General Mathematics Vol. 18, No. 4 (2010), 71-84

On some 2-Banach spaces ¹

Hemen Dutta

Abstract

The main aim of this article is to introduce some difference sequence spaces with elements in a finite dimensional 2-normed space and extend the notion of 2-norm and derived norm to thus constructed spaces. We investigate the spaces under the action of different difference operators and show that these spaces become 2-Banach spaces when the base space is a 2-Banach space. We also prove that convergence and completeness in the 2-norm is equivalent to those in the derived norm as well as show that their topology can be fully described by using derived norm. Further we compute the 2-isometric spaces and prove the Fixed Point Theorem for these 2-Banach spaces.

2010 Mathematics Subject Classification: 40A05, 46A45, 46B70.

Key words and phrases: 2-norm, Difference sequence spaces, completeness, 2-isometry, Fixed Point Theorem.

¹Received 22 January, 2009

Accepted for publication (in revised form) 11 June, 2009

⁷¹

1 Introduction

The concept of 2-normed spaces was initially developed by Gähler [3] in the mid of 1960's. Since then, Gunawan and Mashadi [5], Gürdal [6] and many others have studied this concept and obtained various results.

Let X be a real vector space of dimension d, where $2 \le d$. A real-valued function $\|.,.\|$ on X^2 satisfying the following four conditions:

(1) $||x_1, x_2|| = 0$ if and only if x_1, x_2 are linearly dependent,

- (2) $||x_1, x_2||$ is invariant under permutation,
- (3) $\|\alpha x_1, x_2\| = |\alpha| \|x_1, x_2\|$, for any $\alpha \in R$,
- (4) $||x + x', x_2|| \le ||x, x_2|| + ||x', x_2||$

is called a 2-norm on X, and the pair $(X, \|., .\|)$ is called a 2-normed space.

A sequence (x_k) in a 2-normed space $(X, \|., .\|)$ is said to *converge* to some $L \in X$ in the 2-norm if

$$\lim_{k \to \infty} \|x_k - L, u_1\| = 0, \text{ for every } u_1 \in X.$$

A sequence (x_k) in a 2-normed space $(X, \|., .\|)$ is said to be *Cauchy* with respect to the 2-norm if

$$\lim_{k,l\to\infty} \|x_k - x_l, u_1\| = 0, \text{ for every } u_1 \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the 2-norm. Any complete 2-normed space is said to be 2-Banach space.

The notion of difference sequence space was introduced by Kizmaz [7], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Colak [1] by introducing the spaces $\ell_{\infty}(\Delta^s)$, $c(\Delta^s)$ and $c_0(\Delta^s)$. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [8], who studied the spaces $\ell_{\infty}(\Delta_m)$, $c(\Delta_m)$ and $c_0(\Delta_m)$. Tripathy, Esi and Tripathy [9] generalized the above notions and unified these as follows:

Let m, s be non-negative integers, then for Z a given sequence space we have

$$Z(\Delta_m^s) = \{ x = (x_k) \in w : (\Delta_m^s x_k) \in Z \},\$$

where $\Delta_m^s x = (\Delta_m^s x_k) = (\Delta_m^{s-1} x_k - \Delta_m^{s-1} x_{k+m})$ and $\Delta_m^0 x_k = x_k$ for all $k \in N$, which is equivalent to the following binomial representation:

$$\Delta_m^s x_k = \sum_{v=0}^s (-1)^v \binom{s}{v} x_{k+mv}.$$

Let m, s be non-negative integers, then for Z a given sequence space we define:

$$Z(\Delta_{(m)}^{s}) = \{ x = (x_k) \in w : (\Delta_{(m)}^{s} x_k) \in Z \},\$$

where $\Delta_{(m)}^{s} x = (\Delta_{(m)}^{s} x_{k}) = (\Delta_{(m)}^{s-1} x_{k} - \Delta_{(m)}^{s-1} x_{k-m})$ and $\Delta_{(m)}^{0} x_{k} = x_{k}$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$\Delta_{(m)}^{s} x_{k} = \sum_{v=0}^{s} (-1)^{v} \binom{s}{v} x_{k-mv}.$$

It is important to note here that we take $x_{k-mv} = 0$, for non-positive values of k - mv.

