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Abstract

This paper presents a new local search approach for solving continuous
location problems. The main idea is to exploit the relation between the con-
tinuous model and its discrete counterpart. A local search is first conducted
in the continuous space until a local optimum is reached. It then switches to a
discrete space that represents a discretisation of the continuous model to find
an improved solution from there. The process continues switching between
the two problem formulations until no further improvement can be found in
either. Thus, we may view the procedure as a new adaption of formulation
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space search. The local search is applied to the multi-source Weber problem
where encouraging results are obtained. This local search is also embedded
within Variable Neighbourhood Search producing excellent results.

Keywords: Continuous Location, Weber problem, Space search
formulation, Variable neighbourhood

1. Introduction

Location models generally require finding the location of a given num-
ber, say p, of new facility sites in order to serve in some optimal way (e.g.,
minimum cost) a given set of existing facilities, also known as customers or
demand (or fixed) points. If the model is formulated in continuous space, a
distance function is required to calculate the distance between pairs of points.
Since the new facilities may be located anywhere in the continuous space or
regions thereof, these models are referred to as site generating models (e.g.,
see Love et al. [32]). The distance functions most commonly used are the
Euclidean norm and the rectangular (or Manhattan) norm; however, more
sophisticated models of distance are available when more accurate estimates
of actual travel distances are desired (e.g., Brimberg and Walker [11]).

The same location problem may be formulated in discrete space by re-
stricting the potential new facility sites to a specified finite set of points in
the continuous space. If these sites are chosen well, and a good algorithm or
heuristic is available to solve the discrete formulation, we may anticipate a
“good” solution to the original problem. For example, if we restrict the can-
didate facility sites to the given set of fixed points, the classical multi-source
Weber problem, also known as the continuous location-allocation problem,
converts to the classical (discrete) p-median problem. We may then try to
obtain a good solution to the discrete model, and use it as a starting point
for the continuous model.

Exploiting the relation between the p-median model and the continuous
location-allocation model has been suggested as early as in the original work
of Cooper ([14, 15]). Hansen et al. [27] tested a heuristic that first solves
the p-median problem exactly using a primal-dual algorithm by Erlenkotter
[21], and then completes one iteration of “continuous-space adjustment” by
solving the p continuous single facility problems identified in the first phase.
Brimberg et al. [10] examined this heuristic among others, and concluded
that computation time became a limiting factor on larger problem instances.
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Gamal and Salhi [24] used a similar approach where in the first phase, an
effective heuristic is applied instead of an exact solution approach to solve
the p-median problem.

In certain cases it may be shown that the continuous problem has a finite
dominating set. For example, if the rectangular norm (l1-norm) is used as the
distance function, it is well known that an optimal solution of the continuous
location-allocation problem exists where each of the facilities is located at a
vertex of a grid formed by drawing horizontal and vertical lines (the funda-
mental directions of the l1-norm) through each of the demand points. Since
an optimal solution in the plane must also exist with all facilities inside the
convex hull of the demand points (e.g., see Hansen et al. [28]), or the smaller
rectangular hull for the l1-norm (Love et al. [32]), a discrete formulation of
the continuous location-allocation problem with a fewer number of nodes is
also possible that guarantees an optimal solution of the original problem.
This idea can be extended to the class of polyhedral (or block) norms (e.g.,
Ward and Wendell [45]; Ward et al. [46]), although the grid will be more
complicated in general due to a higher number of fundamental directions
attributed to the norm. This discretisation of the continuous space does not
extend to round metrics such as the Euclidean norm.

In practice the discrete formulation, whether or not it contains an opti-
mal solution of the original continuous location problem, may become rather
large to be tackled optimally. Aras et al. [2] propose a discrete approxima-
tion to solve the capacitated multi-source Weber problem (CMSWP) with
Euclidean, squared Euclidean and lp distances with 1 < p < 2. The authors
discretise the solution space while increasing the number of potential sites by
using the rectangular grid points that are within the convex hull of the cus-
tomers. Two MILP formulations are proposed using this new set of potential
sites, including some attempts in choosing a subset. Heuristic approaches
such as a Lagrangean relaxation-based method, the p− median heuristic of
Hansen et al.[27] and the cellular Heuristic of Gamal and Salhi [23] are also
investigated. Aras et al. [3] adapt the previous approaches to the case of
rectilinear distances whereas Durmaz et al.[18] extend this discretisation ap-
proach to cater for uncertainty due to changes in the customer set. Very
recently, Akyüz et al. [1] studied the CMSWP using two branch-and-bound
techniques where one is related to the discretisation of the location space.
Heuristics based on solving the discrete approximation of the CMSWP by
Lagrangean Relaxation are proposed by Boyaci et al. [4].

For an overview of the continuous location-allocation problem, the in-

3



terested reader is referred to the survey paper by Brimberg et al. [9] and
the references therein, while for the discrete p-median model and solution
approaches the review by Mladenović et al. [34] can be useful.

The relation between discrete and continuous formulations may be ex-
tended to many other location models. For example, the less-studied contin-
uous p-center problem becomes the better-known discrete p-center problem
when candidate facility sites are once again restricted to the set of fixed
points. The classical (discrete) simple plant location problem has more re-
cently been modelled in continuous space by Brimberg and Salhi [13], and
in a related paper by Brimberg et al. [12]. Indeed, the idea of exploring the
relation between discrete and continuous location problems presents in our
view a rich new area of research.

In this paper we present a new local search for solving continuous loca-
tion problems that is based on reformulations of the problem in continuous
and discrete space. The basic idea is to find a local optimum in continuous
space using any convenient local search algorithm. The search space is then
modified by reformulating the problem in discrete space. Here we introduce
the idea of augmenting a specified set of fixed points (the current set) with
the local optima obtained in the continuous phase. Thus, we solve exactly
or heuristically a discrete problem where the nodes of the network now in-
clude the new facility sites obtained in the previous step. We switch back
to continuous space using the discrete solution as the starting point. The
procedure alternates between continuous and discrete spaces, always adding
newly acquired facility sites to the current set in the discrete formulation,
until no further improvement is found.

