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Abstract

Let Ω ⊂ Rn be a bounded NTA-domain and let ΩT = Ω × (0, T ) for some T > 0. We
study the boundary behaviour of non-negative solutions to the equation

Hu = ∂tu− ∂xi(aij(x, t)∂xju) = 0, (x, t) ∈ ΩT .

We assume that A(x, t) = {aij(x, t)} is measurable, real, symmetric and that

β−1λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ βλ(x)|ξ|2 for all (x, t) ∈ Rn+1, ξ ∈ Rn,

for some constant β ≥ 1 and for some non-negative and real-valued function λ = λ(x)
belonging to the Muckenhoupt class A1+2/n(Rn). Our main results include the doubling
property of the associated parabolic measure and the Hölder continuity up to the bound-
ary of quotients of non-negative solutions which vanish continuously on a portion of the
boundary. Our results generalize previous results of Fabes, Kenig, Jerison, Serapioni, see
[18], [19], [20], to a parabolic setting.
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1 Introduction and statement of main results

In a sequence of papers, see [18], [19], [20], Fabes, Kenig, Jerison and Serapioni (in the following
refered to as Fabes et al.) developed the theory concerning the boundary behaviour of solutions
to linear degenerate elliptic equations of the form

n∑
i,j=1

∂xi(aij(x)∂xju) = 0 in Rn. (1.1)

Fabes et al. assume that A(x) = {aij(x)} is measurable, real, symmetric, for every x ∈ Rn, and
that

β−1λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ βλ(x)|ξ|2 (1.2)

for all x ∈ Rn, ξ ∈ Rn and for some constant β, 1 ≤ β < ∞. The weight λ = λ(x) is assumed
to belong to the Muckenhoupt class A2(Rn). While the results by Fabes et al., to some extent
are straight forward generalizations of previous results established in the uniformly elliptic
case, that is when λ(x) ≡ 1, see [5], [12], [2], [32], [43] and the references in these papers,
the results by Fabes et al. have recently proved important in several fields within the area of
partial differential equations. In particular, firstly in [4], [3], [47], the results are used in the
study of the boundary behaviour of non-local operators exemplified by the fractional Laplacian.
Secondly, in [34]-[41], a theory concerning the boundary behaviour for solutions to operators
of p-Laplace type is developed. Part of the technical toolbox developed in [34]-[41], consists of
techniques for establishing boundary Harnack inequalities for p-harmonic functions vanishing
on a portion of the boundary of a domain which is ‘flat’ in the sense that its boundary is
well-approximated by hyperplanes. In this case, at the final stage of the analysis, results are
derived in the non-linear case by a reduction to linear degenerate elliptic equations of the form
considered by Fabes et al.

Based on the above it is natural to attempt to develop a parabolic counterpart of the elliptic
theory developed by Fabes et al., and in this case the operators of interest are second order
parabolic partial differential operators of the form

H = ∂t −
n∑

i,j=1

∂xi(aij(x, t)∂xj), (x, t) ∈ Rn × R, (1.3)

where again A = A(x, t) = {aij(x, t)} = {aij} is assumed measurable, real and symmetric,
for every (x, t) ∈ Rn × R. To allow for degeneracy we assume that there exists a real valued
function λ : Rn+1 → R such that

β−1λ(x, t)|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ βλ(x, t)|ξ|2 (1.4)

for all (x, t) ∈ Rn+1, ξ ∈ Rn, and for some constant β, 1 ≤ β < ∞. In fact, for this type of
equations results of interior character were established in [6], [7], [8], [9], [10], [11], under various
integrability conditions on the weight λ = λ(x, t). For example, in [8] the authors establish
a Harnack inequality for non-negative solutions to Hu = 0 assuming that λ(x, t) = λ(x), i.e.,
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λ is time-independent, and λ ∈ A1+2/n(Rn). Furthermore, in the same paper the authors
also show, by way of examples, that when n ≥ 3 and λ is time-independent, the condition
λ ∈ A1+2/n(Rn) is sharp among the Muckenhoupt Ap-conditions for the continuity of weak
solutions. This is in contrast to the elliptic case, where the condition λ ∈ A2(Rn) is sufficient
for the same conclusion. See also [9] for many interesting examples concerning the difference
between the elliptic and parabolic case in the context of degenerate operators, and some results
in the context of degenerate parabolic operators with time-dependent weights.

This paper is the first in a sequence of two papers devoted to the study of the boundary
behaviour of non-negative solutions to linear degenerate parabolic operators satisfying (1.4).
In this paper we consider operators as in (1.3), satisfying (1.4) for some λ(x, t) = λ(x), and we
assume

λ ∈ A1+2/n(Rn) and we will denote the A1+2/n(Rn)-constant of λ by Λ. (1.5)

In a subsequent paper we intend to consider the case of time-dependent weights as part of
an ambition to understand the boundary behaviour of non-negative solutions to non-linear
parabolic equations of p-parabolic type somehow along the lines of the elliptic theory developed
in [34], [35], [38], [36]. However, already the case of time-independent weights λ(x, t) = λ(x) ∈
A1+2/n(Rn) forces us to revisit essentially all the relevant arguments used in the corresponding
context of uniformly parabolic equations. The contribution of the paper is a generalization
of results previously established for uniformly parabolic equation in divergence form in the
celebrated papers of Fabes, Safonov and Yuan, see [21], [22], [46], to operators as in (1.3)
satisfying (1.4) for some λ(x, t) = λ(x) as in (1.5).

1.1 Statement of main results

Let the operator H be as in (1.3), satisfying (1.4), for some λ(x, t) = λ(x) as in (1.5). We will
work in cylinders ΩT = Ω× (0, T ), T > 0, where Ω ⊂ Rn is a bounded domain, i.e., a bounded,
connected and open set in Rn. Let the parabolic boundary of the cylinder ΩT , ∂pΩT , be defined
as

∂pΩT = ST ∪ (Ω̄× {0}), ST = ∂Ω× [0, T ].

Some restriction on Ω will be needed. We will assume that Ω is an non-tangentially accessible
domain, or NTA-domain for short, as introduced in [32]. If Ω is a NTA-domain, with parameters
M and R0, then for any x0 ∈ ∂Ω, 0 < R < R0, there exists a non-tangential corkscrew point,
that is a point AR(x0) ∈ Ω, such that

M−1R ≤ d(x0, AR(x0)) ≤ R, and d(AR(x0), ∂Ω) ≥M−1R,

where d is the Euclidean distance d(x, y) = |x−y|. In Section 4 we prove that if Ω is a bounded
NTA-domain then there exists, for each f ∈ C(∂pΩT ), a unique (weak) solution u ∈ C(ΩT ) to
the continuous Dirichlet problem

Hu = 0 in ΩT , u = f on ∂pΩT . (1.6)

As a consequence there also exists a unique probability measure ω(x, t, ·) on ∂pΩT such that

u(x, t) =

ˆ
∂pΩT

f(y, s)dω(x, t, y, s) (1.7)
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whenever u is the unique solution to the continuous Dirichlet problem (1.6). We will refer to
ω(x, t, ·) as the H-parabolic measure, or simply parabolic measure, relative to (x, t) and ΩT .

The Harnack inequality proven in [8] does not hold in standard parabolic cylinders but
rather in cylinders associated with the weight λ. The same is true for our results. Given R > 0
and x ∈ Rn, we let

rx(R) =

(ˆ
B(x,R)

λ−n/2(ξ)dξ

)1/n

,

and

C∗R(x, t) = B(x0, R)×
(
t0 − rx0(R)2, t0 + rx0(R)2

)
,

∆∗R(x, t) = ST ∩ C∗R(x, t).

Note that by construction the cylinders {C∗R(x0, t0)} take the degeneracy of H into account
and that the use of these intrinsic cylinder allows us to state our main theorems with constants
which do not depend on the weight λ directly. We let diam(Ω) = sup{|x−y| | x, y ∈ Ω} denote
the Euclidean diameter of Ω and we let diamλ(Ω) = sup{rx(|x − y|) |x, y ∈ Ω}. When we in
the following write that a constant c depends on the operator H, c = c(H), we mean that c
depends on the dimension n, the constant β in (1.4) and the constant Λ in (1.5). The following
theorems are the main results proved in this paper. For notation and definitions, we refer to
Section 2 and Section 3.

Theorem 1.1. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded
NTA-domain with parameters M , R0 and let ΩT = Ω × (0, T ) for some T > 0. Let u be
a non-negative solution of Hu = 0 in ΩT vanishing continuously on ST . Then there is an
r̄0 = r̄0(H,M,R0, diam(Ω), diamλ(Ω)), r̄0 > 0 such that the following holds. Let δ, 0 < δ < r̄0,
be a fixed constant, let (x0, t0) ∈ ST , δ2 ≤ t0, and assume that R satisfies rx0(R) < δ/2. Then
there exists c = c(H,M, diamλ(Ω), T, δ), 1 ≤ c <∞, such that

u(x, t) ≤ cu
(
AR(x0), t0

)
whenever (x, t) ∈ ΩT ∩ C∗R(x0, t0).

Theorem 1.2. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded NTA-
domain with parameters M , r0 and let ΩT = Ω × (0, T ) for some T > 0. There then is an
r̄0 = r̄0(H,M, r0, diam(Ω), diamλ(Ω)), r̄0 > 0 such that the following is true. Let 0 < δ < r̄0 be
a fixed constant. Let (x0, t0) ∈ ST be such that 16δ2 ≤ t0 and δ2 ≤ T − t0, and suppose that
rx0(R) < δ/2. Then there exists a constant c = c(H,M, diamλ(Ω), T, δ), 1 ≤ c <∞, such that

ω(x, t,∆∗2R(x0, t0)) ≤ cω(x, t,∆∗R(x0, t0)),

whenever (x, t) ∈ ΩT is such that t ≥ t0 + 16rx0(R)2.

Theorem 1.3. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded NTA-
domain with parameters M , r0 and let ΩT = Ω × (0, T ) for some T > 0. There then is an
r̄0 = r̄0(H,M,R0, diam(Ω), diamλ(Ω)), r̄0 > 0 such that the following is true. Let u, v be non-
negative solutions of Hu = 0 in ΩT vanishing continuously on ST . Let δ, 0 < δ < r̄0, be a fixed
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constant. Then u/v is Hölder continuous on the closure of Ω×(δ2, T ]. Furthermore, let (x0, t0) ∈
ST , δ2 ≤ t0, and assume that rx0(R) < δ/2. Then there exist c = c(H,M, diamλ(Ω), T, δ),
1 ≤ c <∞, and α = α(H,M, diamλ(Ω), T, δ), α ∈ (0, 1), such that∣∣∣∣u(x, t)

v(x, t)
− u(y, s)

v(y, s)

∣∣∣∣ ≤ c

(
rx(|x− y|) + |s− t|1/2

rx0(R)

)αu(AR(x0), t0
)

v
(
AR(x0), t0

)
whenever (x, t), (y, s) ∈ ΩT ∩ C∗R/c(x0, t0).

Note that by a covering argument, versions of Theorems 1.1-1.3 could also be stated using
the standard parabolic cylinders {CR(x0, t0) = B(x0, R)× (t0−R2, t0 +R2)}. However, in this
case the constants would depend on the quotient of rx0(R) and R.

Note that Theorem 1.1 and Theorem 1.3 have a global flavor in the sense that we assume
that u and v are non-negative solutions of Hu = 0 in all of ΩT , vanishing continuously on the
entire lateral boundary ST . Naturally, also local versions can be formulated but we here omit
further details.

To put Theorem 1.1-Theorem 1.3 in perspective we note, as briefly mentioned at the be-
ginning of the introduction, that for uniformly parabolic equations, the case λ ≡ 1, the study
of the type of problems considered in this paper, and in particular Theorem 1.1-Theorem 1.3,
have a long and rich history which culminated with the celebrated papers of Fabes, Safonov
and Yuan [21], [22] and [46]. In these works the authors proved Theorem 1.1-Theorem 1.3 for
linear uniformly parabolic equations, both in divergence and non-divergence form. We remark
that, while these authors work in Lipschitz cylinders, one can easily see that their proofs can
be generalized to the setting of bounded NTA-cylinders. While the works Fabes, Safonov and
Yuan completed, for linear uniformly parabolic equations, the line of research considered in
this paper, contributions by other researchers are contained in [17], [23], [25], [33], [16], [21],
[44]. For the elliptic versions of Theorem 1.1-Theorem 1.3 we refer to [18], [19], [20], and we
emphasize that in the elliptic case the assumption λ ∈ A2(Rn) on the weight is sufficient for
the validity of the corresponding versions of Theorem 1.1-Theorem 1.3.