Let $(X, \|., .\|_X)$ be a finite dimensional real 2-normed space and w(X) denotes X-valued sequence space. Then for non-negative integers m and s, we define the following sequence spaces:

 $c_0(\|.,.\|,\Delta^s_{(m)}) = \{(x_k) \in w(X) : \lim_{k \to \infty} \|\Delta^s_{(m)} x_k, z_1\|_X = 0, \text{for every } z_1 \in X\},$

 $c(\|.,.\|,\Delta_{(m)}^s) = \{(x_k) \in w(X) : \lim_{k \to \infty} \|\Delta_{(m)}^s x_k - L, z_1\|_X = 0, \text{for some } L \text{ and for every } z_1 \in X\},$

 $\ell_{\infty}(\|.,.\|,\Delta_{(m)}^{s}) = \{(x_{k}) \in w(X) : \sup_{k} \|\Delta_{(m)}^{s} x_{k}, z_{1}\|_{X} < \infty, \text{for every } z_{1} \in X\}.$

It is obvious that $c_0(\|.,.\|,\Delta^s_{(m)}) \subset c(\|.,.\|,\Delta^s_{(m)}) \subset \ell_{\infty}(\|.,.\|,\Delta^s_{(m)})$. Also for $Z = c_0, c$ and ℓ_{∞} , we have

(1)
$$Z(\|.,.\|,\Delta_{(m)}^{i}) \subset Z(\|.,.\|,\Delta_{(m)}^{s}), i = 0, 1, \dots, s-1.$$

Similarly we can define the spaces $c_0(\|.,.\|,\Delta_m^s), c(\|.,.\|,\Delta_m^s)$ and $\ell_{\infty}(\|.,.\|,\Delta_m^s)$.

2 Discussions and Main Results

In this section we give some examples associated with 2-normed space and investigate the main results of this article involving the sequence spaces $Z(\|.,.\|, \Delta_{(m)}^s)$ and $Z(\|.,.\|, \Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} . Further we compute 2-isometric spaces and give the fixed point theorem for these spaces.

Example 1 AS an example of a 2-normed space, we may take $X = R^2$ being equipped with the 2-norm ||x, y|| = the area of the parallelogram spanned by the vectors x and y, which may be given explicitly by the formula:

$$||x,y|| = |x_1y_2 - x_2y_1|, x = (x_1, x_2), y = (y_1, y_2) \in X.$$

Example 2 Let us take $X = R^2$ and consider a 2-norm $\|.,.\|_X$ as defined above. Consider the divergent sequence $x = \{\overline{1}, \overline{2}, \overline{3}, ...\} \in w(X)$, where $\overline{k} = (k,k)$, for each $k \in N$. But x belongs to $Z(\|.,.\|, \Delta)$ and $Z(\|.,.\|, \Delta_{(1)})$. Hence by (1) for every m, s > 1, x belong to $Z(\|.,.\|, \Delta_{(m)}^s)$ and $Z(\|.,.\|, \Delta_m^s)$, for $Z = c_0, c$ and ℓ_∞ .

Theorem 1 The spaces $Z(\|.,.\|,\Delta_{(m)}^s)$ and $Z(\|.,.\|,\Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} are linear.

Proof. Proof is easy and so omitted.

Theorem 2 (i) Let Y be any one of the spaces $Z(\|.,.\|,\Delta_{(m)}^s)$, for $Z = c_0, c$ and ℓ_{∞} . We define the following function $\|.,.\|_Y$ on $Y \times Y$ by $\|x,y\|_Y = 0$, if x, y are linearly dependent,

$$= \sup_{k} \|\Delta_{(m)}^{s} x_{k}, z_{1}\|_{X}, \text{ for every } z_{1} \in X, \text{ if } x, y \text{ are linearly independent.}$$

$$(2) \qquad \qquad Then \|.,.\|_{Y} \text{ is a 2-norm on } Y.$$

(ii) Let H be any one of the spaces $Z(\|.,.\|, \Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} . We define the following function $\|.,.\|_H$ on $H \times H$ by $\|x,y\|_H = 0$, if x, y are linearly dependent,

 $=\sum_{k=1}^{ms} \|x_k, z_1\|_X + \sup_k \|\Delta_m^s x_k, z_1\|_X, \text{ for every } z_1 \in X, \text{ if } x, y \text{ are linearly independent.}$

(3) Then
$$\|.,.\|_H$$
 is a 2-norm on Y.