The local search outlined above incorporates elements of a metaheuristic
known as formulation space search (FSS). The basic idea here as presented
in Mladenović et al. [36] is to use different formulations of a combinatorial
or global optimization problem in an iterative fashion, where in each formu-
lation suitable local searches are used. For example, the authors applied two
formulations in different coordinate systems of the circle packing problem
with excellent results.

In formulation space search, the different formulations are all equivalent
to each other. However, in our case, the discrete model is an approximation
of the continuous model, thus presenting a fundamental departure from FSS.
We may also argue, meanwhile, that the discrete formulation is equivalent
to the continuous formulation in an asymptotic sense, as more facility sites
generated in the continuous phase are added to the network.

4



The paper is organized as follows. In the next section we provide a
basic framework for the proposed local search. Section 3 illustrates the local
search on the multi-source Weber problem (MWP) using a well-known 50-
customer problem from the literature. Larger problem instances of MWP are
examined later in this section. Section 4 develops a variable neighbourhood
search (VNS) heuristic for solving MWP that employs the proposed local
search in its local search step. The same data sets are also tested here and
superior computational results are obtained. The last section summarizes
our conclusions and highlights some suggestions for further research.

2. The local search

We consider an unconstrained location problem of the general form

min f(X1, X2, . . . , Xp). (GLP )

where Xi ∈ R
N gives the unknown location of new facility i, i = 1, . . . , p,

and the objective function f(.) represents some performance measure, such
as total cost. Typically the location problem occurs in the plane, so that
N = 2, and Xi is given by the Cartesian coordinates (xi, yi).

Consider as an illustration the classical multi-source Weber problem,
which may be formulated as follows:

min f(X1, X2, . . . , Xp) =
n

∑

j=1

wjmini=1,...,p{‖Xi − Aj‖}. (MWP1)

Here Aj denotes the known coordinates of customer j, wj > 0, the known
demand at Aj, and ‖Xi − Aj‖ the Euclidean distance between the pair of
points Xi and Aj, i = 1, . . . , p, j = 1, . . . , n. The objective function gives a
sum of weighted distances from the demand points to their nearest facilities,
and thus, represents a measure of the total cost of the current solution.

As a second illustration, consider the continuous weighted p-center prob-
lem, which may be formulated as follows:

min g(X1, X2, . . . , Xp) = max
j=1,...,n

{vjmini=1,...,p{‖Xi − Aj‖}}, (MCP )
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where weight vj > 0 reflects the “importance” of demand point Aj, and
the remaining notation is the same as for (MWP1). The objective function
gives the maximum (weighted) distance between the demand points and their
nearest facilities, and thus, represents a measure of the quality of service of
the current solution.

Other examples include the use of ordered medians (e.g., Nickel and
Puerto [38]), or the use of negative-valued weights in (MWP1) or (MCP )
to model obnoxious facilities (e.g., Erkut and Neuman [20]). In the latter
case, restrictions on the location of the facilities may be required in order
to guarantee that an optimal solution exists. Capacity constraints and flow
variables may also be included in the model.

We now describe the basic steps of the proposed local search for prob-
lems of type (GLP ). To differentiate between the continuous and discrete
formulations of the problem, we let (GLP ) denote the original continuous
formulation and (GLP )′ the discrete approximation. Let S denote a finite
set of identified potential sites for the new facilities, and X a subset of p
of these sites. For example, S = {A1, . . . , An}, where typically n >> p, has
been recommended in earlier works as noted above. The discrete formulation
of the problem is then given by:

minX⊂Sf(X). (GLP )′

Assuming w.l.o.g. that the new facilities are identical, there are

(

M
p

)

combinations of candidate solutions of (GLP )′, where M is the cardinality
of the set S. (The case of non-homogeneous new facilities is readily handled
using a solution space that contains up to a factor of p! more points.) Finally,
we let LC and LD denote the selected local search operators for (GLP ) and
(GLP )′, respectively. These search engines stop at a current solution if, and
only if, a better solution cannot be found in the specified neighbourhood of
this point.

A simple approach combining the discrete and continuous formulations
of the problem is given next. (The main heuristic will be given afterwards.)
The general idea is to solve (GLP )′ first either heuristically or exactly, and
use the obtained solution as the starting point for the local search in (GLP ).
Although the idea of solving (GLP )′ first has been suggested before (e.g.,
Hansen et al. [27]), the inclusion of a second phase of local search in the
continuous space is, to the best of our knowledge, a general approach yet to
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be formalized.

Algorithm 1: Basic local search (BLS)

Step 1: Select an initial set S for (GLP )′.

Step 2: Solve (GLP )′ heuristically or exactly to obtain an initial solution
X0 = {X0

1
, . . . , X0

p}.

Step 3: LC(X
0)→ XC , and stop (final solution = XC ).

In effect, algorithm 1 is a 2-phase approach that may be viewed as a
hybrid heuristic. The solution of the discrete problem (GLP )′ is used as a
good starting solution for the local search in continuous space (step 3 above)
in much the same way that a constructive heuristic could be used.

We also emphasize that BLS is distinctly different from the p-median
heuristic used in Brimberg et al. [10] in the following ways: (i) In the
latter method the discrete p-median problem is solved exactly, followed by
one step of continuous adjustment only (i.e., it solves p independent single
facility problems using the customer partition found in the discrete solution).
Thus the p-median heuristic does not guarantee to reach a local minimum in
continuous space as our heuristic does. (ii) The exact solution of the discrete
problem limits the p-median heuristic to smaller problem instances. (iii) The
discrete formulation in the p-median heuristic defines the set of candidate
sites as given by the set of customer locations. In our heuristic the set of
candidate sites is defined in a general way. (It can be the customer set, part
of the customer set or can have other “attractive” points added to it.)

The next algorithm provides a new way of combining the discrete and
continuous phases of the search, which we term ‘ ‘Reformulation local search”.

