when two 
bodies are pinned together, thus restricting the relative motion 
between the two bodies to one rotation about a specific axis. 

Non-Holonomic Constraints 
Constraints, which are functions of velocities or inequality 

constraints that cannot be integrated back to the form of 
holonomic constraints, are called non-holonomic constraints. In 
vehicle dynamics the constraint for pure rolling of the wheel is 
a case of non-holonomic constraint, which have the following 
representations 
 

(6)                                                                    ),, 0uuφ =( t&

 
 
In this study we consider only those non-holonomic constraints 
that do not do any work on the system.  

Equation of motion for Constrained Systems 
The equation of motion of system, which satisfies the 

constraints imposed on it, can be written by imposing the 
constraints using Lagrange multipliers as 

 

b) (7                                                                        0),(
a) (7                                     ),()(

=
=+++

t
t

uφ
FµuGupuCuM T&&&

 

 
The above equations of motion Eq. 7a-b represents a 
differential equation for , which depends on the Lagrange 
multipliers or algebraic variables , and the solution is forced 
to satisfy the algebraic constraints φ , where G is the jacobian 
of the constraints.  Thus the equations of motion of a constraint 
system are called differential algebraic equations (DAEs). It 
should be noted that unlike the Eqs. 7a-b, which represent the 
equations of motion of a rigid-flexible body system, Eqs. 3a-b 
are the equations of motion of a rigid body system and 
therefore do not contain the internal force vector p. 

u
µ

ROBUST SIMULATION TECHNIQUES FOR 
CONSTRAINED SYSTEMS 

The weak form of the semi-discretized equation of motion 
of a multiple body system subjected to constraints using any 
standard time integrator can be represented as   
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where, are differential and algebraic 

state variables at time . Since we assume there is 
no work done by constraints in the Eq. 5 and 6, the discrete 
form of Eq. 5 should also imply the same in order to integrate 
the equations of motion stably. Therefore, the holonomic 
constraint equations, Eq. 8a, are satisfied using displacements 
computed at the end of the time step, and the non-holonomic 
constraint equations, Eq. 8b, are satisfied using displacements 
and velocities computed at the mid-point which result in 
workless constraints. This was first proposed by [25] and later 
by [26] by means of mean value theorem to discretize the 
constraint equations. Staggered solution procedure to solve the 
Eqs. 8a-c is described next. Here we refer it to as primal-dual 
technique.  

1111 ˆ and,ˆ,ˆ,ˆ ++++ nnnn µuuu &&&
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Linearizing the equation of motion, Eq. 8a, with respect to 
the position u and setting the resulting residual equal to zero, 
we get 
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where, K t = ∂P/∂u  is the tangent stiffness matrix. Linearizing 
the algebraic equation, Eq. 8b, with respect to the position u, 
yields 
 

(10)                                           1
111

1
1

+
+++

+
+ ∆+≈ j

n
j
n

j
n

j
n uGφφ  

 
In order to satisfy the constraint equation, the value of ∆u is 
substituted from Eq. 9 into the linearized constraint equation, 
Eq. 10. Setting the resulting residual equal to zero, yields 
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From the above equation the dual variable, µ  can be solved 
first and subsequently, the primary variables such as u  
can be recovered from Eq. 9 by an iterative procedure. This 
results in the preservation of constraints and all the underlying 
properties of the original ODE time integrators, and the 
accurate solution for the Lagrange multipliers. Thereby, it 
provides an accurate, efficient and robust formulation for index 
3 DAE systems encountered in flexible multiple body systems. 
The theoretical proofs for this new and novel primal-dual 
technique for index-3 systems can be found in [20]. This is one 
of the key aspect of scalable flexible multi-body dynamics 
technology, which is described next. 

uu &&& ,,
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Figure 3: (a) Uniformly weighted mesh partitioning, (b) rigid-flexible weighted mesh partitioning, and (c) parallel 
performance comparison for different graph node weighting and without weighting. Color coding in (a) and (b) 
represents a partition of the finite element mesh. 
SCALABLE HPC DEVELOPMENTS 
The idea of a single multiple body dynamics simulation 

code which can handle different levels of modeling resolution, 
from predominantly rigid to predominantly flexible, is critical 
for many real time and/or large scale systems in which the 
accuracy of results together with short development cycle are of 
utmost importance. To the best of our knowledge there is no 
single scalable HPC code available which can meet the above 
objectives.  