1.2 Organization of the paper

In Section 2, which mainly is of preliminary nature, we introduce our main technical tool which is
a weighted distance function dλ related to the function rx(R). In this section we also define weak
solutions and we state fundamental principles like Cacciopoli estimates, the Harnack inequality,
interior Hölder continuity estimates and the weak maximum principle. Section 3 is devoted to
geometry. We here introduce the notion of λ-NTA-domains, NTA-domains with respect to dλ,
and we prove, see Lemma 3.4 and Lemma 3.3 below, that the λ-NTA-domains are exactly the
classic NTA-domains introduced in [32]. However, the setting of λ-NTA-domains facilitates the
use of the Harnack inequality of [8] and is used in the remainder of the paper. In section 4 we
establish existence and uniqueness for solutions to the continuous Dirichlet problem stated in
(1.6) and the existence of the parabolic measure, assuming that Ω is a λ-NTA-domain. This is
done by approximating H with a sequence of uniformly parabolic operators. In Section 5 we
establish some technical lemmas and prove Theorem 1.1. In Section 6 and Section 7 we prove
Theorem 1.2 and Theorem 1.3, respectively, by first proving the theorems for approximating
uniformly parabolic operators and then passing to the limit.
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2 Preliminaries

In this section we introduce notation, definitions and preliminary results that will be used
throughout the paper.

2.1 Notations and conventions

Points in Euclidean (n+ 1)-space Rn+1 will usually be denoted by (x, t) = (x1, . . . , xn, t). The
notation (y, s) or (ξ, τ) will also be used when needed. Given a set E ⊂ Rn, let Ē, ∂E, be the
closure and boundary of E. Let x ·y denote the standard inner product on Rn, and |x| =

√
x · x

the Euclidean norm of x. Let dx be Lebesgue n-measure on Rn and for any measurable E ∈ Rn

we let |E| =
´
E
dx. Given E ∈ Rn let diam(E) = sup{|x− y| : x, y ∈ E}. Given (x, t) ∈ Rn+1

and R > 0, let B(x,R) denote the standard Euclidean ball

B(x,R) = {y ∈ Rn : |x− y| < R},

and let CR(x, t) denote the standard parabolic cylinder

CR(x, t) = B(x,R)× (t−R2, t−R2).

Note that the Euclidean radii of balls will always be denoted by R. Throughout the paper c
will denote a positive constant c ≥ 1, not necessarily the same at each occurrence. In general
c = c(a1, . . . , am) denotes a positive constant c ≥ 1 may depend only on a1, . . . , am and which
is not necessarily the same at each occurrence. Let H be as in (1.3) and assume (1.4) and
(1.5). That c depends on the operator H, c = c(H), means that c = c(n,Λ, β) where n is the
dimension, Λ is the A1+2/n-constant of λ and β is as in (1.4). Two quantities A and B are said
to be comparable, or A ≈ B, if c−1 ≤ A/B ≤ c for some c = c(H), c ≥ 1.

2.2 Weights and distances

Recall that a function λ is said to belong to the Muckenhoupt class Ap = Ap(Rn), for some p,
1 < p <∞, if λ is non-negative, measurable and satisfies(

1

|B(y,R)|

ˆ
B(y,R)

λ(x)dx

)(
1

|B(y,R)|

ˆ
B(y,R)

λ(x)−1/(p−1)dx

)p−1

≤ Λλ,p <∞ (2.1)

for all y ∈ Rn, R > 0. The constant Λλ,p = Λp is called the Ap constant of λ. Let λ(E) =´
E
λ(x)dx, for all measurable sets E. Then, in particular, every λ ∈ Ap(Rn) gives a doubling

measure with doubling constants depending only on n, p and Λp. In the following we let λ be
as in (1.5), that is λ ∈ A1+2/n(Rn) with constant Λ1+2/n = Λ. Let

dλ(x, y) =

(ˆ
B(x,|x−y|)

λ−n/2(ξ)dξ

)1/n

(2.2)

whenever x, y ∈ Rn. The function dλ will be used to measure distances weighted by λ. Note
that, up to normalisation, dλ coincides with the Euclidean metric when λ ≡ 1. The function dλ
has some of the characteristics of a metric. To start with, for x ∈ Rn fixed, dλ(x, y) increases
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as |x − y| increases. Furthermore, dλ(x, y) = 0 if and only if x = y. However, in general
dλ(x, y) 6= dλ(y, x) and dλ only satisfies a relaxed triangle inequality making dλ only a quasi-
semi-metric on Rn, see Lemma 2.2 below. Having introduced dλ we let

diamλ(E) = sup{dλ(x, y) : x, y ∈ E}.

for any set E ⊂ Rn. For each x ∈ Rn and r > 0, we let

Bλ(x, r) =
{
y ∈ Rn : dλ(x, y) < r

}
, (2.3)

denote the corresponding open ball with center at x and with radius r, measured with dλ.
Furthermore, for (x, t) ∈ Rn+1 and r, r1, r2 > 0, let

Cλ
r (x, t) = Bλ(x, r)× (t− r2, t+ r2), Cλ

r1,r2
(x, t) = Bλ(x, r1)× (t− r2

2, t+ r2
2),

Cλ,+
r (x, t) = Bλ(x, r)× (t, t+ r2), Cλ,−

r (x, t) = Bλ(x, r)× (t− r2, t),

Cλ,+
r1,r2

(x, t) = Bλ(x, r1)× (t, t+ r2
2), Cλ,−

r1,r2
(x, t) = Bλ(x, r1)× (t− r2

2, t). (2.4)

Finally, let the (weighted) parabolic distance, be defined as

dλ,p((x, t), (y, s)) = dλ,p(x, t, y, s) = ((dλ(x, y))2 + |s− t|)1/2, (2.5)

whenever (x, t), (y, s) ∈ Rn+1. To gain further intuition concerning our weighted setting it is
important to note that the set Bλ(x, r) is in fact an Euclidean ball. In particular, for every
x ∈ Rn and R > 0 there is an r such that Bλ(x, r) = B(x,R) and vice versa. To formalize this
we define, if λ ∈ A1+2/n, x ∈ Rn and R > 0,

rx(R) =

(ˆ
B(x,R)

λ−n/2(ξ)dξ

)1/n

, (2.6)

and we note, using this notation, that Bλ

(
x, rx(R)

)
= B(x,R). Also note that the cylinder used

in the statement of Theorems 1.1-1.3 is exactly C∗R(x, t) = Cλ
rx(R)(x, t), however for the sake of

brevity we avoided this notation in the introduction of the paper. Since the function rx is strictly
increasing, it has an inverse Rx(r) = r−1

x (r). This means that B
(
x,Rx(r)

)
= Bλ(x, r). Note

also that Rx is strictly increasing. The connection between dλ and the Euclidean metric allows
us recover some geometrical information from the quasi-semi-metric. In particular, combining
the Ap condition and the Hölder inequality we derive the useful comparison

rx(R)2 ≈ Rn+2

λ (B(x,R))

valid for every x ∈ Rn and R > 0, with comparison constants depending only on n and Λ.
Furthermore, when comparing the radii of two balls, the following lemma allows us to switch
between the weighted and the Euclidean settings.

Lemma 2.1. Let λ be as in (1.5). Let x, x̂ ∈ Rn and R, R̂ > 0 be such that B(x̂, R̂) ⊂ B(x,R).
Then there exist c = c(n,Λ), c ≥ 1, such that

c−1
(
R̂/R

)c
≤ rx̂(R̂)

rx(R)
≤ c

(
R̂/R

)1/c

. (2.7)
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Proof. Let µ(x) = λ−n/2(x) for all x ∈ Rn. Then, by (2.1), µ ∈ A1+2/n with A1+2/n-constant
depending only on n and Λ. Noting that rx(R) = µ(B(x,R))1/n, the lemma follows from
Lemma 5 in [12].

Lemma 2.2. Let λ be as in (1.5) and let dλ(x, y), x, y ∈ Rn, be defined as in (2.2). Then there
exists a constant c∆ = c∆(n,Λ), 1 ≤ c∆ <∞, such that

dλ(x, z) ≤ c∆(dλ(x, y) + dλ(y, z)) (2.8)

and
dλ(x, z) ≤ c∆dλ(z, x) (2.9)

whenever x, y, z ∈ Rn.

Proof. We first note that if |x−z| ≤ |x−y|, then dλ(x, z) ≤ dλ(x, y) and hence there is nothing
more to prove. We may therefore assume that |x− z| > |x− y|. Assume now that x, y, and z
are collinear and y lies between x and z. Then B(y, |y − z|) ⊂ B(x, |x− z|) and using Lemma
2.1 it follows that

c−1dλ(x, z)
|y − z|c

|x− z|c
≤ dλ(y, z), c

−1dλ(x, z)
|x− y|c

|x− z|c
≤ dλ(x, y),

for some c = c(n,Λ) ≥ 1. Adding the estimates in the last display we see that

c−1dλ(x, z)

(
|x− y|c + |y − z|c

|x− z|c
)
≤ dλ(x, y) + dλ(y, z).

Since |x− z|c ≤ 2c−1 (|x− y|c + |y − z|c) the proof of (2.8) is complete in this case. In the
general case, let z′ be the point collinear with x and y such that y lies between x and z′ and
such that |y − z′| = |y − z|, |x − z| < |x − z′| and |x − y| < |x − z′|. We can then apply the
previous argument to x, y, z′ and we deduce that

dλ(x, z) ≤ dλ(x, z
′) ≤ c(d(x, y) + d(y, z′)) = c(d(x, y) + d(y, z)).

This finishes the proof of the triangle inequality in (2.8). The inequality in (2.9) follows from
Lemma 2.1, since

dλ(x, y) = rx(|x− y|) ≤ rx(2|x− y|) ≤ cry(|x− y|) = cdλ(y, x).

Hence the proof is complete.

Remark 2.2. If c∆ > 2 the triangle inequality (2.8) does not give any lower bound for
dλ (∂Bλ(x, r), ∂Bλ(x, 2r)). However, dλ (∂Bλ(x, r), ∂Bλ(x, 2c∆r)) ≥ r. This technical remark
is of some importance since you for example can not construct a function that is constant 1 on
Bλ(x, r) and supported Bλ(x, 2r) and has controlled gradient.

Repeated use of the triangle inequality gives

d(x,w) ≤ c∆

(
c∆

(
d(x, y) + d(y, z)

)
+ d(z, w)

)
≤ c∆

2(d(x, y) + d(y, z) + d(z, w))

and so forth. Adding j distances in this linear fashion makes the constant grow as c∆
j−1. This

simple iteration is usually enough. However, when the growth of the constant is important, the
following lemma is needed to make effective use of the triangle inequality.
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Lemma 2.3. Suppose that x0, x1, . . . , x2k ∈ Rn for some k > 1. Then

dλ(x0, x2k) ≤ c∆
k

2k∑
i=1

dλ(xi−1, xi).

Proof. For k = 2 we have by the triangle inequality that

dλ(x0, x4) ≤ c∆

(
dλ(x0, x2) + dλ(x2, x4)

)
≤ c∆

(
c∆

(
dλ(x0, x1) + dλ(x1, x2)

)
+ c∆

(
dλ(x2, x3) + dλ(x3, x4)

))
.

The general case follows by induction.

2.3 Weak solutions

Let in the following λ ∈ A1+2/n(Rn) and let Ω ⊂ Rn be a bounded domain. Let L2
λ(Ω) denote

the Hilbert space of functions defined on Ω which are square integrable on Ω with respect to
the measure λ(x)dx. Let L2

λ(Ω) be equipped with the natural weighted L2-norm ‖ · ‖L2
λ(Ω).

Furthermore, let W 1,2
λ (Ω), be the space of equivalence classes of functions u with distributional

gradient ∇u = (ux1 , . . . , uxn), both of which belong to L2
λ(Ω). Let

‖u‖W 1,2
λ (Ω) = ‖f‖L2

λ(Ω) + ‖ |∇f | ‖L2
λ(Ω)

be the norm in W 1,2
λ (Ω). Let C∞0 (Ω) denote the set of infinitely differentiable functions with

compact support in Ω and let W 1,2
λ,0 (Ω) denote the closure of C∞0 (Ω) in the norm ‖ · ‖W 1,2

λ (Ω).

W 1,2
λ,loc(Ω) is defined in the standard way. Given t1 < t2, let L2(t1, t2,W

1,2
λ (Ω)) denote the space

of functions such that for almost every t, t1 ≤ t ≤ t2, the function x → u(x, t) belongs to
W 1,2
λ (Ω) and

‖u‖L2(t1,t2,W
1,2
λ (Ω)) :=

( t2ˆ

t1

ˆ

Ω

(
|u(x, t)|2 + |∇u(x, t)|2

)
λ(x)dxdt

)1/2

<∞.