Algorithm 2: Reformulation local search (RLS)

Step 1: Select an initial set S for (GLP )′ and an initial solution X0 =
{X0

1
, . . . , X0

p}.

Step 2 (solving the continuous problem): LC(X
0)→ XC (where XC 6= X0,

only if f(XC) < f(X0)).

Step 3 (augmenting S): S ← S ∪XC .
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Step 4 (solving the discrete problem): LD(X
C) → XD (where XD 6= XC ,

only if f(XD) < f(XC)).

Step 5: If XD = XC , stop (final solution = XD ); else X0 ← XD and return
to step 2.

Note that we could use the solution found in step 2 of BLS as the starting
solution within the general framework of RLS. This would consequently guar-
antee that RLS is never worse than BLS. However, the aim of our study is to
present an adaptive approach that augments the set of potential sites in dis-
crete space by adding newly found points in continuous space in a systematic
and simple way and not to promote efficient implementations which could
without any doubt be useful at producing better solutions. This latter ob-
jective could be achieved by the combined BLS/RLS approach noted above,
or by using powerful global optimisation techniques such as metaheuristics
to produce such initial discrete high quality solutions (see Mladenović et al.
[34]).

3. Application to the multi-source Weber problem

The multi-source Weber problem, also referred to as the continuous location-
allocation problem, is a well-studied model in location theory. As observed
above in (MWP1), the objective is to generate optimal sites in continuous
space, notably R

2, for a given number of new facilities in order to minimize a
sum of transportation (or service) costs to a given set of customers at known
point locations and with known demands.

Thus, we wish to locate p new facility sites in the plane in order to ser-
vice a set of n customers at known locations Aj = (aj, bj) and with given
demands (weights) wj > 0, j = 1, . . . , n. The basic version of the (uncapac-
itated) multi-source Weber problem given in (MWP1) may be rewritten in
the following equivalent form (e.g., Love et al. [32]), which is more suitable
for gradient-based search methods:
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min
w,X

p
∑

i=1

n
∑

j=1

wij‖Xi − Aj‖ (MWP2)

subject to
p

∑

i=1

wij = wj ∀j,

wij ≥ 0 ∀i , j ,

where X = (X1, . . . , Xp) designates the set of location decision variables,
with Xi = (xi, yi) being the unknown location of facility i, i = 1, . . . , p;w =
(wij) designates the set of allocation decision variables, where wij gives the
flow to customer j from facility i, i = 1, . . . , p, j = 1, . . . , n; and ‖Xi −
Aj‖ =

√

(xi − aj)2 + (yi − bj)2 is the Euclidean distance between facility i
and customer j. Note that the objective function measures the total service
cost while the constraints ensure that all the customer demands are satisfied.
The model above uses the Euclidean norm to estimate travel distances or
times, but other distance functions, such as the Manhattan norm or, more
generally, the lp norm, have also been employed (e.g., see Love et al. [32] or
Francis et al. [22] for a review).

Finding an optimal solution to (MWP2) is a difficult proposition due
to the non-convexity of the objective function and the existence of multi-
ple local minima. This fact was known to the originator of the model; see
Cooper [14, 15]. It was shown later that the problem is NP-hard (Megiddo
and Supowit [33]). Brimberg et al. [8] demonstrate the difficult nature of
(MWP2) on a 50-customer problem taken from the classical textbook by
Eilon et al. [19] by using 10,000 random restarts of Cooper’s well-known al-
ternating heuristic for p = 5, 10, 15, to generate 272, 3008 and 3363 different
local minima, respectively. Furthermore, the worst deviation from the opti-
mal solution was respectively, 47%, 66% and 70%, while the optimal solution
was obtained 690 times for p = 5, 34 times for p = 10 and only once for
p = 15. Such relatively small instances are useful in demonstrating the ten-
dency for the number of local minima to increase exponentially with problem
size as defined by n and p.

Early attempts to solve the problem exactly are given in Kuenne and
Soland [31] and Ostresh [29]; however the branch-and-bound algorithms were
capable of solving at the time only very small instances, of the order of
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n = 15, p = 4 and n = 50, p = 3. Rosing [40] was able to incorporate im-
provements in the methodology that solved problems with n = 30, p = 5 and
n = 25, p = 6. It was not until quite recently that the original 50-customer
problem in Eilon et al. [19] was solved exactly using a novel column gen-
eration approach combined with global optimization and branch-and-bound
(Krau [30]). This author was also able to obtain exact solutions for instances
with up to n = 287 customers (ambulance problem from Bongartz et al.[5])
and up to p = 100 facilities by utilizing a dual formulation of the problem.
A bundle method in the l1 norm (du Merle et al.[17]) is added to stabilize
the solution of the dual, leading to an algorithm in Hansen et al. [25] that
successfully solves problems up to n = 1000 and p = 100.

Despite these advances, large scale problems found in the literature re-
main unsolvable by exact methods. Furthermore, the newer algorithms tend
to be highly sensitive to the starting solution, and so, require state-of-the-
art heuristics to obtain the best initial solution possible. Thus, advances in
heuristic approaches are continually sought. For instance, Taillard [43] solves
very large centroid problems by using efficient clustering techniques.

Brimberg and Drezner [6] suggest an improved alternate algorithm which
is a modified version of the well known locate-allocate of Cooper[14, 15]
enhanced by a transfer follow-up. In brief, instead of finding the optimal
location within each cluster using the Weiszfeld recursive equation [47] and
then re-allocating customers based on the new facility locations, the authors
randomly choose one facility at a time to re-locate and re-assign customers
to their nearest facilities after each re-location. A flag stating whether or not
a facility has been affected is activated and the process is repeated until all
flags remain unchanged. This scheme has the advantage of being less rigid
and hence avoids entrapment in the same local optimum obtained by the
systematic approach of Cooper’s locate-allocate. An exchange of customers
based only on those that lie on the boundary of two nearest facilities is then
examined for possible reallocation (allocate a customer to its second nearest
facility) and the saving due to these two affected facilities is evaluated to
see whether or not the swap is worthwhile. The examination of boundary
customers is a powerful and efficient allocation scheme as also shown in Salhi
and Sari [41] when studying a class of multi-depot vehicle routing problems.