To develop a scalable HPC simulation environment, which 
is platform independent and can be ported to different HPC 
architectures, we use message-passing interface (MPI) to 
develop the proposed program. The parallelization of the 
simulation code involves parallel mesh and joint partitioning, 
an implicit scalable solver technology that is robust, and 
parallel visualization 

Mesh Partitioning 
The first stage of parallization involves partitioning of the 

finite element mesh into sub-domains as shown in Fig. 1. Each 
sub-domain is then attributed to a processor with the objective 
of balancing the computational loads and minimizing the 
communications between all the processors such that one can, 
ideally, achieve perfect scalability (linear reduction/speed-up in 
execution time when the problem size is kept constant).  

In the present approach, the rigid body super-element is 
formed by collapsing many finite elements, thereby reducing 
the contribution of these elements to the total computational 
load. If the finite element mesh is now, naively partitioned by 
assigning an equal weight to each finite element, the 
computational loads would be highly unbalanced between 
processors. We thus apply a mesh partitioning on the finite 
element mesh where the group of finite elements that are finally 
mapped to a rigid super-element are assigned less weight than 
that for the flexible elements, which can deform. 

Consider a model of a multi-body system with  rigid 

bodies and  rigid nodes, i.e. nodes that are finally mapped to 
a rigid super-element. Herein we employ a simple weighting 

r
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scheme, which attributes the weight  to an element i  in the 
following manner. 
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where, is the weight attributed to the node , n

iw i is the 
weighting factor which controls the importance given to the 
flexible nodes in the mesh, are the number of nodes per 

element and is the element connectivity matrix. It is 
evident from the above Eq. 12 that the flexible elements, 
formed by flexible nodes that contribute to the degrees of 
freedom of the multi-body system, are assigned a higher weight 
than the rigid elements formed by rigid nodes.   

npen
)(e

ijL

To illustrate the effect of the above weighting scheme on 
the mesh partition and parallel performance consider a terrain 
vehicle shown in Fig. 3. While conducting dynamic analysis of 
the vehicle, the gun barrel and barrel support are considered to 
be flexible and rest of the vehicle is assumed to be rigid to 
accurately predict the deformations and stresses in these critical 
components for various operating loading conditions. Figure 3a 
and 3b shows mesh partition obtained by using uniform weights 
and the present scheme of attaching high weights to flexible 
elements. Figure 3c, shows the parallel performance on the 
Cray T3E while using different weighing schemes where the 
factor ω  is represented by legend “weight”. It is apparent from 
Fig. 3c that assigning uniform weights to elements results in 
highly unbalanced computational loads between processors, 
thereby deteriorating the parallel performance severely. The 
parallel speedup results are much better for the cases when 
flexible elements are highly weighted. However, it should be 
noted that if the system comprises of only rigid-bodies then, a 
5 Copyright © 2005 by ASME 
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different partitioning approach, which assigns each rigid body 
to a processor should be used provided the rigid multi-body 
system has enough partitioned constraint equations to gain any 
speed-up. The issues related to parallelism for rigid-flexible 
multi-body system are described next. 

Parallel Solution of the Equations of Motion 
Joints between rigid bodies are distributed among 

processors such that each joint is attributed to a unique 
processor. The constraints and the Jacobian of constraints are 
thus partitioned as 
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The above partitioning scheme for joints naturally leads to 

row partitioning of the constraint residual vector and constraint 
Jacobian matrix. This easily lends to the parallelization of the 
dual solve given by Eq. 11 without modifying the present 
parallel finite element technology which is highly scalable.  

The primal and dual solve which involve the solution of 
 for serial computing is given by Eq. 