The space L2
(
t1, t2,W

1,2
λ,loc(Ω)

)
is defined analogously. Let H be as in (1.3), assume (1.4) and

(1.5). Let Ω be a bounded domain and T > 0. A function u is said to be a weak solution of
Hu = 0 in ΩT if, for all open sets Ω′ ⊆ Ω and 0 < t1 < t2 < T , we have u ∈ L2(t1, t2,W

1,2
λ (Ω′))

and
t2ˆ

t1

ˆ

Ω′

aij(x, t)∂xiu∂xjθdxdt−
t2ˆ

t1

ˆ

Ω′

u∂tθdxdt

+

ˆ

Ω′

u(x, t2)θ(x, t2)dx−
ˆ

Ω′

u(x, t1)θ(x, t1)dx = 0 (2.10)

whenever θ ∈ C∞0 (Ω′T ). Furthermore, u is said to be a weak supersolution to Hu = 0 if the left
hand side of (2.10) is non-negative for all θ ∈ C∞0 (Ω′T ) with θ ≥ 0. If instead the left hand
side is non-positive u is said to be a weak subsolution. For the existence of weak solutions to
Hu = 0 we refer to [9].
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2.4 Fundamental principles

Lemma 2.4. (Parabolic Cacciopoli type estimate) Let H be as in (1.3), assume (1.4) and
(1.5). Let Ω ⊂ Rn be a bounded domain, T > 0, and let ΩT = Ω × (0, T ). Suppose that
u is a bounded weak subsolution to Hu = 0 in ΩT . Let (x0, t0) ∈ Rn+1, r1 > 0, r2 > 0.
There exists a constant η = η(H), 1 ≤ γ < ∞, such that the following holds. Assume that
Cλ,−
r1,r2

(x0, t0) ⊂ ΩT , and that φ is a smooth function defined in Cλ,−
r1,r2

(x0, t0) satisfying φ(x, t) = 0

whenever x ∈ Rn \Bλ(x0, r1). Then

sup
t0−r2

2<t<t0

ˆ

Bλ(x0,r1)

u2 φ2(x, t) dx+ η−1

¨

Cλ,−r1,r2 (x0,t0)

|∇u|2φ2 λ(x)dxdτ

≤
ˆ

Bλ(x0,r1)

u2 φ2(x, t0 − r2
2) dx+ η

¨

Cλ,−r1,r2 (x0,t0)

u2 |∇φ|2 λ(x)dxdτ + η

¨

Cλ,−r1,r2 (x0,t0)

u2 φφt dxdτ.

Proof. The proof follows by standard manipulations by formally taking θ := uφ2 as the test
function in the weak formulation of subsolutions.

An important tool is the interior Harnack inequality for positive solutions to Hu = 0 where
H satisfies (1.4). Harnack inequalities have been established for operators satisfying (1.4), for
various assumptions on λ, see [8], [9], [10], [29], [28]. As shown in [9], if H is degenerate, the
Harnack inequality does not hold in standard Euclidean cylinders with constants independent
of the cylinder.

Lemma 2.5. (Harnack inequality) Let H be as in (1.3), assume (1.4) and (1.5). Let (x0, t0) ∈
Rn+1, r > 0 and γ > 0. Let R = Rx0(r). Suppose that u is a bounded weak solution to Hu = 0
in B(x0, 2R)× (t0 − γr2, t0 + γr2). Then there is a constant c = c(H, γ) such that

sup
Bλ(x0,r)×(t0− 3

4
γr2,t0− 1

4
γr2)

u ≤ c inf
Bλ(x0,r)×(t0+ 1

4
γr2,t0+γr2)

u. (2.11)

Proof. For γ = 1 the lemma is just a reformulation of Theorem 1.1 in [8]. For γ > 0 the lemma
follows from either a modification of the proof in [8], or can be derived directly from Theorem
A in [28].

Lemma 2.6. (Interior Hölder continuity) Let H be as in (1.3), assume (1.4) and (1.5). Let
(x0, t0) ∈ Rn+1 and r > 0. Let u be a solution to Hu = 0 in Cλ

2r(x0, t0). Then, after a
redefinition on a set of measure zero, u is continuous on Cλ

2r(x0, t0). Furthermore, there exist
constants c = c(H), 1 ≤ c <∞, α = α(H), 0 < α < 1, such that

|u(x, t)− u(y, s)| ≤ c

(
dp,λ(x, t, y, s)

r

)α
sup

Cλ2r(x0,t0)

|u|

whenever (x, t), (y, s) ∈ Cλ
r (x0, t0).

Proof. The lemma follows from Lemma 2.5 by a standard iteration argument.
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Lemma 2.7. (Weak maximum principle) Let Ω ⊂ Rn be a bounded domain, T > 0, ΩT =
Ω× (0, T ). Let u and v be a (weak) supersolution and a subsolution to Hu = 0 ΩT , respectively.
Assume that min{u− v, 0} ∈ L2(0, T,W 1,2

λ,0 (Ω)). Then u ≥ v a.e. in ΩT .

Proof. This follows by standard arguments. See for example [13, pp.160-161], for a similar
situation.

3 Geometry and Harnack chains

The Harnack inequality stated in Lemma 2.5 holds in cylinders given by the weighted distance
function introduced in Section 2. We need to be able to compare the values of a non-negative
solution u to Hu = 0 in ΩT , where Ω ⊂ Rn is a domain and T > 0, by repeatedly applying
the Harnack inequality. To do this in a controlled fashion, some restrictions on the domain
Ω is needed, especially when considering points close to the boundary. In this section we
formulate and analyse such restrictions using the notion of non-tangentially accessible domains
with respect to the weighted distance.

3.1 Notion of λ-NTA-domains

In what follows, c∆ denotes the constant in the triangle inequality, Lemma 2.2.

Definition 3.1. Let λ ∈ A1+2/n(Rn). Given a bounded domain Ω ⊂ Rn and M ≥ 2c∆, we say
that Bλ(x, r) ⊂ Ω is M-non-tangential (with respect to dλ) if

M−1r < dλ (Bλ(x, r), ∂Ω) < Mr.

Given x, x′ ∈ Ω a sequence of M-non-tangential balls in Ω, Bλ(x1, r1),..., Bλ(xN , rN), is called
a M-Harnack chain of length N joining x and x′, if x ∈ Bλ(x1, r1), x′ ∈ Bλ(xN , rN), and
Bλ(xi, ri) ∩Bλ(xi+1, ri+1) 6= ∅ for i ∈ {1, ..., N − 1}.

Remark 3.1. Note that since two consecutive balls in a Harnack chain are both M-non-
tangential and have non-empty intersection, they have comparable radii.

Definition 3.2. Let λ ∈ A1+2/n(Rn). Let Ω ⊂ Rn be a bounded domain. We say that Ω is
a non-tangentially accessible domain in Rn, with respect to dλ, a λ-NTA-domain hereafter, if
there exist M ≥ 2c∆, r0 > 0 such that the following holds.

(i) (Interior corkscrew condition) For any x0 ∈ ∂Ω and r ≤ r0 there exists Aλr (x0) ∈ Ω such
that r/M ≤ dλ(A

λ
r (x0), x0) ≤ r and dλ(A

λ
r (x0), ∂Ω) ≥ r/M .

(ii) (Exterior corkscrew condition) Ωc = Rn \ Ω satisfies property (i).

(iii) (Harnack chain condition) Whenever ε > 0 and x1, x2 ∈ Ω are such that dλ(xi, ∂Ω) > ε,
i ∈ {1, 2}, and dλ(x1, x2) ≤ ηε, for some constant η ≥ 1, then there exists an M-Harnack
chain, of length N = N(n,Λ,M, η), joining x1 and x2.

Remark 3.2. The constants M , r0, will be called the λ-NTA parameters of Ω. When it is clear
from the context, will suppress the λ-dependence and write Ar(x0) = Aλr (x0).
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If λ is constant, dλ is the standard Euclidean metric and c∆ = 1, then Definition 3.1 and
Definition 3.2 coincide with the original definition of NTA-domains formulated in [32]. We refer
this classical notion of NTA-domains as NTA-domains defined with respect to the Euclidean
metric or simply NTA-domains. For a general weight λ we will always use the label λ-NTA-
domains. However, the following two lemmas show that in our setting the two notions are
essentially equivalent.

Lemma 3.3. Suppose that λ ∈ A1+2/n(Rn) and that Ω ⊂ Rn is a bounded domain. For any

M ≥ 2, there exists M̃ = M̃(n,M,Λ), M̃ ≥ 2c∆ such that if B(x,R) is M-non-tangential (with
respect to the Euclidean metric), then Bλ(x, rx(R)) is M̃-non-tangential (with respect to dλ).
Similarly, for any M̃ ≥ 2, there exists M̄ = M̄(n, M̃,Λ), M̄ ≥ 2c∆, such that if Bλ(x, r) is
M̃-non-tangential (with respect to dλ), then B(x,Rx(r)) is M̄-non-tangential (with respect to
the Euclidean metric).

Proof. We only present the proof of the first implication since the second implication is proved
similarly. Let x̂ ∈ ∂B(x,R). By Lemma 2.1 we see that

dλ(x̂, ∂Ω) ≤ rx̂(MR) ≤ cM crx̂(R),

and
dλ(x̂, ∂Ω) ≥ rx̂(M

−1R) ≥ c−1M−crx̂(R),

for some c = c(n,Λ). Similarly, since B(x̂, R) ⊂ B(x, 2R) we have that

c−1rx̂(R) ≤ rx(R) ≤ crx̂(R),

for c = c(n,Λ). Letting M̃ = c2M c the proof is complete.

Lemma 3.4. Suppose that λ ∈ A1+2/n(Rn) and that Ω ⊂ Rn is a bounded domain. For

every M ≥ 2 and R0 > 0 there exist M̃ and r̃0, with M̃ = M̃(n,Λ,M), 2c∆ ≤ M̃ < ∞
and r̃0 = r̃0(n,Λ,M,R0, diam(Ω), diamλ(Ω)), r̃0 > 0, such that if Ω is an NTA-domain, with
respect to the Euclidean metric, with parameters M and R0, then Ω is a λ-NTA-domain with
parameters M̃ and r̃0. Conversely, for every M̃ ≥ 2c∆ and r̃0 > 0 there exist M̄ = M̄(n,Λ, M̃),
2 ≤ M̄ <∞, and R̄0 = R̄0(Λ, n, M̃ , r̃0, diam(Ω), diamλ(Ω)), R̄0 > 0, such that if Ω is a λ-NTA-
domain, with parameters M̃ and r̃0, then Ω is an NTA-domain, with respect to the Euclidean
metric, with parameters M̄ and R̄0.

Proof. It is enough to prove the first implication, the second implication is proved similarly.
Assume that Ω is an NTA-domain with parameters M and r0. To establish the Harnack chain
condition, let x, x′ ∈ Ω, ε > 1 and η ≥ 1 be such that

dλ(x, ∂Ω), dλ(x
′, ∂Ω) > ε, (3.1)

and

dλ(x, x
′) ≤ ηε. (3.2)
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Let R̂ = max{Rx(ε), Rx′(ε)}, so that d(x, ∂Ω), d(x′, ∂Ω) > R̂. Then, using Lemma 2.1, we see
that

|x− x′| = Rx

(
dλ(x, x

′)
)
≤ Rx(ηε) ≤ cηcRx(ε) ≤ cηcR̂.

Since Ω is an NTA-domain, x and x′ can be joined by an Euclidean M -Harnack chain of length
N(n,M, cηc). By the proof of Lemma 3.3, this chain is M̃1-non-tangential with respect to λ for
M̃1 = c2M c for some c = c(Λ, n). Noting that N = N(n,M, cηc) = N(n,Λ, M̃1, η), the proof
of the Harnack chain condition is complete. To verify the corkscrew conditions, an appropriate
scale parameter r0 has to be found. Let y, y′ ∈ ∂Ω be such that diam(Ω) = |y − y′|. By the
triangle inequality diamλ(Ω) ≤ c∆ry(diam(Ω)). Since B(x0, R0) ⊂ B(x0, diam(Ω) + R0) for all
x0 ∈ ∂Ω it follows, using Lemma 2.1, that

rx0(R0) ≥ c−1

(
R0

diam(Ω) +R0

)c
ry (diam(Ω) +R0)

≥ c−2

(
R0

diam(Ω) +R0

)c(
diam(Ω) +R0

diam(Ω)

)1/c

ry(diam(Ω))

≥ c−2

(
R0

diam(Ω) +R0

)c(
diam(Ω) +R0

diam(Ω)

)1/c

c∆
−1 diamλ(Ω),

whenever x0 ∈ ∂Ω. Let

r̃0 := c−2

(
R0

diam(Ω) +R0

)c(
diam(Ω) +R0

diam(Ω)

)1/c

diamλ(Ω).

Consider x0 ∈ ∂Ω and r ≤ r̃0. Then Rx0(c∆
−1r) ≤ R0 and hence, since Ω is an NTA-domain,

there is a point ARx0 (c∆−1r)(x0) satisfying the interior corkscrew condition with respect to the

Euclidean distance. Let Aλr (x0) := ARx0 (c∆−1r)(x0), then by definition

dλ
(
Aλr (x0), x0

)
≤ c∆rx0

(∣∣Aλr (x0)− x0

∣∣) ≤ c∆rx0(Rx0(c∆
−1r)) = r,

and, by Lemma 2.1,

dλ
(
Aλr (x0), ∂Ω

)
≥ c∆

−1rx0

(
d(AR, ∂Ω)

)
≥ rx0

(
M−1Rx0(c∆

−1r)
)
≥ c∆

−2c−1M−cr =: M̃2r.

The exterior corkscrew condition is verified in the same way. Setting M̃ = max{M̃1, M̃2}
completes the proof.

Remark 3.4. By Lemma 3.4 we see that Ω is an NTA-domain if and only if it is a λ-NTA-
domain. However, the construction of M̃ and r̃0 in the proof of Lemma 3.4 is not reversible. In
other words, the mappings M̃ 7→ M̄ and r̃0 7→ R̄0 are not the inverses of M 7→ M̃ and R0 7→ r̃0.