Very recently, Drezner et al. [16] propose an effective constructive heuris-
tic that finds a good initial solution by combining the drop method and the
gravity concept (see Brimberg et al. [7] for its details), a decomposition
method that relies upon those triangles that constitute the nodes of the De-
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launay triangulation of the set of facilities, and a concentric tabu search
whose set of neighbourhoods is defined by different radii around the current
set of facility locations. Sophisticated methods such as these and others may
be used as local search operators (LC or LD) in algorithm RLS, resulting in
a rich variety of heuristics embedded in the RLS framework.

3.1. An illustration of the advantage of RLS

Consider a simple problem comprising 8 customers with coordinates and
weights tabulated below (also see Figure 1):

i xi yi wi

1 1 0 1
2 0 1 1
3 -1 0 1
4 0 -1 1
5 2.41 0 10
6 0 2.41 10
7 -2.41 0 10
8 0 -2.41 10

Note that the external demand points are each given a weight of 10 while the
internal ones have unit weights. The objective is to find optimal locations
for p = 5 facilities.

Let the BLS algorithm begin by randomly selecting five demand points
from the set S = {Aj, j = 1, . . . , 8}. Thus, there must be at least one external
point and one internal point in this initial solution. A simple vertex exchange
heuristic as the local search in discrete space will then move facilities from
internal points to the heavier external points until the four external points
are covered and a single facility (of the five) remains at an internal point
(see the configuration in Figure 1). This yields a local minimum which is
also a global solution of the given discrete problem. A subsequent Cooper-
style heuristic will fail to move the facilities from their current positions since
the current solution is also a local minimum in continuous space. Thus the
BLS terminates with an objective value of 3× 1.41 = 4.23. Meanwhile if we
let RLS start from five random points in continuous space, it is possible to
capture the Weber point (0,0) and subsequently the optimal solution denoted
by small squares in Figure 1 with objective value of 4.0.

This simple example illustrates the advantage of adding Weber points
(i.e., solutions from a continuous phase) in the discrete approximation of
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Figure 1: The Illustration Problem

r×A1

r A2

r A3

r A4

r�×� (0, 0) A5

r�×A6

r�×A7

r�×A8

r Customer � Optimal solution × BLS solution

the original continuous problem. This example also shows that BLS is not
globally convergent, whereas RLS has the inherent flexibility to be so.

3.2. An extensive computational experiment on a small instance

We now test the basic local search (Algorithm BLS) and the reformulation
local search (Algorithm RLS) on a relatively small instance, the well-known
50-customer problem from Eilon et al. [19]. The benchmark used for com-
parison is the classical multi-start Cooper method (MALT).

In brief, MALT consists of a) randomly generating the locations of p facil-
ities, either from the rectangle that encloses all customers, or from potential
sites such as the demand points, b) allocating each customer, to its nearest
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facility to determine p clusters, c) applying the Weiszfeld procedure to obtain
an optimal location within each cluster, and d) repeating the allocation and
the location steps (b) and (c) until there is no change in the total weighted
distance or in the facility configuration. The entire process is repeated several
times from random starting points, and the best solution is selected.

All methods were programmed in Fortran 95 compiler release 5.50e and
run on a PC with 1.8GHz processor. Cooper’s alternating algorithm is chosen
as the local search operator in continuous space (LC). The discrete search
operator (LD) is a simple vertex swap originally proposed by Teitz and Bart
[44]. This local search is based on the exchange of one facility from its current
location on a vertex to an unoccupied vertex on the network, with customers
re-allocated to their closest facilities in each configuration. All such vertex
exchanges are examined and the one giving the best improvement is taken.
The process is repeated until there is no further improvement with respect
to this facility exchange neighbourhood. In our implementation of this local
search, the change in the objective function resulting from a vertex exchange
(or ‘swap’) is calculated using an efficient procedure by Whitaker [48], that
requires the retention of second nearest facility distances. The Whitaker
improvement avoids unnecessary repetition of calculations on parts of the
objective function that are unchanged.

In summary, we note that the most basic local searches are employed in
the two phases of RLS. We repeat the experiment 100 times for each value
of p and for each heuristic to gather basic statistics such as the number
of different local minima found, the number of times the best, second best
and third best solutions of each respective method are obtained, as well as
the number of times a local minimum is obtained whose deviation from the
optimum is within three thresholds which are set to 0.0005, 0.005 and 0.05.
Table 1 summarises these statistics. Note that the first best solution is also
globally optimal in all instances for BLS and RLS but not for MALT.

It can be observed that the idea of augmenting the set of potential sites
with Weber locations in RLS increases the power of the method at obtaining
a larger number of occurrences of the best solution as well as guaranteeing
a larger number of occurrences of local minima whose fractional deviation is
less than 0.0005. Note that this does not guarantee that there will always be
many successes at reaching a global minimum even if the method is robust
at generating excellent solutions around the global minimum. This obser-
vation can be seen in Table 1 for RLS and p = 20 where there are only 2
occurrences of ‘first-best’ but 71 of second-best that happens to lie within a
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tiny deviation of 0.0005 from the global minimum. With regard to MALT,
we see that it obtained many more distinct local minima, and as a result,
very few occurrences of its first, second and third-best solutions. BLS seems
to perform for this small example nearly as well as RLS. This shows the
improvements over MALT are quite substantial when the search is extended
to discrete space. It is also worth noting that RLS produces a larger number
of solutions within 0.0005 in all cases except for p = 25. For instance, when
p = 20, the number of very good solutions (within 0.0005) is extremely high
at 73 compared with 3 only for BLS. The exceptional case at p = 25 may
have a simple explanation. As the number of facilities increases, more and
more of them will be located at fixed points in an optimal solution. Thus
the relative performance of BLS improves for these very large values of p.
Though the aim is not to compare these two approaches, the above result
demonstrates the robustness of the innovative and simple approach used in
RLS.