9 and Eq. 11, respectively, for any popular implicit time 
integration scheme. The parallel implementation for the solution 
of these variables involves the use of highly scalable FETI-DP 
solver. We first solve for the vector  given by Eq. 14, 
which is the incremental solution vector for the non-linear 
dynamic problem without constraints   
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the matrix is first solved for by using Eq. 15 1
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solve given as 

µ

 
                       ˆˆˆ

111111 ++++++ += n
j
n

j
n

j
nn

j
n SGφµHG                   (16) 

 
and, the primary solution vector can be recovered using a local 
update given as   
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RESULTS 
First we briefly discuss the validation of the present 

formulation with experimental results of a slider-crank 
mechanism studied in [27]. The geometrical and material 
properties of this slider-crank mechanism are summarized in 
Table 1 where the subscript 1, 2, 3 correspond to the crank, 
connecting rod and slider respectively (see Fig 6). Eight-noded 
quadrilateral elements are used to spatially discretize the 
system. The crank and connecting rod are modeled with three 
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elements and ten elements respectively, while the slider is 
modeled with only one element. The connecting rod is modeled 
as a flexible member as opposed to the crank and slider being 
modeled as rigid by using two separate triangular rigid super-
elements. 

 
 

Figure 4: The slider-crank mechanism problem [27] for 
validation of the present formulation. 

 
Table 1: Geometric and material properties of the slider–
crank mechanism where l is the length, b is the width, t is 
the thickness, ν is the poison ratio, ε is the Young’s 
modulus, ρ is the density and M is the mass of the links in 
the mechanism. 
 

 
 
The bending stress at the mid-point of the connecting rod 

obtained through numerical simulations is compared with the 
experimental results. Figure 5 shows the comparison of the 
experimental and numerical results at a constant crank speed of 
500 rpm for one full rotation of the crank. It is evident that the 
numerical results obtained compares well with the experimental 
results 

. 
 

 
 
Figure 5: Bending stresses at midpoint of the connecting 
rod at crank speed of 500 rpm. 
 

Next results are presented to illustrate the parallel 
scalability of the proposed approach. We have considered a 
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terrain vehicle firing analysis simulation that is critical for the 
prediction of the dynamic behavior (both gross motion together 
with deformation) of the vehicle. Here we consider applying 
the firing load on the recoil housing. The load time history is 
shown in the Fig 5.  

 
 

Figure 6: The load time history for the firing analysis. 
 
The results have been obtained employing the optimal 

dissipative time integration method that has zero-order in 
displacement and first-order in velocity overshoot 
characteristics [7]. In addition, to demonstrate the large 
deformation capability of the code, a barrel of reduced stiffness 
was considered. In this simulation, the barrel together with 
barrel support are considered flexible, while the rest of the 
model is assumed to be rigid. Fig. 6 shows the simulation frame 
of the firing analysis. It is evident from Fig. 6a – 6c that the 
barrel undergoes large deformation due to its low stiffness and 
high loads associated with firing. The present software also 
helps the designer by predicting the stresses in these flexible 
components. Fig. 6d – 6f, which shows the acceleration 
contours, can be used to predict the gravity (“G”) force in the 
crew capsule and other sensitive areas. 

 
Figure 7: (a) – (c) Von-Mises stress contour plot, (d) – (f) 
acceleration contour plots during firing analysis of a 
terrain vehicle with a flexible gun and barrel support, at 
different time instants. 
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To study the parallel performance of the HPC simulation 

code we employed a large finite element model containing one 
million flexible elements in the barrel and recoil-housing 
component. The parallel speed-ups are shown in the Fig. 8. It is 
evident from Fig. 8 that the code is highly scalable and 
achieves close to linear speedups (up to 128 number of 
processors were employed for this large-scale problem).  
 

 
 
Figure 8: Scalable parallel performance of the proposed 
approach for flexible-rigid multi-body dynamics implicit 
computations. The firing analysis simulation of a vehicle 
is carried out on the Cray T3E HPC consisting of a 
maximum of 1024 processors. The number of elements is 
equal to 1,456,686, the number of nodes is equal to 
354,434, the number of flexible elements is equal 
1,087,100, the nodes is equal to 258,298, and the 
equations is equal to 774,894. 
 
CONCLUSIONS 

The present exposition focuses on the design and 
development of a single scalable HPC simulation environment 
to accurately simulate new system designs at varying levels of 
fidelity. The varying level of fidelity modeling which helps 
achieve the objective of accurate modeling of new systems 
together with a short development cycle is implemented by 
using a non-linear finite element approach to model the flexible 
components undergoing large deformation, and a rigid body 
hypothesis for other components. Incorporating a new primal-
dual technique for the solution of index-3 DAEs, and a highly 
scalable FETI-DP solver accomplish robust scalable simulation 
of the constrained equations of motion. 
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