3.2 The Harnack inequality in λ-NTA-cylinders

Lemma 3.5. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded λ-NTA-
domain with parameters M and r0, let T > 0, and let u be a non-negative solution to Hu = 0
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in ΩT . Assume that (x, t) ∈ ΩT and (x′, t′) ∈ ΩT are such that t′ > t , (t′− t)1/2 ≥ σ−1dλ(x, x
′)

for some σ > 1, and that dλ(x, dΩ) > ε, dλ(x
′, dΩ) > ε, t > ε2, dp,λ(x, t, x

′, t′) < ηε, for ε > 0
and η ≥ 1. Then there exists c = c(H,M, σ, η), 1 ≤ c <∞, such that

u(x, t) ≤ cu(x′, t′).

Proof. Without loss of generality u can be assumed to be a solution to Hu = 0 in Ω× (0,∞).
Consider first the case when x = x′. Let r = rx(Rx(ε)/2). By Lemma 2.1 there is some c0 such
that r < c−1

0 ε. Let k be the largest integer such that k < η2c2
0. Let t1 = t+ 1

2
r2 and for 1 ≤ i < k

let ti+1 = ti + r2 so that tk < t + kc−2
0 ε2 < t′. Then Cλ

ε,r(x, ti) ⊂ ΩT and repeated application

of the Harnack inequality gives u(x, t) ≤ cku(x, tk). Finally, letting r′ :=
√
t′ − tk < c−1

0 ε,
applying the Harnack inequality to the cylinder B(x, 2Rx(r

′)) × (t′ − 3
2
r′2, t′ + 1

2
r′2), gives

u(x, tk) ≤ c0u(x, t′). Now, assume that x 6= x′. Since Ω is λ-NTA there exists an M -Harnack
chain {Bλ(xi, ri)} of length N = N(n,Λ,M, η) joining x and x′ . As noted in Remark 3.1
there is a constant c1 = c1(n,Λ,M) such that ri < c1ri+1 and hence ri < cN1 rN for every
1 ≤ i ≤ N . Without loss of generality it can be assumed that dλ(x

′, ∂Ω) = ε and hence
that ri ≤ cN1 Mε. Note that if B(xi, 2Rxi(ri)) ⊂ Ω for each i, the lemma would follow by
applying the Harnack inequality to a sequence of cylinders with the balls from the Harnack
chain as bases. This is not the case in general, but the original Harnack chain can be refined
in such a way that this is true. By Lemma 3.3 the chain {Bλ(xi, ri)} is also an Euclidean
M -Harnack chain for some M . Without loss of generality, assume that M is an integer. Refine
the original Harnack chain by replacing each original ball Bλ(xi, ri) with M balls of Euclidean
radii Rxi(ri)/M to get a new (not necessarily non-tangential) chain {Bλ(x̃j, r̃j)}, of length
Ñ = MN , joining x and x′. Then by construction B(x̃i, 2Rxi(r̃i)) ⊂ Ω. Also note that
if Bλ(x̃j, r̃j) ⊂ Bλ(xi, ri) then r̃j < ri. By Lemma 2.1 and Lemma 2.2 there is a constant
c2 = c2(n,Λ,M) such that if dλ(x, x

′) < c2r and x′ lies in some M -non-tangential ball Bλ(x0, r)
then dλ

(
Bλ

(
x′, dλ(x

′, x)
)
, ∂Ω

)
> M−1dλ(x

′, x). Hence in this case the original Harnack chain
could be replaced with just the ball Bλ

(
x′, dλ(x

′, x)
)
. Let c3 := max{c1, c2, σ,M} then, by

the argument above, we may assume that dλ(x, x
′) ≥ c3rN . Also note that by construction

r̃j ≤ cN3 rN ≤ cN+1
3 ε. Let γ > 0 be a number to be chosen later, let s1 = t + 1

2
γr2

1 and for

1 < i ≤ Ñ let

si := t+
1

2
γ

i∑
`=2

(
r̃2
` + r̃2

`−1

)
.

Now let γ be so small that

si − γr̃2
i ≥ t− γc2N+2ε2 >

(
1− γc2N+2

)
ε2 > 0

and

t′ − sÑ = t′ − t− 1

2
γ

Ñ∑
i=2

(
r̃2
i + r̃2

i−1

)
≥ dλ(x, x

′)2

σ2
− γ

Ñ∑
i=1

r̃2
i

≥
(

1− γÑc2N
)
r2
N ≥

(
1− γÑc2N

)
r̃2
Ñ
≥ 3

4
r̃2
Ñ
.

Note that this choice of γ does not depend on ε. By repeated use of Lemma 2.5 we have that
u(x, t) ≤ cÑu(x′, sÑ + 3

4
r̃2
Ñ

). The lemma now follows from the case x = x′.
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The proof of Lemma 3.5 does not use that u is a solution to Hu = 0 in the whole of ΩT . In
particular, Lemma 3.5 can be refined as follows.

Lemma 3.6. There is a K = K(H,M) such that the following is true. Let H be as in (1.3),
assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded λ-NTA-domain with parameters M , r0,
and let T > 0. Furthermore, let (x0, t0) ∈ ST and r <

√
t0/4. Assume that u is a non-

negative solution of Hu = 0 in Cλ
Kr,2r(x0, t0) ∩ ΩT . Assume that (x, t) ∈ Cλ

r (x0, t0) ∩ ΩT and

(x′, t′) ∈ Cλ
r (x0, t0) ∩ ΩT are such that t′ > t , (t′ − t)1/2 ≥ σ−1r, for some σ > 1, and that

dλ(x, dΩ) > η−1r, dλ(x
′, dΩ) > η−1r, for some η ≥ 1. Then there exists c = c(H,M, σ, η),

1 ≤ c <∞, such that

u(x, t) ≤ cu(x′, t′)

Proof. Note that dλ(x, x
′) ≤ 2c∆r ≤ Mr so x and x′ can be connected using a Harnack chain

{Bλ(xi, ri)} of length N = N(M). By the triangle inequality there is a K = K(n,Λ,M) such
that

⋃N
i=1

⋃
y∈Bλ(xi,ri)

Bλ(y,M
−1ri) ⊂ Bλ(x0, Kr). The conclusion now follows from the proof

of Lemma 3.5.

4 Approximation Results and the Dirichlet Problem

The purpose of this section is to solve the continuous Dirichlet problem for H, where H is as in
(1.3) assuming (1.4) and (1.5). Throughout the section, Ω ⊂ Rn is a bounded λ-NTA-domain
with parameters M , r0, and ΩT = Ω× (0, T ) for some T > 0 and λ. An important tool to solve
the Dirichlet problem is the following lemma proved in [24].

Lemma 4.1. Consider p, 1 < p <∞, fixed and let λ ∈ Ap(Rn) with Ap(Rn)-constant bounded
by Λp,λ. Assume that {aij(x, t)} = {aij} is measurable, real, symmetric, for every (x, t) ∈ Rn+1,
and that

β−1λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ βλ(x)|ξ|2 (4.1)

for all ξ ∈ Rn and for almost all (x, t) ∈ Ω × [0, T ] where Ω ⊂ Rn is a bounded domain.
Then there exist λ̃1, λ̃2 ∈ Ap(Rn), with Λp,λ̃1

and Λp,λ̃2
depending only on Λp,λ, such that the

following is true for all ` ∈ N. Given ` ∈ N there exists a measurable function λ` and a matrix
{ã`ij(x, t)} = {ã`ij} which is measurable, real, symmetric, for every (x, t) ∈ Rn × R, such that
the following holds.

(i) λ̃1 ≤ λ` ≤ λ̃2,

(ii) `−1c1 ≤ λ` ≤ c2` in Ω, where c1 = c1(n,Λp,λ,Ω) and c2 = c2(n,Λp,λ,Ω),

(iii) λ` ∈ Ap(Rn) with Λp,λ` = Λp,λ`(Λp,λ),

(iv) There exists a closed set F ` such that ã`ij = aij, λ
` = λ,

and c−1λ̃2 ≤ λ ≤ cλ̃1 in F ` where c = c(`),

(v) The set F ` is increasing in ` and the complement of
⋃∞
`=1 F

`

has Lebesgue measure zero,

(vi) λ` → λ almost everywhere in Rn.
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Furthermore,

β−1λ`(x)|ξ|2 ≤
n∑

i,j=1

ã`ij(x, t)ξiξj ≤ βλ`(x)|ξ|2 (4.2)

for all ξ ∈ Rn and almost all (x, t) ∈ Ω× [0, T ].

Proof. This is Lemma 2.1 from [24].

We will also need the following lemma concerning weak solutions with zero boundary values.

Lemma 4.2. Let (x0, t0) ∈ ∂pΩT and r < r0. Let u be a solution of Hu = 0 in ΩT ∩Cλ
r (x0, t0)

vanishing continuously on ∂pΩT ∩ Cλ
r (x0, t0). Then there exist c = c(H,M), 1 ≤ c < ∞, and

γ1 = γ1(H,M), γ1 ∈ (0, 1), such that

u(x, t) ≤ c

(
dp,λ(x, t, x0, t0)

r

)γ1

sup
ΩT∩Cλr (x0,t0)

|u|

for all (x, t) ∈ ΩT ∩ Cλ
r/c(x0, t0).

Proof. To prove the lemma one has to consider three cases depending on the location of (x0, t0) ∈
∂pΩT . However, using versions of Lemma 2.4 applied to (u− k)±, for appropriate choices of k,
weighted Sobolev inequalities, properties of the weight λ, and the uniform (in measure) outer
density condition satisfied at each point (x0, t0) ∈ ∂pΩT , Lemma 4.2 can be proved by a fairly
standard iterative argument. See for example [13]. Further details are omitted.

Lemma 4.3. Let H be as in (1.3), assume (1.4) and (1.5). Then for each f ∈ C(∂pΩT ) there
exists a unique weak solution u ∈ C(ΩT ) to the problem

Hu = 0 in ΩT , u = f on ∂pΩT . (4.3)

Proof. Given {aij(x, t)} = {aij} and ` ∈ N, let ã`ij(x, t) be as in Lemma 4.1 and let H` be the
operator corresponding to ã`ij(x, t). Then by the corresponding result for uniformly parabolic

equations, see [14], [26], there exists a unique weak solution u` ∈ C(ΩT ) to the problem

H`u` = 0 in ΩT , u` = f on ∂pΩT . (4.4)

Furthermore, it follows from Lemma 2.4 that {u`}∞`=1 is bounded in L2
(
t1, t2,W

1,2
λ,loc

)
whenever

0 < t1 < t2 < T , and hence that there is a subsequence {w`}∞`=1 of {u`}∞`=1 such that {w`}
converges weakly in L2

(
t1, t2,W

1,2
λ,loc(Ω)

)
to some function u ∈ L2

(
t1, t2,W

1,2
λ,loc(Ω)

)
. Furthermore

it follows from Lemma 2.6, the Arzelà-Ascoli theorem and a diagonal argument that there is
another subsequence of {u`}∞`=1, say {v`}∞`=1, such that v` → u locally uniformly, and hence u
is continuous on ΩT . To see that u is indeed a solution to Hu = 0 in ΩT , let Ω′ ⊂ Ω be open
and let 0 < t1 < t2 < T . Since u` is a solution to H`u` = 0 in ΩT it follows from (iv) of Lemma
4.1 that

t2ˆ

t1

ˆ

Ω′

aij(x, t)∂xiu`∂xjθdxdt−
t2ˆ

t1

ˆ

Ω′

u`∂tθdxdt+

ˆ

Ω′

u`(x, t2)θ(x, t2)dx−
ˆ

Ω′

u`(x, t1)θ(x, t1)dx

=

t2ˆ

t1

ˆ

Ω′\F `

aij(x, t)∂xiu`∂xjθdxdt−
t2ˆ

t1

ˆ

Ω′\F `

ã`ij(x, t)∂xiu`∂xjθdxdt,
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for every θ ∈ C∞0 (Ω′T ). Using this relation we can now use (1.4), Lemma 2.4, the maximum
principle and the fact that the Lebesgue measure of Ω′\F ` tends to zero, as `→∞, to conclude
that u is a weak solution to Hu = 0 in ΩT . Finally, to conclude that u is a solution to the
continuous Dirichlet problem in (4.3) it remains to prove that u is continuous up to ∂pΩT . To
do this, consider (x0, t0) ∈ ∂pΩT and let ε > 0. Now choose δ > 0 so small that

|f(x, t)− f(x0, t0)| ≤ ε whenever (x, t) ∈ ∂pΩT ∩ Cλ
δ (x0, t0). (4.5)

Let φ be a test function satisfying 0 ≤ φ ≤ 1, with support in Cλ
δ (x0, t0), such that φ ≡ 1

on Cλ
δ/2(x0, t0). Let f̂(x, t) = φ(x, t)

(
f(x, t) − f(x0, t0)

)
and f̃(x, t) =

(
1 − φ(x, t)

)(
f(x, t) −

f(x0, t0)
)
. Now let ŵ` and w̃` be the unique solutions to the problem in (4.4) with f replaced

by f̂ and f̃ respectively. It then follows from the maximum principle that w`(x, t)− f(x0, t0) =
ŵ`(x, t) + w̃`(x, t) whenever (x, t) is in the closure of ΩT and that

||ŵ`||L∞(ΩT ) ≤ ε. (4.6)

Arguing as above we conclude that u(x, t)− f(x0, t0) = û(x, t) + ũ(x, t) on ΩT where û, ũ, are
the uniform limits on compact subsets of appropriate subsequences of {ŵ`}∞`=1 and {w̃`}∞`=1,
respectively. Using (4.6) and the maximum principle, we see that

||û||L∞(ΩT ) ≤ ε. (4.7)

By Lemma 4.2, each element in the sequence {w̃l}∞`=1 is Hölder continuous up to the parabolic
boundary with constants independent of `. In particular this means that

lim
(x,t)→(x0,t0), (x,t)∈ΩT

ũ(x, t) = 0. (4.8)

Combining (4.7) and (4.8), it follows that

lim sup
(x,t)→(x0,t0), (x,t)∈ΩT

|u(x, t)− f(x0, t0)| ≤ ε.