In our implementation, MALT and RLS both begin with uniformly ran-
dom continuous facility locations within the rectangle that encloses all the
fixed points (eg., Scott [42]). BLS on the other hand starts with a random se-
lection of p nodes from S in its first phase when solving the discrete p-median
problem. RLS and BLS both use the set of fixed points as the initial set S;
but BLS stops after finding the continuous location (or Weber) points in
phase 2, whereas RLS continues augmenting the set of potential sites which
then allows the new Weber points to be used in the next local search on the
larger network. According to these encouraging empirical results, further ex-
periments are conducted next to test our proposed BLS and RLS approaches
on larger data sets and with varying values of p.

3.3. Computational results on larger data sets

We conducted an extensive empirical experiment on four data sets com-
monly used for the multi-source Weber problem (see Brimberg et al.[10]) as a
platform to test our methodology. These include the 50-customer problem in
Eilon et al. [19], the 287-customer ambulance problem from Bongartz et al.
[5], and the 654- and the 1060-customer problems listed in the TSP library
(see [39]). Note that the summary results of the first data set are provided
in the previous subsection in Table 1.

We run each instance for the same amount of CPU time for each method
described in the previous section. For each instance, the time allowed for
n=287, 654 and 1060 is 20, 120 and 300 seconds respectively. The results are
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p Local Minima Infos MALT BLS RLS
5 # Distinct Local Minima (LM) 50 5 4

# 1st best 7 18 19
# 2nd best 3 31 32
# 3rd best 4 25 20

# LM with dev ≤ 0.0005 10 18 19

# LM with dev ≤ 0.005 19 49 51
# LM with dev ≤ 0.05 57 90 96

10 # Distinct Local Minima (LM) 97 3 3
# 1st best 2 48 49
# 2nd best 1 33 33
# 3rd best 1 19 18

# LM with dev ≤ 0.0005 0 48 49

# LM with dev ≤ 0.005 4 81 49
# LM with dev ≤ 0.05 16 100 100

15 # Distinct Local Minima (LM) 100 2 2
# 1st best 1 67 70
# 2nd best 1 33 30
# 3rd best 1 0 0

# LM with dev ≤ 0.0005 0 67 70

# LM with dev ≤ 0.005 1 67 70
# LM with dev ≤ 0.05 4 100 100

20 # Distinct Local Minima (LM) 100 4 5
# 1st best 1 3 2
# 2nd best 1 67 71
# 3rd best 1 18 12

# LM with dev ≤ 0.0005 0 3 73

# LM with dev ≤ 0.005 0 70 97
# LM with dev ≤ 0.05 1 88 97

25 # Distinct Local Minima (LM) 98 2 2
# 1st best 1 16 11
# 2nd best 1 84 89
# 3rd best 1 0 0

# LM with dev ≤ 0.0005 0 16 11
# LM with dev ≤ 0.005 0 16 11
# LM with dev ≤ 0.05 0 16 11

Table 1: Detailed comparison of local searches on smallest data set (n = 50)
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given in Tables 2-4 where the first two columns list the value of p and the best
known solution as reported in Table 1 of Brimberg et al. [10]; this is followed
by 3 columns giving the deviation of the best solution from the best known
and then 3 columns providing the times (in secs) when the best solution
was found. A bold format in Table 3 is used to denote instances where an
improvement over the best known solution was obtained. For n = 287, ‘Best’
represents the optimal solution as shown by Krau [30].

We observe again a substantial improvement in solution quality of BLS
and RLS over the conventional MALT. Meanwhile BLS and RLS yield com-
parable results. Furthermore, the quality of the solutions obtained by both
local searches is very good. For the 287-customer problem (Table 2), MALT
fails miserably while BLS and RLS both are on average 0.04% above the opti-
mal solution. For the larger data sets (Tables 3 and 4), the average deviations
of BLS and RLS from the best-known solutions obtained by the relatively
sophisticated metaheuristic methods in Brimberg et al.[10]) are only of the
order of 1/5%. Also, it is observed that RLS, on the larger instances, pro-
duces its best solution slightly earlier than the other two approaches.

The computational results above support the notion that a combined
local search in discrete and continuous spaces can be a powerful heuristic
approach. The combined local search may be as simple as the BLS algorithm
presented here, or as flexible as the proposed RLS algorithm. In spite of the
comparable results of BLS and RLS on the limited data sets examined here,
we recommend RLS over BLS for the following reasons:

(i) RLS provides a general framework for building local searches, and hence,
is a more adaptable methodology. In fact, BLS may be viewed as a
stripped-down implementation of RLS.

(ii) RLS has a stronger theoretical basis than BLS, as the simple example
in subsection 3.1 amply demonstrates.