Proof. (i) If x^1, x^2 are linearly dependent, then $||x^1, x^2||_Y = 0$. Conversely assume $||x^1, x^2||_Y = 0$. Then using (2), we have

$$\sup_{k} \|\Delta_{(m)}^{s} x_{k}^{1}, z_{1}\|_{X} = 0, \text{ for every } z_{1} \in X.$$

This implies that

$$\|\Delta_{(m)}^s x_k^1, z_1\| = 0$$
, for every $z_1 \in X$ and $k \ge 1$.

Hence we must have

$$\Delta_{(m)}^s x_k^1 = 0 \text{ for all } k \ge 1.$$

Let k = 1, then $\Delta_{(m)}^{s} x_{1}^{1} = \sum_{i=0}^{s} (-1)^{i} {s \choose v} x_{1-mi}^{1} = 0$ and so $x_{1}^{1} = 0$, by putting $x_{1-mi}^{i} = 0$ for i = 1, ..., s. Similarly taking k = 2, ..., ms, we have $x_{2}^{1} = \cdots = x_{ms}^{1} = 0$. Next let k = ms + 1, then $\Delta_{(m)}^{s} x_{ms+1}^{1} = \sum_{i=0}^{s} (-1)^{i} {s \choose v} x_{1+ms-mi}^{1} = 0$.

Since $x_1^1 = x_2^1 = \cdots = x_{ms}^1 = 0$, we have $x_{ms+1}^1 = 0$. Proceeding in this way we can conclude that $x_k^1 = 0$, for all $k \ge 1$. Hence $x^1 = \theta$ and so x^1, x^2 are linearly dependent.

It is obvious that $||x^1, x^2||_Y$ is invariant under permutation, since $||x^2, x^1||_Y$ = $\sup_k ||z_1, \Delta^s_{(m)} x^1_k||_X$ and $||., .||_X$ is a 2-norm.

Let $\alpha \in R$ be any element. If $\alpha x^1, x^2$ are linearly dependent then it is obvious that

$$\|\alpha x^1, x^2\|_Y = |\alpha| \|x^1, x^2\|_Y.$$

Otherwise,

$$\|\alpha x^{1}, x^{2}\|_{Y} = \sup_{k} \|\Delta_{(m)}^{s} \alpha x_{k}^{1}, z_{1}\|_{X} = |\alpha| \sup_{k} \|\Delta_{(m)}^{s} x_{k}^{1}, z_{1}\|_{X} = |\alpha| \|x^{1}, x^{2}\|_{Y}.$$

Lastly, let $x^1 = (x_k^1)$ and $y^1 = (y_k^1) \in Y$. Then clearly

$$||x^{1} + y^{1}, x^{2}||_{Y} \le ||x^{1}, x^{2}||_{Y} + ||y^{1}, x^{2}||_{Y}.$$

Thus we can conclude that $\|.,.\|_Y$ is a 2-norm on Y.

(*ii*) For this part we shall only show that $||x^1, x^2||_H = 0$ implies x^1, x^2 are linearly dependent. Proof of other properties of 2-norm follow similarly with that of part (*i*).

Let us assume that $||x^1, x^2||_H = 0$. Then using (3), for every z_1 in X, we have

(4)
$$\sum_{k=1}^{ms} \|x_k^1, z_1\|_X + \sup_k \|\Delta_m^s x_k^1, z_1\|_X = 0$$

We have

$$\sum_{k=1}^{ms} \|x_k^1, z_1\|_X = 0, \text{ for every } z_1 \in X$$

Hence

$$x_k^1 = 0$$
, for $k = 1, 2, \dots, ms$.

Also we have from (4)

$$\sup_{k} \|\Delta_m^s x_k^1, z_1\|_X = 0 \text{ for every } z_1 \in X.$$

Hence we must have

$$\Delta_m^s x_k^1 = 0$$
, for each $k \in N$.

Let k = 1, then we have

(5)
$$\Delta_m^s x_1^1 = \sum_{v=0}^s (-1)^v \binom{s}{v} x_{1+mv}^1 = 0$$

Also we have

(6)
$$x_k^1 = 0$$
, for $k = 1 + mv, v = 1, 2, \dots s - 1$.