Since ε > 0 and (x0, t0) ∈ ∂pΩT are arbitrary it follows that u is a solution to the continuous
Dirichlet problem in (4.3). Uniqueness follows from the maximum principle.

It follows from the proof of Lemma 4.3 that the solution u to the problem in (4.3) is given
as

u(x, t) = lim
`→∞

u`(x, t) (4.9)

where u` solves (4.4) and where H` is an operator approximating H in the sense of Lemma 4.1.
It also follows from the maximum principle and the Riesz representation theorem that there
exists a probability measure ω(x, t, y, s) on ∂pΩT such that

u(x, t) =

ˆ
∂pΩT

f(y, s)dω(x, t, y, s), (4.10)

for each f ∈ C(∂pΩT ). The measure ω is called the parabolic measure associated to the operator
H. In the same way one defines the probability measures ω`(x, t, y, s) associated to the operators
H`. In fact, ω` → ω in the weak-* topology of Radon measures as we here note the following
lemma.
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Lemma 4.4. Suppose that ω and ω` are as above. Then

ω` → ω in the weak-* topology of Radon measures.

Proof. It follows directly from (4.9) that

ˆ
∂pΩT

f(y, s)dω(x, t, y, s) = lim
`→∞

ˆ
∂pΩT

f(y, s)dω`(x, t, y, s), ∀f ∈ C(∂pΩT ), (4.11)

or equivalently that ω` converges to ω in the weak-* topology.

5 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Throughout this section, let H be as
in (1.3) and assume (1.4) and (1.5). Let also Ω ⊂ Rn be a bounded λ-NTA-domain with
parameters M , r0 and let ΩT = Ω× (0, T ) for some T > 0. Let

A+
r (x0, t0) = (Ar(x0), t0 + 2r2) and A−r (x0, t0) = (Ar(x0), t0 − 2r2).

Furthermore, if x ∈ Ω let dλ(x, ∂Ω) denote the distance from x to ∂Ω measured by the weighted
distance function dλ.

Lemma 5.1. There exists K = K(H,M) ≥ 1 such that the following is true. Let (x0, t0) ∈ ST
and r < min{r0/2,

√
(T − t0)/4,

√
t0/4}. Let u be a non-negative solution to Hu = 0 in

ΩT ∩ Cλ
Kr,2r(x0, t0). Then there exist c = c(H,M), 1 ≤ c < ∞, and γ2 = γ2(H,M), γ2 > 0,

such that

(i) u(x, t) ≤ c

(
r

dλ(x, ∂Ω)

)γ2

u(A+
r (x0, t0))

and

(ii) u(A−r (x0, t0)) ≤ c

(
r

dλ(x, ∂Ω)

)γ2

u(x, t)

for all (x, t) ∈ ΩT ∩ Cλ
r (x0, t0).

Proof. We only prove (i) since (ii) can be proven analogously. Let K̂ be as in Lemma 3.6 and set
K = M4K̂. Let (x, t) be a fixed, arbitrary point in ΩT ∩Cλ

r (x0, t0). If dλ(x, ∂Ω) > r/(2M) the
conclusion follows directly from Lemma 3.6 and thus we may assume that dλ(x, ∂Ω) ≤ r/(2M).
Let k denote the largest integer such that

(2M)k ≤ r

dλ(x, ∂Ω)
. (5.1)

Let x0 ∈ ∂Ω denote any point such that dλ(x, x0) = dλ(x, ∂Ω). For each integer 1 ≤ i ≤ k
let ri = (2M)idλ(x, ∂Ω), x̂i = A+

ri
(x0) and t̂i = t + r2

i /2. By definition x̂i−1, x̂i ∈ Ωri/M
2 ∩
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Bλ(x0,Mri) and t̂i − t̂i−1 > r2
i /3 for all 1 < i ≤ k. Furthermore, by the triangle inequality and

the choice of K we have that

Cλ
K̂Mri,2Mri

(x0, t) ⊂ Cλ
Kr,2r(x0, t0)

for all 1 ≤ i ≤ k − 1. Thus u is a solution to Hu = 0 on Cλ
K̂Mri,2Mri

(x0, t) ∩ ΩT and applying

Lemma 3.5 we see that

u(x, t) ≤ cu(x̂1, t̂1) (5.2)

and

u(x̂i, t̂i) ≤ cu(x̂i+1, t̂i+1) (5.3)

for all 1 ≤ i ≤ k − 1. It follows from (5.2), and (5.3), that

u(x, t) ≤ cku(x̂k, t̂k).

Finally, since x̂k, Ar(x0) ∈ Ωr/M2 ∩ Bλ(x0,Mr) and t0 + 2r2 − t̂k > r2/2, we can again apply
Lemma 3.6 to conclude that

u(x, t) ≤ cku(x̂k, t̂k) ≤ ck+1u(Ar(x0), t0 + 2r2). (5.4)

By combining (5.1) and (5.4) the proof of (i) is complete since (x, t) is an arbitrary point in
Cλ
r (x0, t0).

Lemma 5.2. There exists K = K(H,M) ≥ 1 such that the following is true. Let (x0, t0) ∈ ST
and r < min{r0/2,

√
(T − t0)/4,

√
t0/4}. Let u be a non-negative solution of Hu = 0 in

ΩT ∩ Cλ
Kr,2r(x0, t0) vanishing continuously on ST ∩ Cλ

r (x0, t0). Then there exists c = c(H,M),
1 ≤ c <∞, such that

u(x, t) ≤ cu(A+
r (x0, t0)) (5.5)

for all (x, t) ∈ ΩT ∩ Cλ
r/c,r(x0, t0).

Proof. The argument follows along the lines of [2] and [45]. Let K be the constant from Lemma
5.1 and let c := max(c1, c2, 2c∆) where c1 is the constant from Lemma 4.2, c2 is the constant
from Lemma 5.1, and c∆ is the constant in the triangle inequality, see Lemma 2.2. Let γ2

denote the exponent from Lemma 5.1 and γ1 the exponent from Lemma 4.2. By rescaling, we
may assume that r = 1 and u(A+

r (x0, t0)) = 1. The proof is by contradiction and we assume
that there exists (ŷ0, t̂0) ∈ ΩT ∩ Cλ

1/c(x0, t0) such that

u(ŷ0, t̂0) > cN+1 (5.6)

for some N to be determined later. Denote d0 = dλ(ŷ0, ∂Ω). Then, using Lemma 5.1 we see
that

u(ŷ0, t̂0) ≤ cd−γ2

0 . (5.7)
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Combining (5.6) and (5.7) we have that d0 ≤ c−N/γ2 . Let x̂0 ∈ ∂Ω be any point such that
dλ(ŷ0, x̂0) = d0 and let ρ0 = c−N/γ2+L/γ1 for some L > γ1 to be determined later. Then by
Lemma 4.2

u(ŷ0, t̂0) ≤ c

(
d0

ρ0

)γ1

sup
ΩT∩Cλρ1 (x̂0,t̂0)

u < c1−L sup
ΩT∩Cλρ1 (x̂0,t̂0)

u.

Hence, there must exist (ŷ1, t̂1) ∈ ΩT ∩ Cλ
ρ1

(x̂0, t̂0) such that

u(ŷ0, t̂0) ≤ c1−Lu(x̂1, t̂1), (5.8)

and by (5.6) and (5.8) it follows that u(ŷ1, t̂1) > cN+L. Note that if N = N(L) is large enough,
then Cλ

ρ0
(x̂0, t̂0) ⊂ Cλ

1 (x0, t0) so the argument above can be repeated for (x̂1, t̂1). Indeed for

any k ≥ 2 there is some N = N(k, L) such if we define ρi = c(i(1−L)−N)/γ2+L/γ1 and if ŷi, x̂i and
di are defined for 1 ≤ i ≤ k by the same procedure as above, then u(ŷi, t̂i) ≥ ci(L−1)+N+1 and
(ŷi, t̂i) ∈ Cλ

ρi−1
(x̂i−1, t̂i−1) ⊂ Cλ

1 (x0, t0), and hence di ≤ c(i(1−L)−N)/γ2 . To find L and N , not

depending on k, such that Cλ
ρk

(x̂k, t̂k) ⊂ Cλ
1 (x0, t0) for all k ≥ 0, note that it follows from the

triangle inequality that

d(ŷ0, ŷk) ≤
k−1∑
i=0

c∆
i+1
(
dλ(ŷi, x̂i) + dλ(x̂i, ŷi+1)

)
≤

k−1∑
i=0

ci+1 (di + ρi) ≤ c2+L/γ1−N/γ2

∞∑
i=0

ci(1+(1−L)/γ2), (5.9)

and likewise that

|t̂k − t̂0| ≤
k∑
i=0

ρ2
i ≤ c2(L/γ1−N/γ2)

∞∑
i=0

c2i(1−L)/γ2 . (5.10)

Now choose L so large that c2(1−L)/γ2 < c1+(1−L)/γ2 < 1/2 and choose N so large that

c2(L/γ1−N/γ2) < c2−N/γ2−Lγ1 < 1/2c.

Then, using the triangle inequality and (5.9), we see that

d(x0, ŷk) ≤ c∆(d(x0, ŷ0) + d(ŷ0, ŷk)) ≤ c∆ (1/c+ 1/c) ≤ 1,

and, using (5.10), that
|t̂k − t0| < 1/c2 + 1/c < 1.

Thus there exists a sequence of points (ŷi, t̂i) ∈ Cλ
1 (x0, t0) such that d(ŷi, ∂Ω) → 0 and

u(x̂i, t̂i)→∞ as i→∞, contradicting that u vanishes continuously on ST ∩ Cλ
1 (x0, t0).

Remark 5.2. If u is a non-negative solution to Hu = 0 in all of ΩT which, in addition to the
assumptions of Lemma 5.2, vanishes continuously on ST ∩ C2c∆r,2r(x0, t0), then, by a covering
argument and Lemma 3.5, the estimate (5.5) holds for all (x, t) ∈ Cλ

r (x0, t0).

20



Lemma 5.3. Given 0 < δ <
√
T/4, let Ωδ = {x ∈ Ω : dλ(x, ∂Ω) > δ}. Let u be a non-negative

solution to Hu = 0 in ΩT and assume that u vanishes continuously on ST . Then there is a
constant c = c(H,M, diamλ(Ω), T, δ), 1 ≤ c <∞ such that

sup
Ωδ×(δ2,T )

u ≤ c inf
Ωδ×(δ2,T )

u

Proof. The proof of the corresponding lemma in [44] can easily be adapted to prove Lemma
5.3. We omit further details.

Lemma 5.4. There exists a K̂ � 1, K̂ = K̂(H), such that the following is true whenever
(x0, t0) ∈ Rn+1, r > 0, K ≥ K̂. Let u be a non-negative solution to Hu = 0 in Cλ,−

Kr,r(x0, t0)
vanishing continuously on Bλ(x0, Kr) × {t0 − r2}. Then, there exists a constant c = c(H),
1 ≤ c <∞, and ν = ν(H), ν ∈ (0, 1) such that

sup
Cλ,−r (x0,t0)

u ≤ ce−K
ν/c sup

Cλ,−Kr,r(x0,t0)

u.

Proof. Let K̂ = (2c∆c
2/γ1

1 ) where c1 and γ1 are as in Lemma 4.2. We may assume, without loss

of generality, that c1 ≥ c∆. Given K ≥ K̂ let k be the largest integer such that 2kc∆
kK̂ ≤ K.