4. Variable Neighbourhood Search

In this section, we incorporate our new local search within a powerful
metaheuristic known as variable neighbourhood search (VNS). VNS is a
metaheuristic for solving combinatorial and global optimization problems.
Its basic idea is to systematically change neighbourhoods in the search for a
better solution (see Mladenović and Hansen [35]). The main loop consists of
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Deviation (%) CPU Times (sec.)
p Best∗ MALT BLS RLS MALT BLS RLS
2 14427.59 0.00 0.00 0.00 0.02 0.02 0.03
3 12095.44 0.00 0.00 0.00 7.02 0.16 0.23
4 10661.48 0.00 0.00 0.00 8.09 0.28 0.27
5 9715.63 0.01 0.01 0.01 7.58 0.23 0.09
6 8787.56 0.03 0.02 0.02 1.89 0.25 0.78
7 8160.32 0.03 0.03 0.03 6.33 0.14 0.17
8 7564.29 0.09 0.01 0.01 16.81 0.05 1.02
9 7088.13 2.09 0.01 0.01 2.64 0.81 0.53
10 6705.04 2.95 0.00 0.00 7.89 0.06 10.02
11 6351.59 3.18 0.11 0.11 18.11 0.14 0.16
12 6033.05 5.66 0.24 0.24 15.31 1.20 1.23
13 5725.19 6.39 0.26 0.26 7.66 0.06 2.08
14 5469.65 6.52 0.01 0.01 18.33 2.97 7.06
15 5224.70 7.88 0.01 0.01 16.19 0.70 6.25
20 4148.84 15.50 0.03 0.03 15.89 1.48 2.92
25 3348.71 29.51 0.00 0.00 6.30 2.78 7.67
30 2716.90 41.15 0.03 0.03 0.08 12.14 1.73
35 2238.18 62.25 0.01 0.01 3.80 10.05 2.78
40 1900.84 79.37 0.01 0.01 10.31 3.41 15.16
45 1630.31 85.53 0.01 0.01 1.67 1.61 3.39
50 1402.58 99.77 0.00 0.00 11.58 2.13 0.23
55 1203.99 122.90 0.00 0.00 5.17 12.17 3.53
60 1055.14 156.81 0.01 0.01 16.78 17.36 8.92
65 924.56 146.31 0.02 0.02 15.17 1.09 4.28
70 814.22 187.20 0.03 0.03 6.45 2.97 0.66
75 730.04 198.94 0.05 0.05 4.86 8.34 6.17
80 655.38 182.22 0.06 0.06 12.56 3.22 15.19
85 588.37 202.34 0.13 0.13 17.97 15.47 19.17
90 529.21 252.54 0.07 0.07 18.30 10.31 7.11
95 480.86 258.83 0.02 0.01 5.73 17.20 8.70

100 441.24 286.42 0.01 0.01 19.13 12.14 10.81
Average (%) 78.79 0.04 0.04 9.86 4.55 4.79

Table 2: Comparison of MALT, BLS and RLS (n = 287)

∗ These are optimal solutions as shown by Krau [30].
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Deviation (%) CPU Times (sec.)
p Best MALT BLS RLS MALT BLS RLS
5 209068.80 0.00 0.00 0.00 0.23 0.23 0.27

10 115339.03 0.00 0.00 0.00 7.06 1.47 2.48
15 80177.04 0.05 0.01 0.01 4.47 8.20 14.34
20 63389.02 1.95 0.01 0.01 30.16 23.16 27.13
25 52209.51 6.24 0.01 0.01 98.19 109.59 113.92
30 44705.19 7.74 0.01 0.01 22.33 24.33 80.28
35 39257.27 12.48 0.11 0.11 7.41 28.80 21.94
40 35704.41 14.10 0.16 0.13 117.14 107.03 61.31
45 32306.97 13.98 0.15 0.15 117.19 40.09 69.16
50 29338.01 14.67 0.01 0.05 22.08 68.34 13.23
55 26699.17 23.76 0.06 0.02 15.42 98.16 55.27
60 24504.39 25.60 0.03 0.03 51.66 43.87 33.67
65 22747.10 31.06 0.10 0.06 76.13 61.05 8.44
70 21465.44 32.59 0.06 0.12 88.88 41.89 34.56
75 20312.97 28.78 0.11 -0.08 60.13 8.34 48.47
80 19193.86 28.71 0.83 0.70 100.69 28.06 80.44
85 18316.54 35.93 0.43 0.46 117.25 91.20 4.48
90 17514.42 36.34 0.54 0.48 111.66 62.55 29.00
95 16786.39 37.42 0.19 0.10 28.97 65.34 10.41
100 16083.54 41.40 0.21 0.16 110.88 115.83 79.64
105 15436.40 38.86 0.43 0.30 2.92 103.64 76.83
110 14826.58 39.27 0.70 0.60 26.53 36.31 71.28
115 14381.06 37.21 0.09 0.65 28.48 100.20 35.89
120 13887.74 39.66 1.01 1.01 69.83 43.53 67.13
125 13568.40 38.90 -0.06 0.23 20.11 64.88 85.77
130 13127.54 43.86 0.57 0.65 17.11 42.88 81.53
135 12812.87 34.84 0.21 0.28 33.98 56.00 79.73
140 12396.74 39.90 0.88 0.80 37.66 93.23 94.97
145 12132.16 44.04 0.25 0.17 105.94 110.42 75.95
150 11668.53 38.98 1.02 1.19 56.64 59.72 26.92

Average (%) 22.82 0.22 0.21 54.82 54.63 43.32

Table 3: Comparison of MALT, BLS and RLS (n = 654)
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Deviation (%) CPU Times (sec.)
p Best MALT BLS RLS MALT BLS RLS
5 1851877.25 0.00 0.00 0.00 10.72 12.55 9.77

10 1249564.75 0.00 0.03 0.02 23.38 26.50 113.30
15 980131.69 0.01 0.01 0.03 152.98 83.70 116.56
20 828685.63 0.03 0.03 0.01 112.23 17.81 69.55
25 721988.19 0.03 0.01 0.01 190.58 135.78 224.97
30 638212.31 0.40 0.01 0.01 299.55 62.05 88.81
35 577496.63 0.91 0.07 0.02 186.13 215.70 78.00
40 529660.12 1.56 0.16 0.18 192.11 236.80 201.44
45 489483.75 1.75 0.19 0.15 240.08 66.59 188.69
50 453109.56 2.23 0.20 0.14 101.88 89.80 70.83
55 422638.69 2.90 0.20 0.10 126.33 128.48 243.45
60 397674.53 3.59 0.07 0.11 60.13 186.09 283.75
65 376630.28 2.87 0.08 0.05 281.14 166.78 71.67
70 357335.13 3.35 0.17 0.12 90.61 99.05 65.05
75 340123.50 4.91 0.09 0.09 121.59 49.98 33.84
80 325971.25 5.32 0.08 0.15 18.94 129.47 108.81
85 313446.59 4.35 0.21 0.16 131.77 70.53 151.56
90 302479.03 5.23 0.23 0.29 244.47 148.78 229.97
95 292282.63 5.73 0.35 0.20 205.17 58.44 214.39
100 282536.44 5.62 0.36 0.51 66.20 302.13 97.88
105 273463.31 4.30 0.28 0.27 260.83 244.48 106.53
110 264959.97 6.14 0.29 0.48 60.69 108.59 169.16
115 256763.02 6.77 0.48 0.32 205.91 191.30 156.23
120 249050.48 7.66 0.43 0.38 37.67 58.02 142.84
125 241880.38 7.73 0.47 0.36 44.75 186.22 84.36
130 235203.39 8.45 0.46 0.42 222.25 239.83 22.41
135 228999.80 8.18 0.43 0.35 99.88 194.00 43.50
140 223062.63 7.40 0.28 0.47 37.11 110.48 67.08
145 217462.80 8.68 0.49 0.36 107.66 68.58 23.72
150 212236.27 9.04 0.37 0.50 80.98 208.47 120.33