Thus from (5) and (6), we have $x_{1+ms}^1 = 0$. Proceeding in this way inductively, we have $x_k^1 = 0$, for each $k \in N$.

Hence $x^1 = \theta$ and so x^1, x^2 are linearly dependent.

Theorem 3 Let Y be any one of the spaces $Z(\|.,.\|, \Delta^s_{(m)})$, for $Z = c_0, c$ and ℓ_{∞} . We define the following function $\|.\|_{\infty}$ on Y by $\|x\|_{\infty} = 0$, if x is linearly dependent,

 $= \sup_{k} \max\{\|\Delta_{(m)}^{s} x_{k}, b_{l}\|_{X} : l = 1, \dots, d\}, \text{ where } B = \{b_{1}, \dots, b_{d}\} \text{ is a}$ basis of X, if x is linearly independent.

(7) Then $\|.\|_{\infty}$ is a norm on Y and we call this as derived norm on Y.

Proof. Proof is a routine verification and so omitted.

Remark 1 Associated to the derived norm $\|.\|_{\infty}$, we can define balls(open) $S(x,\varepsilon)$ centered at x and radius ε as follows:

$$S(x,\varepsilon) = \{y : \|x - y\|_{\infty} < \varepsilon\}.$$

Corollary 1 The spaces $Z(\|.,.\|,\Delta^s_{(m)})$, for $Z = c_0, c$ and ℓ_{∞} are normed linear spaces.

Theorem 4 If X is a 2-Banach space, then the spaces $Z(\|.,.\|,\Delta_{(m)}^s)$, for $Z = c_0, c$ and ℓ_{∞} are 2-Banach spaces under the 2-norm (2).

Proof. We give the proof only for the space $\ell_{\infty}(\|.,.\|, \Delta_{(m)}^{s})$ and for other spaces it will follow on applying similar arguments.

Let (x^i) be any Cauchy sequence in $\ell_{\infty}(\|.,.\|,\Delta^s_{(m)})$ and $\varepsilon > 0$ be given. Then there exists a positive integer n_0 such that

$$||x^i - x^j, u^1||_Y < \varepsilon$$
, for all $i, j \ge n_0$ and for every u^1 .

Using the definition of 2-norm, we get

$$\sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}^{j}), z_{1}\|_{X} < \varepsilon, \text{ for all } i, j \ge n_{0} \text{ and for every } z_{1} \in X.$$

It follows that

$$\|\Delta_{(m)}^s(x_k^i - x_k^j), z_1\|_X < \varepsilon, \text{ for all } i, j \ge n_0, k \in N \text{ and for every } z_1 \in X.$$

Hence $(\Delta_{(m)}^{s} x_{k}^{i})$ is a Cauchy sequence in X for all $k \in N$ and so convergent in X for all $k \in N$, since X is a 2-Banach space. For simplicity, let

$$\lim_{i \to \infty} \Delta^s_{(m)} x^i_k = y_k, \text{ say, exists for each } k \in N.$$

Taking $k = 1, 2, \ldots, ms, \ldots$ we can easily conclude that

$$\lim_{k \to \infty} x_k^i = x_k, \text{ exists for each } k \in N$$

Now for $i, j \ge n_0$, we have

$$\sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}^{j}), z_{1}\|_{X} < \varepsilon, \text{ and for every } z_{1} \in X.$$

Hence for every z_1 in X, we have

$$\sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}), z_{1}\|_{X} < \varepsilon, \text{ for all } i \ge n_{0} \text{ and as } j \to \infty.$$

It follows that $(x^i - x) \in \ell_{\infty}(\|.,.\|, \Delta^s_{(m)})$ and $\ell_{\infty}(\|.,.\|, \Delta^s_{(m)})$ is a linear space, so we have $x = x^i - (x^i - x) \in \ell_{\infty}(\|.,.\|, \Delta^s_{(m)})$. This completes the proof of the theorem.

Theorem 5 Let Y be any one of the spaces $Z(\|.,.\|, \Delta_{(m)}^s)$, for $Z = c_0, c$ and ℓ_{∞} . Then (x^i) converges to an x in Y in the 2-norm if and only if (x^i) also converges to x in the derived norm.