Let r̂0 = K̂r and let, for each integer 0 ≤ j < 2k,

r̂j+1 = sup
{
d(x0, y) : y ∈ Bλ(x, K̂r), x ∈ ∂Bλ(x0, r̂j)

}
and let xj be an arbitrary, fixed, point on ∂Bλ(x0, r̂j). Note that by construction Bλ(xj, K̂r) ⊂
Bλ(x0, r̂j+1), and by Lemma 2.3 we have that r̂2k ≤ 2kc∆

kK̂r ≤ Kr. Now let v be a solution

to Hv = 0 in Cλ,+

K̂r
(xj, t0 − r2) such that v = u on ∂pC

λ,+

K̂r,r
(xj, t0 − r2) and v(x, t) = u(x, t0)

whenever (x, t) ∈ ∂pC
λ,+

K̂r
(xj, t0 − r2) \ ∂pCλ,+

K̂r,r
(xj, t0 − r2). Then, by the maximum principle

and the construction of v,

sup
Cλ,+
K̂r

(x1,t0−r2)

v ≤ sup
Cλ,+
K̂r,r

(x1,t0−r2)

u ≤ sup
Cλ,−r̂j+1,r

(x0,t0)

u (5.11)

Furthermore, it follows from Lemma 4.2 and the construction of K̂ that

v(x, t) ≤ c1

(
dp(x, t, ∂pΩT )

K̂r

)γ1

sup
Cλ,+
K̂r

(x1,t0−r2)

v ≤ c−1 sup
Cλ,+
K̂r

(x1,t0−r2)

v (5.12)

whenever (x, t) ∈ Cλ,+
r (xj, t0−r2). Noting that v(x, t) = u(x, t) for all (x, t) ∈ Cλ,+

K̂r,r
(xj, t0−r2),

and in particular for all (x, t) ∈ Cλ,+
r (xj, t0 − r2), we have by combining (5.11) and (5.12) that

u(x, t) ≤ c−1 sup
Cλ,−r̂j+1,r

(x0,t0)

u (5.13)

for all (x, t) ∈ Cλ,+
r (xj, t0 − r2). Since xj was taken arbitrarily on ∂pBλ(x0, r̂j) we have that

(5.13) holds for all (x, t) ∈ ∂Bλ(x0, r̂j)×(t0−r2, t0) and, remembering that u = 0 on Bλ(x0, K)×
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{t0 − r2}, we can use the maximum principle to conclude that (5.13) holds whenever (x, t) ∈
Cλ,−
r̂j ,r

(x0, t0). Finally, iteration over j = 1, 2, . . . , 2k yields

sup
Cλ,−r (x0,t0)

u ≤ c−2k sup
Cλ,−Kr,r(x0,t0)

u.

By the choice of k we also have that 2k+1c∆
k+1K̂ > K so 2k > Kν/c with ν = 1/(1 + log2(c∆))

and c = K̂ν/2c∆. Thus

sup
Cλ,−r (x0,t0)

u ≤ c−K
ν/c sup

Cλ,−Kr,r(x0,t0)

u

which completes the proof.

Theorem 5.5. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded λ-
NTA-domain with parameters M , r0 and let ΩT = Ω × (0, T ) for some T > 0. Let u be a
non-negative solution of Hu = 0 in ΩT vanishing continuously on ST . Let δ, 0 < δ < r0/2,
be a fixed constant, let (x0, t0) ∈ ST , δ2 ≤ t0, and assume that r < δ/2. Then there exists
c = c(H,M, diamλ(Ω), T, δ), 1 ≤ c <∞, such that

u(x, t) ≤ cu
(
Ar(x0, t0)

)
whenever (x, t) ∈ ΩT ∩ Cλ

r (x0, t0).

Proof. To begin the proof let δ < r0 be a fixed constant, let (x0, t0) ∈ ST , δ2 ≤ t0, and assume
that r < δ/2. Let u be a solution to Hu = 0 on ΩT vanishing continuously on ST . Extend u to
a solution on Ω× (0,∞) by defining u to vanish continuously on ∂Ω× (0,∞). In the following,
let ρ be the largest number r ≤ ρ ≤ δ/2 satisfying the inequality

sup
ΩT∩Cλ,−r (x0,t0)

u(x, t) ≤ (r/ρ)γ2 sup
ΩT∩Cλ,−ρ (x0,t0)

u(x, t), (5.14)

where γ2 is the exponent appearing in Lemma 5.1. Using Lemma 5.1, and the definition of the
point A−r (x0, t0), one sees that

u
(
A−ρ (x0, t0)

)
≤ c(ρ/r)γ2u

(
A−r (x0, t0)

)
. (5.15)

Assuming that

sup
ΩT∩Cλ,−ρ (x0,t0)

u(x, t) ≤ cu
(
A−ρ (x0, t0)

)
, (5.16)

it follows from (5.14), (5.16) and (5.15) that

sup
ΩT∩Cλ,−r (x0,t0)

u(x, t) ≤ cu
(
A−r (x0, t0)

)
. (5.17)

In particular, Theorem 5.5 then follows from (5.17) and Lemma 3.5. Hence it suffices to show
the estimate (5.16). To this end, let K > 1 be a degree of freedom to be chosen, and divide
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the proof into two cases. First, assume that δ/(2K) < ρ. In this case ρ is large and, combining
Lemma 5.2 and Lemma 5.3, one sees that

sup
ΩT∩Cλ,−ρ (x0,t0)

u(x, t) ≤ cu
(
A+
ρ (x0, t0)

)
≤ cu

(
A−ρ (x0, t0)

)
, (5.18)

for some c = c(H,M, diam(Ω), T, δ,K), 1 ≤ c < ∞. Hence the proof is complete in this case.
Next, assume that r ≤ ρ ≤ δ/(2K) and note, by the definition of ρ, that

sup
ΩT∩Cλ,−ρ (x0,t0)

u ≥ K−γ2 sup
ΩT∩Cλ,−Kρ (x0,t0)

u. (5.19)

Using (5.19) we intend to prove that show that there exists K = K(H,M) ≥ 1, such that

sup
ΩT∩
(
Bλ(x0,Kρ)×{t0−4ρ2}

)u ≥ 2−1 sup
ΩT∩Cλ,−ρ (x0,t0)

u, (5.20)

and from this, the estimate (5.16) follows from by applications of Lemma 5.2 and the Harnack
inequality. Hence it only remains to prove the estimate in (5.20). To do this we argue by
contradiction and we assume that

sup(
Ω∩Bλ(x0,Kρ)

)
×{t0−4ρ2}

u ≤ 2−1 sup
ΩT∩Cλ,−ρ (x0,t0)

u (5.21)

for all K > 1. Note that one may also assume that

sup
ΩT∩Cλ,−Kρ,2ρ(x0,t0)

u > sup
ΩT∩Cλ,−ρ (x0,t0)

u, (5.22)

since otherwise (5.20) is trivially true. Let φ ∈ C∞0
(
Bλ(x0, Kρ)

)
be a function such that

0 ≤ φ ≤ 1 and φ = 1 on Bλ

(
x0, (K − 2ρ)

)
. Furthermore, let f ∈ C

(
∂pC

λ
Kρ,2ρ(x0, t0)

)
be defined

as follows

f(x, t) =


0, (x, t) ∈ ∂pCλ,−

Kρ,2ρ(x0, t0) \ ΩT ,(
1− φ(x)

)
u(x, t), (x, t) ∈ Bλ(x0, Kρ)× {t0 − 4ρ2} ∩ ΩT ,

u(x, t), (x, t) ∈ ∂Bλ(x0, Kρ)× (t0 − 4ρ2, t0) ∩ ΩT .

Now let u1 be the solution to Hu1 = 0 in Cλ,−
K,2ρ(x0, t0) with u1 = f on ∂pC

λ,−
Kρ,2ρ(x0, t0). By the

definition of u1 we see, using (5.22) and the maximum principle, that

sup
Cλ,−Kρ,2ρ(x0,t0)

u1 ≤ sup
ΩT∩Cλ,−Kρ,2ρ(x0,t0)

u. (5.23)

Extend u to Cλ,−
Kρ,2ρ(x0, t0) by setting u(x, t) = 0 for (x, t) ∈ ΩT \ Cλ,−

Kρ,2ρ(x0, t0). Since the

function u is continuous on Cλ,−
Kρ,2ρ(x0, t0) and a solution in ΩT ∩ Cλ,−

Kρ,2ρ(x0, t0), it is easily seen

to be a weak subsolution in Cλ,−
Kρ,2ρ(x0, t0). It then follows from the maximum principle and

(5.21) that

u(x, t)− 1

2
sup

ΩT∩Cλ,−ρ (x0,t0)

u ≤ u1(x, t), whenever (x, t) ∈ Cλ,−
Kρ,2ρ(x0, t0). (5.24)
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It now follows by (5.24), Lemma 5.4, (5.23), the maximum principle and (5.19) that

1

2
sup

ΩT∩Cλ,−ρ (x0,t0)

u ≤ sup
Cλ,−ρ (x0,t0)

u1 ≤ ce−(K−2)ν/c sup
Cλ,−

(K−2)ρ,ρ
(x0,t0)

u1

≤ ce−K
ν/c sup

ΩT∩Cλ,−Kρ,2ρ(x0,t0)

u ≤ ce−K
ν/cKγ2 sup

ΩT∩Cλ,−ρ (x0,t0)

u (5.25)

for every K ≥ K̂ + 2, where K̂ = K̂(H,M) and ν are as in Lemma 5.4. For any K ≥ K̂ + 2
such that

ce−K
ν/cKγ2 <

1

2
(5.26)

the estimate (5.25) is contradicted, and hence the proof of (5.20) is complete. This completes
the proof of Theorem 5.5.

Proof of Theorem 1.1. By Lemma 3.4 every NTA-domain is a λ-NTA-domain and thus
Theorem 1.1 follows directly from Theorem 5.5 and the Harnack inequality.

6 Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. The proof uses techniques available for
uniformly parabolic operators, specifically the existence and properties of the Green function.
However, using Lemma 4.1, the degenerate operators of interest here can be approximated by
uniformly parabolic operators. Let H be as in (1.3) and assume that (1.4) and (1.5). Let Ω be
a λ-NTA-domain with parameters M and r0 and T > 0. The adjoint operator of H is given by

H∗ := ∂t +
n∑

i,j=1

∂xi(aij(x, t)∂xj), (x, t) ∈ Rn × R. (6.1)

Note that all the results stated in the previous sections concerning solutions to Hu = 0 remain,
with appropriate reformulations, valid also for solutions to H∗u = 0. In particular, there exists
a unique probability measure ω∗(x, t, y, s) with support on ∂∗pΩT = ST ∪ (Ω̄ × {t = T}) such
that the solution to the continuous Dirichlet problem H∗u = 0 in ΩT , u = f on ∂∗pΩT , is given
by

u(x, t) =

ˆ
∂∗pΩT

f(y, s)dω∗(x, t, y, s)

for each f ∈ C(∂∗pΩT ). In what follows adjoint versions of some of the lemmas established in
the previous sections will be used. It should be clear from context how the lemmas are modified
to hold for the adjoint operator. In the following we assume, in addition to (1.4) and (1.5),
that there exist constants c1, c2 > 0 such that

c1|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ≤ c2|ξ|2. (6.2)
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Then, using [1] we can conclude that there exists a fundamental solution Γ to the operator H.
A Green function for ΩT , with pole at (x̂, t̂) ∈ ΩT , can be defined as

G(x, t, x̂, t̂) = Γ(x, t, x̂, t̂)−
ˆ
∂pΩT

Γ(y, s, x̂, t̂)dω(x, t, y, s) (6.3)

where ω is the parabolic measure on ∂pΩT . By construction G(x, t, x̂, t̂) = 0 whenever t ≤ t̂, or
(x, t) ∈ ∂pΩT , and

Hx,tG(x, t, x̂, t̂) = δ(x̂,t̂)(x, t), (6.4)

where δ(x̂,t̂) is the Dirac delta at (x̂, t̂), in the sense of distributions. Furthermore,

G(x, t, x̂, t̂) ≤ Γ(x, t, x̂, t̂) whenever (x, t), (x̂, t̂) ∈ ΩT , (x, t) 6= (x̂, t̂). (6.5)

Let G∗ denote the Green function for the adjoint operator H∗. Then G(x, t, x̂, t̂) = G∗(x̂, t̂, x, t),
that is

G(x, t, x̂, t̂) = Γ(x, t, x̂, t̂)−
ˆ
∂∗pΩT

Γ(x, t, y, s)dω∗(x̂, t̂, y, s) (6.6)

where ω∗ is the adjoint parabolic measure. In particular, note that G(x, t, x̂, t̂) = 0 whenever
t̂ ≥ t, or (x̂, t̂) ∈ ∂∗pΩT , and

H∗x̂,t̂G(x, t, x̂, t̂) = δ(x,t)(x̂, t̂). (6.7)

Finally, note that if θ ∈ C∞0 (RN+1), then

θ(x, t) =

ˆ
∂pΩT

θ(y, s)dω(x, t, y, s)

−
ˆ

ΩT

( n∑
i,j=1

aij∂yiG(x, t, y, s)∂yjθ −G(x, t, y, s)∂sθ
)
dyds (6.8)

and

θ(x, t) =

ˆ
∂∗pΩT

θ(y, s)dω∗(x, t, y, s)

−
ˆ

ΩT

( n∑
i,j=1

aij∂yiG(y, s, x, t)∂yjθ +G(y, s, x, t)∂sθ
)
dyds, (6.9)

whenever (x, t) ∈ ΩT .
Note that in the following the assumption that H is uniformly parabolic, that is the as-

sumption (6.2), is only used for the existence and properties of the Green function. Recall the
notation ∆λ

r (x0, t0) = Cλ
r (x0, t0) ∩ ST .
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Lemma 6.1. Let H be as in (1.3) and assume (1.4), (1.5) and (6.2). Let Ω be a λ-NTA-domain
with parameters M and r0 and T > 0. Let (x0, t0) ∈ ST and let r ≤ min{r0,

√
(T − t0)/2}.

Then there exists c = c(H,M), c ≥ 1, such that

c−1|Bλ(x0, r)|G(x, t, A+
r (x0, t0)) ≤ ω(x, t,∆λ

r (x0, t0))

for every (x, t) ∈ ΩT ∩ {(x, t) : t ≥ t0 + 4r2}.