Average (%) 4.17 0.22 0.21 133.79 129.90 119.95

Table 4: Comparison of MALT, BLS and RLS (n = 1060)
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three steps: Shaking or perturbation of the incumbent solution X to a ran-
dom solution in some neighbourhood of X, a local search from the perturbed
solution, and a neighbourhood change. For various VNS variants and their
successful applications, see Hansen et al. [26] and Mladenovic et al. [37].
For a number of different variants of VNS applied to the multi-source Weber
problem, see Brimberg et al. [10].

The Basic VNS (BVNS) method we employ is outlined in Algorithm 3,
where two parameters are needed: tmax relating to the limit on execution time
and kmax to the number of neighbourhoods used in the shaking operation.

Algorithm 3: Steps of the Basic VNS (BV NS)

Step 1: Specify kmax, tmax and define the neighbourhood structures

Nk; k = 1, . . . , kmax; set t = 0, and obtain an initial solution X.

Step 2: While t < tmax do

Step 2a: Set k = 1

Step 2b: Repeat until k = kmax

(i) Generate a random X ′ ∈ Nk(X) (Shaking)

(ii) Apply a local search from X ′ to determine X ′′ (Local search )

(iii) If the solution is improved, move there ( X ← X ′′) and go to Step
2a, else set k = k+1. (Change neighbourhood)

Step 2c: Set t = CpuTime()

The distance function we use to define the different neighbourhood struc-
tures counts the number of facilities that are not in the same locations as in
the incumbentX(e.g., Brimberg et al. [10]). Thus, a shake to neighbourhood
Nk involves randomly re-locating k facilities to unoccupied fixed points.

4.1. Computational Results

In the reformulation local search (RLS), we simply add new Weber points
to the set of potential sites for the discrete problem each time the continuous
phase reaches a local minimum. Also, after 10 unsuccessful big iterations
(full cycles of the VNS), we start again from the incumbent solution while
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deleting all added Weber points; that is, we return to the original set S =
{Aj, j = 1, . . . , n}. In this way the discrete problem is kept at a manageable
size.

Two algorithms are compared. In the first, termed VNS1, we implement
the successful variant of VNS given in Brimberg et al. [10] which relocates
facilities to unoccupied fixed points in the shaking operation as discussed
above (this refers to VNS3 in that paper). The second method, VNS2, uses
our new RLS as the local search. Note that the discrete phase of RLS uses a
Teitz and Bart vertex swap [44] with Whitaker’s accelerated implementation
[48] starting from the solution just obtained in the continuous phase.

Both versions of VNS are tested on the same 4 data sets described in the
previous section. For both implementations of VNS, the following parameter
values are used: tmax = 300 seconds, kmax = p, and as noted above, we set
the maximum number of unsuccessful full cycles to 10 for re-initializing S.

As the best-known results for the small data set (n = 50) are all optimal
and our RLS based approach found all those solutions, we do not reproduce
them here. The results for the other data sets (n = 287, 654 and 1060)
are summarized in Tables 5 to 7. We also highlight the best percentage
deviation in bold when it shows an improvement on the best known solution
from Brimberg et al. [10]. On average VNS2 outperforms VNS1 slightly.
For the case of n = 287, VNS2 proved to be slightly better than VNS1
when compared against the optimal solutions. Average deviations of 0.025%
and 0.011% with the worst deviations of 0.24% and 0.05% are recorded for
VNS1 and VNS2, respectively. For the 654-customer instances, 22 and 21
best solutions are found including 4 new best solutions for VNS1 and VNS2
respectively. Their respective average deviations are 0.024% and 0.028%
above the best known, while the largest improvements are -0.27% and -
0.22%, and worst deviations are 0.38% and 0.35% respectively. For the largest
instances (n = 1060) 28 and 29 best solutions are identified including 20 and
24 new ones for VNS1 and VNS2 respectively. Besides this, their average
deviation shows improvement of -0.093% and -0.107% and the worst deviation
is found to be negligible at 0.04% and 0.02% respectively. Again we see that
VNS2 performs slightly better than VNS1. The average computing times
when the best solution is found are similar for n = 287 for both approaches
but VNS2 is faster as n increases requiring an approximate CPU time of 2/3
of that of VNS1 in the largest data set (n = 1060).
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Objective function values Deviation (%) CPU Times (sec.)
p Best∗ VNS1 VNS2 VNS1 VNS2 VNS1 VNS2
2 14427.59 14427.97 14427.97 0.00 0.00 0.02 0.02
3 12095.44 12095.44 12095.44 0.00 0.00 0.06 0.75
4 10661.48 10661.91 10661.91 0.00 0.00 2.15 0.08
5 9715.63 9716.22 9716.22 0.01 0.01 0.05 0.03
6 8787.56 8789.08 8789.10 0.02 0.02 0.02 0.20
7 8160.32 8162.51 8161.97 0.03 0.02 0.67 7.57
8 7564.29 7564.67 7564.67 0.00 0.00 5.80 1.29
9 7088.13 7088.48 7088.28 0.00 0.00 4.02 5.66
10 6705.04 6705.36 6705.16 0.00 0.00 0.14 0.58
11 6351.59 6351.60 6351.59 0.00 0.00 4.21 7.74
12 6033.05 6047.31 6033.06 0.24 0.00 0.92 7.61
13 5725.19 5725.23 5725.21 0.00 0.00 0.08 4.45
14 5469.65 5474.97 5469.94 0.10 0.01 3.03 5.88
15 5224.70 5225.00 5225.00 0.01 0.01 9.09 0.75
20 4148.84 4149.94 4149.08 0.03 0.01 31.86 7.35
25 3348.71 3348.81 3348.79 0.00 0.00 43.48 28.31
30 2716.90 2717.61 2717.60 0.03 0.03 1.37 0.44
35 2238.18 2238.39 2238.21 0.01 0.00 1.93 40.37
40 1900.84 1900.99 1900.92 0.01 0.00 7.97 3.76
45 1630.31 1630.42 1630.42 0.01 0.01 32.40 4.09
50 1402.58 1402.64 1402.61 0.00 0.00 50.26 18.19
55 1203.99 1204.03 1203.99 0.00 0.00 1.50 28.56
60 1055.14 1055.24 1055.24 0.01 0.01 18.77 6.32
65 924.56 924.67 924.67 0.01 0.01 29.61 8.75
70 814.22 814.43 814.43 0.03 0.03 31.84 4.46
75 730.04 730.38 730.35 0.05 0.04 46.89 15.21
80 655.38 655.75 655.64 0.06 0.04 1.15 4.80
85 588.37 588.63 588.65 0.04 0.05 47.30 45.32
90 529.21 529.31 529.28 0.02 0.01 2.12 55.10
95 480.86 480.94 480.93 0.02 0.01 41.15 22.79