Proof. Let (x^i) converges to x in Y in the 2-norm. Then

$$||x^i - x, u^1||_Y \to 0$$
 as $i \to \infty$ for every u^1 .

Using (2), we get

$$\sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}), z_{1}\|_{X} \to 0 \text{ as } i \to \infty \text{ for every } z_{1} \in X.$$

Hence for any basis $\{b_1, b_2, \ldots, b_d\}$ of X, we have

$$\sup_{k} \max\{\|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}), b_{l}\|_{X} : l = 1, 2, \dots, d\} \to 0 \text{ as } i \to \infty.$$

Thus it follows that

$$||x^i - x||_{\infty} \to 0 \text{ as } i \to \infty.$$

Hence (x^i) converges to x in the derived norm.

Conversely assume (x^i) converges to x in the derived norm. Then we have

$$||x^i - x||_{\infty} \to 0 \text{ as } i \to \infty.$$

Hence using (7), we get

$$\sup_{k} \max\{\|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}), b_{l}\|_{X} : l = 1, 2, \dots, d\} \to 0 \text{ as } i \to \infty.$$

Therefore

$$\sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i}-x_{k}), b_{l}\|_{X} \to 0 \text{ as } i \to \infty, \text{ for each } l=1,\ldots,d.$$

Let y be any element of Y. Then

$$||x^{i} - x, y||_{Y} = \sup_{k} ||\Delta_{(m)}^{s}(x_{k}^{i} - x_{k}), z_{l}||_{X}$$

Since $\{b_1, \ldots, b_d\}$ is a basis for X, z_1 can be written as

$$z_1 = \alpha_1 b_1 + \dots + \alpha_d b_d$$
 for some $\alpha_1, \dots, \alpha_d \in R$.

Now

$$\|x^{i} - x, y\|_{Y} = \sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i} - x_{k}), z_{l}\|_{X}$$

$$\leq |\alpha_{1}| \sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i} - x_{k}), b_{l}\|_{X} + \dots + |\alpha_{d}| \sup_{k} \|\Delta_{(m)}^{s}(x_{k}^{i} - x_{k}), b_{d}\|_{X},$$

for each i in N.

Thus it follows that

$$||x^i - x, y||_Y \to 0$$
 as $i \to \infty$ for every $y \in Y$.

Hence (x^i) converges to x in Y in the 2-norm.

Corollary 2 Let Y be any one of the spaces $Z(\|.,.\|, \Delta^s_{(m)})$, for $Z = c_0, c$ and ℓ_{∞} . Then Y is complete with respect to the 2-norm if and only if it is complete with respect to the derived norm.

Summarizing remark 1, corollary 1 and corollary 2, we have the following result:

Theorem 6 The spaces $Z(\|.,.\|, \Delta_{(m)}^s)$, for $Z = c_0, c$ and ℓ_{∞} are normed spaces and their topology agree with that generated by the derived norm $\|.\|_{\infty}$.

Remark 2 We get similar results as those of Theorem 3, Corollary 1, Theorem 4, Theorem 5, Corollary 2 and Theorem 6 for the spaces $Z(||.,.||, \Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} also.

A 2-norm $\|.,.\|_1$ on a vector space X is said to be equivalent to a 2-norm $\|.,.\|_2$ on X if there are positive numbers A and B such that for all $x, y \in X$ we have

$$A||x, y||_2 \le ||x, y||_1 \le B||x, y||_2$$

This concept is motivated by the fact that equivalent norms on X define the same topology for X.

Remark 3 It is obvious that any sequence $x \in Z(\|.,.\|, \Delta_{(m)}^s)$ if and only if $x \in Z(\|.,.\|, \Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} . Also it is clear that the two 2-norms $\|.,.\|_Y$ and $\|.,.\|_H$ defined by (2) and (3) are equivalent.

Let X and Y be linear 2-normed spaces and $f: X \to Y$ a mapping. We call f an 2-isometry if

$$||x_1 - y_1, x_2 - y_2|| = ||f(x_1) - f(y_1), f(x_2) - f(y_2)||,$$

for all $x_1, x_2, y_1, y_2 \in X$.

Theorem 7 For $Z = c_0$, c and ℓ_{∞} , the spaces $Z(\|.,.\|, \Delta^s_{(m)})$ and $Z(\|.,.\|, \Delta^s_m)$ are 2-isometric with the spaces $Z(\|.,.\|)$.