Proof. Introduce the sets

S1 = {(x, t) ∈ ΩT : t = t0 + 2r2} \ Cλ
M−1r(A

+
r (x0, t0)),

S2 = {(x, t) ∈ ΩT : t > t0 + 2r2} ∩ ∂Cλ
M−1r(A

+
r (x0, t0)). (6.10)

Note that G(x, t, A+
r (x0, t0)) = 0 if (x, t) ∈ S1. By construction

G(x, t, A+
r (x0, t0)) ≤ Γ(x, t, A+

r (x0, t0)) if (x, t) ∈ S2. (6.11)

The upper bound on the fundamental solution derived in [27] implies that

Γ(x, t, A+
r (x0, t0)) ≤ c

(
1

|Bλ(x,
√

2r)|
+

1

|Bλ(Ar(x0),
√

2r)|

)
e
−c
(
dλ(x,Ar(x0))2

2r2

)1/(1+n)

, (6.12)

for some c = c(n,Λ) ≥ 1, whenever (x, t) ∈ S2. In particular, using Lemma 2.1 and Lemma
2.2, it follows that

Γ(x, t, A+
r (x0, t0)) ≤ c

|Bλ(x0, r)|
, (6.13)

whenever (x, t) ∈ S2. Combining (6.11) and (6.13) we see that

|Bλ(x0, r)|G(x, t, A+
r (x0, t0)) ≤ c, (6.14)

whenever (x, t) ∈ S2. Next, using Lemma 4.2 and the Harnack inequality it follows that

ω(x, t,∆λ
r (x0, t0)) ≥ c−1, (6.15)

whenever (x, t) ∈ S2. Combining (6.14) and (6.15), Lemma 6.1 now follows by the maximum
principle.

Lemma 6.2. Let H be as in (1.3) and assume (1.4), (1.5) and (6.2). Let Ω be a λ-NTA-domain
with parameters M and r0 and T > 0. Let (x0, t0) ∈ ST and let r ≤ max{r0,

√
t0/8}. Then

there exists c = c(H,M), 1 ≤ c <∞, such that

ω(x, t,∆λ
r (x0, t0)) ≤ c|Bλ(x0, r)|G(x, t, A−2r(x0, t0)),

for every (x, t) ∈ ΩT \ C2c∆2r,2r(x0, t0).
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Proof. To simplify notation let R = Rx0(r). Let θ ∈ C∞(Rn+1) be such that θ ≡ 1 on Cλ
r (x0, t0)

and θ ≡ 0 on the complement of Cλ√
2c∆r,

√
2r

(x0, t0). Recalling Remark 2.2, we may also assume

that θ is such that |∂tθ| ≤ cr−2 and such that |∇xθ| ≤ cR−1. Note that by definition

ω(x, t,∆λ
r (x0, t0)) ≤

ˆ
∂pΩT

θ(y, s)dω(x, t, y, s). (6.16)

Furthermore, by the representation formula in (6.8), we see that

θ(x, t) =

ˆ
∂pΩT

θ(y, s)dω(x, t, y, s)

−
ˆ

ΩT

( n∑
i,j=1

aij∂yiG(x, t, y, s)∂yjθ −G(x, t, y, s)∂sθ
)
dyds. (6.17)

By construction θ(x, t) = 0 whenever (x, t) ∈ ΩT \ Cλ√
2c∆r,

√
2r

(x0, t0), hence combining (6.16)

and (6.17) gives

ω(x, t,∆λ
r (x0, t0)) ≤

ˆ
ΩT

( n∑
i,j=1

aij∂yiG(x, t, y, s)∂yjθ −G(x, t, y, s)∂sθ
)
dyds,

for all (x, t) ∈ ΩT \Cλ√
2c∆r,

√
2r

(x0, t0). Using the structure condition (1.4), the Hölder inequality

and the construction of θ, it follows that

ω(x, t,∆λ
r (x0, t0)) ≤cR−1r(λ(Bλ(x0, r))

1/2

(ˆ
Cλ√

2c∆r,
√

2r
(x0,t0)

|∂yiG(x, t, y, s)|2λdyds
)1/2

+ cr−2

(ˆ
Cλ√

2c∆r,
√

2r
(x0,t0)

|G(x, t, y, s)|dyds
)
, (6.18)

whenever (x, t) ∈ ΩT \Cλ√
2c∆r,

√
2r

(x0, t0). Furthermore, using the adjoint version of Lemma 2.4,

it follows thatˆ
Cλ√

2c∆r,
√

2r
(x0,t0)

|∂yiG(x, t, y, s)|2λdyds ≤ cR−2

ˆ
Cλ

2c∆
2r,2r

(x0,t0)

|G(x, t, y, s)|2λdyds

+ cr−2

ˆ
Cλ

2c∆
2r,2r

(x0,t0)

|G(x, t, y, s)|2dyds, (6.19)

whenever (x, t) ∈ ΩT \ Cλ
2c∆2r,2r(x0, t0). In particular, using the adjoint version of Lemma 5.2,

it is seen thatˆ
Cλ√

2c∆r,
√

2r
(x0,t0)

|∂yiG(x, t, y, s)|2λdyds

≤ c

(
R−2r2λ(Bλ(x0, 2c∆

2r)) + |Bλ(x0, 2c∆
2r)|
)(
G(x, t, A−2r(x0, t0))

)2
, (6.20)
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for all (x, t) ∈ ΩT \ Cλ
2c∆2r,2r(x0, t0). Combining the above estimates we can conclude that

ω(x, t,∆λ
r (x0, t0))

G(x, t, A−2r(x0, t0))

≤ cR−1r(λ(Bλ(x0, r)))
1/2

(
R−2r2λ(Bλ(x0, 2c∆

2r)) + |Bλ(x0, 2c∆r)|
)1/2

+ c|Bλ(x0, r)|

≤ c|Bλ(x0, r)| (6.21)

where Lemma 2.1 and the fact that λ(Bλ(x0, r)) ≤ cR2r−2|Bλ(x0, r)| have been used for the
last inequality. This completes the proof of the lemma.

Theorem 6.3. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded λ-
NTA-domain with parameters M , r0 and let ΩT = Ω × (0, T ) for some T > 0. There then
is an r̄0 = r̄0(H,M, r0, diam(Ω), diamλ(Ω)), 0 < r̄0 < r0 such that the following is true. Let
0 < δ < r̄0 be a fixed constant. Let (x0, t0) ∈ ST be such that 16δ2 ≤ t0 and δ2 ≤ T − t0, and
suppose that r < δ/2. Then there exists a constant c = c(H,M, diam(Ω), T, δ), 1 ≤ c <∞, such
that

ω(x, t,∆λ
2r(x0, t0)) ≤ cω(x, t,∆λ

r (x0, t0)),

whenever (x, t) ∈ ΩT is such that t ≥ t0 + 16r2.

Proof. Let H be as in (1.3) and assume that (1.4), (1.5). For each integer ` ≥ 1 let ã`ij, λ
`,

λ̃1 and λ̃2 be as in Lemma 4.1. Let H` be the operator corresponding to ã`ij. Let Ω be a
λ-NTA-domain with parameters M and r0 and let T > 0. Applying Lemma 4.1 we have that
Λλ` = Λλ`(n,Λ), and using Lemma 3.4 we can conclude that there exist M̄ ` = M̄ `(H,M)
and r̄`0 = r̄`0(H,M, r0, diam(Ω), diamλ(Ω), diamλ`(Ω)) such that Ω is a λ`-NTA-domain with
parameters M̄ ` and r̄`0. Furthermore, using Lemma 4.1 we have that for all ` large enough we can
take M̄ ` = M̄ and r̄`0 = r̄0 for some M̄ ` = M̄(H,M) and r̄0 = r̄0(H,M, r0, diam(Ω), diamλ(Ω)).
Note that M̄ ≥M and r̄0 ≤ r0. Let δ ≤ r̄0 be fixed and let (x0, t0) ∈ ST be such that 16δ2 ≤ t0
and δ2 ≤ T − t0. Let also r < δ/2. Let µ`(x) = (λ`(x))−n/2 whenever x ∈ Rn and let

r`x(R) =

(ˆ
B(x,R)

µdx

)1/n

for R > 0.

Using Lemma 4.1 we have that λ` → λ almost everywhere in Rn as ` → ∞. Also by Lemma
4.1, λ̃1 ≤ λ` ≤ λ̃2 for all ` ≥ 1. Thus µ` → µ almost everywhere in Rn, and by the Lebesgue
theorem on dominated convergence r`x(R)→ rx(R), for every x ∈ Rn and R > 0. Using this we
see, in particular, that there exists L ≥ 1 such that |r`− r| < r− δ/2 for all ` ≥ L. To simplify
notation let r`1 = r`x0

(Rx0(δ/2)) and let r`2 = r`x0
(Rx0(r + δ/2)). Let now L ≥ 1 be so large that

also r`1 < r`2 < δ for all ` ≥ L. Let ω` denote the parabolic measure associated to the operator
H` and ΩT . Since, by construction, ∆λ

2r(x0, t0) ⊂⊂ ∆λ
r+δ/2(x0, t0) = ∆λ`

r`2
(x0, t0) for all ` ≥ L, it

follows from Lemma 4.4 that

ω
(
x, t,∆λ

2r(x0, t0)
)
≤ lim

`→∞
ω`
(
x, t,∆λ

r+δ/2(x0, t0)
)
≤ lim

`→∞
ω`
(
x, t,∆λ`

r`2
(x0, t0)

)
. (6.22)
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Similarly, since ∆λ`

r`1
(x0, t0) = ∆λ

δ/2(x0, t0) ⊂⊂ ∆λ
r (x0, t0), we see that

lim
`→∞

ω`
(
∆λ`

r`1
(x0, t0)

)
≤ ω

(
∆λ
r (x0, t0)

)
. (6.23)

Note that the operator H`, for ` ≥ L fixed, satisfies (6.2), and hence we can apply Lemma
6.1 and Lemma 6.2 to the corresponding parabolic measure ω` and the corresponding Green
function G`. In particular, using Lemma 6.2 we see that

ω`(x, t,∆
λ`

r`2
(x0, t0)) ≤ c|Bλ`(x0, r

`
2)|G`

(
x, t, Aλ

`,−
2r`2

(x0, t0)
)
. (6.24)

Furthermore, using Lemma 2.1, Lemma 2.2, the adjoint versions of Theorem 5.5 and the Har-
nack inequality, we have that

|Bλ`(x0, r
`
2)|G`

(
x, t, Aλ

`,−
2r`2

(x0, t0)
)
≤ c|Bλ`(x0, r

`
1)|G`

(
x, t, Aλ

`,+

r`1
(x0, t0)

)
, (6.25)

and, using Lemma 6.1,

|Bλ(x0, r
`
1)|G`

(
x, t, A+

r`1
(x0, t0)

)
≤ cω`

(
x, t,∆λ`

r`1
(x0, t0)

)
. (6.26)

Theorem 6.3 now follows by combining (6.22), (6.24), (6.25), (6.26) and (6.23).

Proof of Theorem 1.2. By Lemma 3.4 every NTA-domain is a λ-NTA-domain. Theorem
1.2 now follows by iterating Theorem 6.3 and applying Lemma 2.1.

7 Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3. Throughout this section, let H be as
in (1.3) and assume (1.4) and (1.5). Let also Ω ⊂ Rn be a bounded λ-NTA-domain with
parameters M , r0 and let ΩT = Ω× (0, T ) for some T > 0.

Lemma 7.1. Let H be as in (1.3) and assume that (1.4), (1.5). Then there is some r̄0 =
r̄0(H,M, r0, diam(Ω), diamλ(Ω)) and K = K(H,M) such that the following is true. Suppose
that (x0, t0) ∈ ST and

r < min{r̄0/4,
√

(T − t0)/16),
√
t0/16}.

Suppose that u and v are two non-negative solutions to Hu = 0 in ΩT ∩Cλ
4r(x0, t0) and assume

that u and v vanish continuously on ST ∩Cλ
2r(x0, t0). Then there exists a constant c = c(H,M),

c ≥ 1 and K = K(H,M), K ≥ 1, such that

sup
ΩT∩Cλr/K(x0,t0)

u

v
≤ c

u(A+
2r(x0, t0)

)
v
(
A−2r(x0, t0)

) .
Proof. It is enough to assume that H satisfies (6.2) since the general result follows by the
same type of approximation argument as used in the proof of Theorem 6.3. Let K be a
constant to be chosen. If K is large enough we can conclude, using Lemma 2.1 and Lemma
2.2, that there exists {(xi, ti)}Ni=1, (xi, ti) ∈ ST ∩ ∂pCλ

r/c∆
(x0, t0), N = N(K,n,Λ), such that
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Cλ
r/K(xi, ti) ⊂ Cλ

2r(x0, t0)\Cr/K(x0, t0) for every 1 ≤ i ≤ N and such that ST ∩∂pCλ
r/c∆

(x0, t0) ⊂⋃N
i=1C

λ
r/K(xi, ti). Let c1 be the constant appearing in the statement of Lemma 4.2. We will

base our argument on the auxiliary function

Ψ(x, t) =
N∑
i=1

ω
(
x, t,∆λ

c1r/K
(xi, ti)

)
+ |Bλ(x0, r)|G

(
x, t, A−4r(x0, t0)

)
. (7.1)

The first step is to prove that there exists c(H,M) ≥ 1 such that

u(x, t) ≤ cu
(
A+

2r(x0, t0)
)
Ψ(x, t), (7.2)

whenever (x, t) ∈ ΩT ∩ Cλ
r/K(x0, t0). First, taking K ≥ c1 it follows from Lemma 4.2 that

ω
(
x, t,∆λ

c1r/K
(xi, ti)

)
≥ c−1 whenever (x, t) ∈ ΩT ∩Cλ

r/K(xi, ti) and thus Ψ(x, t) ≥ c−1 whenever

(x, t) ∈ ΩT ∩ ∂pCλ
r/c∆

(x0, t0) ∩
N⋃
i=1

Cλ
r/K(xi, ti).

Next, consider

(x, t) ∈
(
ΩT ∩ ∂pCλ

r/c∆
(x0, t0)

)
\

N⋃
i=1

Cλ
r/K(xi, ti).

In this case it follows from Lemma 6.2, the Harnack inequality and Lemma 4.2 that

|Bλ(x0, r)|G
(
x, t, A−4r(x0, t0)

)
≥ c−1 (7.3)

for some c = c(H,M), 1 ≤ c < ∞. Thus we may conclude that Ψ(x, t) ≥ c−1 for all (x, t) ∈
ΩT ∩ ∂pCλ

r/c∆
(x0, t0). Furthermore, using Lemma 5.2 and the Harnack inequality we have that

sup
Cλ
r/K

(xi,ti)

u ≤ cu(A+
r/K(xi, ti)) ≤ cu(A+

2r(x0, t0))

for every i, if K is large enough. Hence (7.2) holds whenever (x, t) ∈ ∂pCλ
r/c∆

(x0, t0). Since Ψ

is a solution to Hu = 0 in ΩT ∩ Cλ
r/c∆

(x0, t0) and since u vanishes on ∆λ
2r(x0, t0) it follows, by

the maximum principle, that (7.2) holds, in particular, for all (x, t) ∈ ΩT ∩ Cλ
r/K(x0, t0).

The second step is to prove that

v(x, t) ≥ c−1v
(
A−2r(x0, t0)

)
Ψ(x, t) (7.4)

whenever (x, t) ∈ ΩT∩∂pCλ
r/K(x0, t0). However, arguing as in Lemma 6.1, using appropriate sets

S1 and S2, estimates for the Green function, Harnack inequality and the maximum principle,
we immediately see that

v(x, t) ≥ c−1|Bλ(x, r)|G
(
x, t, A−4r(x0, t0)

)
v(A−2r(x0, t0)), (7.5)

whenever (x, t) ∈ ΩT ∩ Cλ
r/K(x0, t0). By the maximum principle, it suffices to prove that

c|Bλ(x, r)|G
(
x, t, A−4r(x0, t0)

)
≥ Ψ(x, t) (7.6)
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whenever (x, t) ∈ ΩT ∩ ∂pCλ
r/K(x0, t0). Since |Bλ(x, r)| ≈ |Bλ(x0, r)| whenever (x, t) ∈ ΩT ∩

Cλ
2r(x0, t0) it follows from the construction of Ψ that we only have to prove that

ω
(
x, t,∆λ

c1r/K
(xi, ti)

)
≤ c|Bλ(x, r)|G

(
x, t, A−4r(x0, t0)

)
. (7.7)

whenever (x, t) ∈ ΩT ∩ ∂pCλ
r/K(x0, t0). However, for K = K(H,M) large, this follows from

Lemma 6.2, Lemma 2.1, Lemma 2.2 and the Harnack inequality for the adjoint equation. This
completes the proof of the lemma.

Theorem 7.2. Let H be as in (1.3), assume (1.4) and (1.5). Let Ω ⊂ Rn be a bounded λ-
NTA-domain with parameters M , r0 and let ΩT = Ω× (0, T ) for some T > 0. There then is an
r̄0 = r̄0(H,M, r0, diam(Ω), diamλ(Ω)), 0 < r̄0 < r0 such that the following is true. Let u, v be
non-negative solutions of Hu = 0 in ΩT vanishing continuously on ST . Let δ, 0 < δ < r̄0, be a
fixed constant. Then u/v is Hölder continuous on the closure of Ω × (δ2, T ]. Furthermore, let
(x0, t0) ∈ ST , δ2 ≤ t0, and assume that r < δ/2. Then there exist c = c(H,M, diam(Ω), T, δ),
1 ≤ c <∞, and α = α(H,M, diam(Ω), T, δ), α ∈ (0, 1), such that∣∣∣∣u(x, t)

v(x, t)
− u(y, s)

v(y, s)

∣∣∣∣ ≤ c

(
dp,λ
(
(x, t), (y, s)

)
r

)αu(Ar(x0, t0)
)

v
(
Ar(x0, t0)

)
whenever (x, t), (y, s) ∈ ΩT ∩ Cλ

r/4(x0, t0).

Proof. Let u, v be non-negative solutions of Hu = 0 in ΩT vanishing continuously on ST . Let
r̄0 be as in Lemma 7.1 and let δ, 0 < δ < r̄0, be a fixed constant. Let (x0, t0) ∈ ST , δ2 ≤ t0, and
assume that r < δ/2. To avoid trivialities in the following argument, assume in the following
that u and v are defined in Ω × (0,∞). This is easily achieved by continuing u and v beyond
t = T in the natural way. Given (x, t) in the closure of Ω× (δ2, T ] and ρ > 0, define

W u,v(x, t, ρ) = sup
Ω×(δ2,T ]∩Cλρ (x,t)

u

v
− inf

Ω×(δ2,T ]∩Cλρ (x,t)

u

v
. (7.8)

To start with, note that it follows from Lemma 7.1 and Theorem 5.5 that

W u,v(x0, t0, 2r) <∞ whenever (x0, t0) ∈ ∂Ω× (δ2, T ] and r as above. (7.9)

In the following, let (x, t) be an arbitrary point in
(
Ω × (δ2, T ]

)
∩ Cλ

r/4(x0, t0) and let d =

dλ(x, ∂Ω) = dp,λ(x, t, ST ). Given 0 < ρ ≤ r/4, consider two cases: ρ ≤ d (interior case) and
ρ > d (boundary case).

We first consider the case ρ ≤ d. Let

û(y, s) :=
(
W u,v(x, t, ρ)

)−1
(
u(y, s)−

(
inf

(Ω×(δ2,T ])∩Cλρ (x,t)
u/v

)
v(y, s)

)
,

and note that

(i) 0 ≤ û(y, s)

v(y, s)
≤ 1, whenever (y, s) ∈ (Ω× (δ2, T ]) ∩ Cλ

ρ (x, t),

(ii) W û,v(x, t, ρ) = 1. (7.10)
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In addition, assume first that

û(x, t− ρ2/2)

v(x, t− ρ2/2)
≥ 1

2
. (7.11)

Now, note that Hû = 0 in ΩT . Therefore, it follows from the Harnack inequality that

û(x, t− ρ2/2) ≤ cû(y, s) whenever (y, s) ∈ Cλ
ρ/2(x, t), (7.12)

and that

v(y, s) ≤ cv(x, t+ ρ2/2) whenever (y, s) ∈ Cλ
ρ/2(x, t). (7.13)

Moreover, it follows from Theorem 5.5 that

v(x, t+ ρ2/2) ≤ cv(x, t− ρ2/2). (7.14)

Combining (7.10)-(7.14), one then deduces that

1

2
≤ û(x, t− ρ2/2)

v(x, t− ρ2/2)
≤ c

û(y, s)

v(y, s)
≤ c, (7.15)

whenever (y, s) ∈ Cλ
ρ/2(x, t). Hence

W û,v(x, t, ρ/2) ≤ θ, (7.16)

where θ = 1 − 1/(2c) ∈ (0, 1). Recalling the definition of û, and rearranging (7.16) one now
sees that

W u,v(x, t, ρ/2) ≤ θW u,v(x, t, ρ). (7.17)

Assume now, on the contrary, that (7.11) does not hold and that instead

û(x, t− ρ2/2)

v(x, t− ρ2/2)
<

1

2
. (7.18)

In this case let ū = v− û. Then (7.10) and (7.11) hold with û replaced by ū. We can then first
conclude that W ū,v(x, t, ρ/2) ≤ θ and subsequently again that (7.17) holds. Next, iterating the
estimate in (7.17) we deduce that

W u,v(x, t, ρ) ≤
(

2ρ

d

)σ1

W (x, t, d) (7.19)

for σ1 = − log2 θ.

We next consider the case ρ > d. Let x̃0 ∈ ∂Ω be such that d = dλ(x, x̃0). It then holds that
Cλ
ρ (x, t) ⊂ Cλ

2c∆ρ
(x̃0, t), and hence that W u,v(x, t, ρ) ≤ W u,v(x̃0, t, 2c∆ρ). Let K be as in the

statement of Lemma 7.1. We first assume that 4Kc∆ρ < r/2. Let now û be defined by

û(y, s) =
(
W u,v(x̃0, t, 8Kc∆ρ)

)−1

(
u(y, s)−

(
inf

(Ω×(δ2,T ])∩Cλ8Kc∆ρ(x̃0,t)
u/v

)
v(y, s)

)
.
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As in the interior case, it then holds that

(i) 0 ≤ û(y, s)

v(y, s)
≤ 1, whenever (y, s) ∈ (Ω× (δ2, T ]) ∩ Cλ

8Kc∆ρ
(x̃0, t),

(ii) W û,v(x̃0, t, 8Kc∆ρ) = 1. (7.20)

Assume first that

û
(
A−4Kc∆ρ(x̃0, t)

)
v
(
A−4Kc∆ρ(x̃0, t)

) ≥ 1

2
. (7.21)

Since û and v are solutions to Hu = 0 on ΩT , non-negative in ΩT ∩ Cλ
8Kc∆ρ

(x̃0, t), and û and v
vanish continuously on ST , it follows from Lemma 7.1 that

û
(
A−4Kc∆ρ(x̃0, t)

)
v
(
A+

4Kc∆ρ
(x̃0, t)

) ≤ c
û(y, s)

v(y, s)
≤ c, (7.22)

whenever (y, s) ∈ (Ω× (δ2, T ]) ∩ Cλ
2c∆ρ

(x̃0, t). By Theorem 5.5, it follows that

û
(
A−4Kc∆ρ(x̃0, t)

)
v
(
A−4Kc∆ρ(x̃0, t)

) ≤ c
û
(
A−4Kc∆ρ(x̃0, t)

)
v
(
A+

4Kc∆ρ
(x̃0, t)

) . (7.23)

Hence it now follows from (7.22), (7.23) and (7.21) that

1

2
≤ û(y, s)

v(y, s)
≤ c2,

whenever (y, s) ∈ (Ω× (δ2, T ]) ∩ Cλ
2c∆ρ

(x̃0, t) and therefore

W û,v(x̃0, t, 2c∆ρ) ≤ θ, (7.24)

where θ = 1− 1/(2c2) ∈ (0, 1). Rewriting this expression we see that

W u,v(x, t, ρ) ≤ W u,v(x̃0, t, 2c∆ρ) ≤ θW u,v(x̃0, t, 8Kc∆ρ). (7.25)

Assume now, on the contrary, that (7.21) does not hold and instead that

û(A−4Kc∆ρ(x̃0, t))

v(A−4Kc∆ρ(x̃0, t))
<

1

2
. (7.26)

In this case, let ū = v − û. Then (7.20) and (7.21) holds with û replaced by ū. One can then
first conclude that W ū,v(x̃0, t, 2c∆ρ) ≤ θ and subsequently again that (7.25) holds. Iterating
(7.25) gives that

W u,v(x, t, ρ) ≤ θW u,v(x̃0, t, 8Kc∆ρ)

≤
(

8Kc∆ρ

r

)σ2

W u,v(x0, t0, r), (7.27)
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where σ2 = − ln(θ)/ ln(c∗K) and c∗ = c∗(H,M), 1 ≤ c∗ < ∞. Obviously this also holds if
4Kc∆ρ ≥ r/2.

From (7.19) and (7.27) it follows that if ρ ≤ d < r, then

W u,v(x, t, ρ) ≤
(

2ρ

d

)σ1

W u,v(x, t, d) ≤
(

2ρ

d

)σ1
(

8Kc∆d

r

)σ2

W u,v(x0, t0, r). (7.28)

With α = min{σ1, σ2}, (7.27) and (7.17) imply that

W u,v(x, t, ρ) ≤ c

(
ρ

r

)α
W u,v(x0, t0, r), (7.29)

for all ρ ≤ r/4. Now for (y, s) ∈ ΩT ∩ Cλ
r/4(x0, t0) let ρ̂ = dp,λ(x, t, y, s). It then follows from

(7.29) and Lemma 7.1 together with Theorem 5.5 that∣∣∣∣u(x, t)

v(x, t
− u(y, s)

v(y, s)

∣∣∣∣ ≤ W u,v(x, t, ρ̂) ≤ c

(
ρ̂

r

)α
W u,v(x0, t0, r) ≤ c

(
ρ̂

r

)αu(Ar(x, t))
v
(
Ar(x, t)

) .
This completes the proof of Theorem 7.2.

Proof of Theorem 1.3. Using Lemma 3.4 and Lemma 2.1, Theorem 1.3 follows directly from
Theorem 7.2.
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