Proof. Let us consider the mapping

$$F: Z(\|.,.\|, \Delta^s_{(m)}) \to Z(\|.,.\|),$$
 defined by

$$Fx = y = (\Delta_{(m)}^s x_k), \text{ for each } x = (x_k) \in Z(\|.,.\|,\Delta_{(m)}^s)$$

Then clearly F is linear. Since F is linear, to show F is a 2-isometry, it is enough to show that

$$||F(x^1), F(x^2)||_1 = ||x^1, x^2||_Y$$
, for every $x^1, x^2 \in Z(||., .||, \Delta^s_{(m)})$.

Now using the definition of 2-norm (2), without loss of generality we can write

$$\|x^{1}, x^{2}\|_{Y} = \sup_{k} \|\Delta_{(m)}^{s} x_{k}^{1}, z_{1}\|_{X} = \|F(x^{1}), F(x^{2})\|_{1},$$

where $\|., .\|_1$ is a 2-norm on $Z(\|., .\|)$, which can be obtained from (2) by taking s = 0.

In view of remark 3, we can define same mapping on the spaces $Z(\|.,.\|,\Delta_m^s)$ and completes the proof.

For the next Theorem let Y to be any one of the spaces $Z(\|.,.\|,\Delta_{(m)}^s)$, for $Z = c_0, c$ and ℓ_{∞} .

Theorem 8 (Fixed Point Theorem) Let Y be a 2-Banach space under the 2-norm (2), and T be a contractive mapping of Y into itself, that is, there exists a constant $C \in (0, 1)$ such that

$$||Ty^{1} - Tz^{1}, x^{2}||_{Y} \le C||y^{1} - z^{1}, x^{2}||_{Y},$$

for all y^1, z^1, x^2 in Y. Then T has a unique fixed point in Y.

Proof. If we can show that T is also contractive with respect to derived norm, then we are done by corollary 2 and the fixed point theorem for Banach spaces.

Now by hypothesis

$$||Ty^1 - Tz^1, x^2||_Y \le C ||y^1 - z^1, x^2||_Y$$
, for all $y^1, z^1, x^2 \in Y$.

This implies that

 $\sup_{k} \|\Delta_{(m)}^{s}(Ty_{k}^{1} - Tz_{k}^{1}), u_{1}\|_{X} \le C \sup_{k} \|\Delta_{(m)}^{s}(y_{k}^{1} - z_{k}^{1}), u_{1}\|_{X}, \text{ for every } u_{1} \in X.$

Then for a basis $\{e_1, \ldots, e_d\}$ of X, we get

$$\sup_{k} \|\Delta_{(m)}^{s}(Ty_{k}^{1} - Tz_{k}^{1}), e_{i}\|_{X} \le C \sup_{k} \|\Delta_{(m)}^{s}(y_{k}^{1} - z_{k}^{1}), e_{i}\|_{X}$$

for all y^1, z^1 in Y and $i = 1, \ldots, d$.

Thus

$$||Ty_k^1 - Tz_k^1||_{\infty} \le C ||y_k^1 - z_k^1||_{\infty}$$

That is T is contractive with respect to derived norm. This completes the proof.

Remark 4 We get the fixed point theorem for the spaces $Z(\|.,.\|,\Delta_m^s)$, for $Z = c_0, c$ and ℓ_{∞} as above.

References

- M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21, 1995, 377-386.
- [2] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 28, 1963, 115-148.
- [3] S. Gähler, Linear 2-normietre Räume, Math. Nachr. 28, 1965, 1-43.
- [4] S. Gähler, Uber der uniformisierbarkeit 2-metrische Räume, Math. Nachr. 28, 1965, 235-244.
- [5] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow J. of Math. 27, 2001, 631-639.

- [6] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4, 2006, 85-91.
- [7] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, 1981, 169-176.
- [8] B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Int. Jour. of Sci. and Tech. 1, 2006, 11-14.
- [9] B.C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31, 2005, 333-340.

Hemen Dutta

Department of Mathematics, Gauhati University, Kokrajhar Campus, Kokrajhar-783370, Assam, India. e-mail: hemen_dutta08@rediffmail.com