100 441.24 441.27 441.26 0.01 0.00 44.71 55.60
Average 0.025 0.011 14.98 12.65
# best∗ 11 15

Table 5: Comparison of VNS1 and VNS2 (n = 287)

∗ These are optimal solutions as shown by Krau [30].
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Objective function values Deviation (%) CPU Times (sec.)
p Old best VNS1 VNS2 VNS1 VNS2 VNS1 VNS2
2 815313.31 815313.31 815313.31 0.00 0.00 0.00 0.00
3 551062.88 551062.88 551062.88 0.00 0.00 0.25 0.00
4 288191.00 288191.00 288191.00 0.00 0.00 0.05 0.06
5 209068.80 209068.80 209068.80 0.00 0.00 0.00 0.00
6 180488.22 180488.22 180488.22 0.00 0.00 0.00 0.00
7 163704.17 163704.17 163704.17 0.00 0.00 0.14 0.47
8 147050.80 147050.80 147050.80 0.00 0.00 0.12 0.19
9 130936.13 130936.13 130936.13 0.00 0.00 0.16 0.27
10 115339.03 115339.03 115339.03 0.00 0.00 0.23 0.75
11 100133.20 100133.20 100133.20 0.00 0.00 0.00 0.00
12 94152.05 94152.05 94152.05 0.00 0.00 0.27 0.19
13 89376.81 89454.76 89454.76 0.09 0.09 1.84 0.80
14 84807.67 84807.67 84815.88 0.00 0.01 1.00 2.31
15 80177.04 80177.04 80177.04 0.00 0.00 0.17 9.05
20 63389.02 63389.03 63389.03 0.00 0.00 28.20 9.78
25 52209.51 52212.83 52212.83 0.01 0.01 19.23 8.81
30 44705.19 44708.52 44708.52 0.01 0.01 0.31 14.73
35 39257.27 39260.60 39260.60 0.01 0.01 11.95 156.38
40 35704.41 35707.74 35710.88 0.01 0.02 176.75 12.11
45 32306.97 32307.02 32307.02 0.00 0.00 36.03 65.30
50 29338.01 29338.06 29338.06 0.00 0.00 17.33 6.80
55 26699.17 26699.17 26699.17 0.00 0.00 13.81 12.11
60 24504.39 24504.45 24504.45 0.00 0.00 20.23 18.86
65 22747.10 22733.40 22733.40 -0.06 -0.06 6.56 72.92
70 21465.44 21473.60 21471.36 0.04 0.03 164.06 264.88
75 20312.97 20298.00 20285.09 -0.07 -0.14 180.58 75.83
80 19193.86 19222.92 19233.93 0.15 0.21 114.28 34.27
85 18316.54 18343.50 18372.16 0.15 0.30 89.86 98.91
90 17514.42 17566.15 17575.62 0.30 0.35 239.53 157.63
95 16786.39 16790.21 16814.01 0.02 0.16 41.48 203.50

100 16083.54 16084.40 16087.76 0.01 0.03 254.25 102.50
105 15436.40 15416.11 15422.99 -0.13 -0.09 239.80 260.83
110 14826.58 14854.90 14828.10 0.19 0.01 117.47 47.41
115 14381.06 14342.77 14349.74 -0.27 -0.22 228.56 219.09
120 13887.74 13940.72 13922.82 0.38 0.25 145.78 131.09

Average 0.024 0.028 61.44 56.79
# best 22 21

# new best 4 4

Table 6: Comparison of VNS1 and VNS2 (n = 654)
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Objective function values Deviation (%) CPU Times (sec.)
p Old best VNS1 VNS2 VNS1 VNS2 VNS1 VNS2
5 1851879.88 1851877.25 1851879.88 0.00 0.00 141.32 29.19

10 1249564.75 1249564.75 1249564.75 0.00 0.00 4.82 17.27
15 980132.13 980151.81 980131.69 0.00 0.00 89.00 10.19
20 828802.00 828697.13 828685.69 -0.01 -0.01 156.87 69.92
25 722061.19 722029.50 722001.44 0.00 -0.01 211.42 147.86
30 638263.00 638234.56 638218.13 0.00 -0.01 290.20 256.81
35 577526.63 577510.75 577496.63 0.00 -0.01 154.55 192.27
40 529866.19 529733.31 529696.94 -0.03 -0.03 123.30 121.81
45 489650.00 489584.16 489527.91 -0.01 -0.02 296.30 252.19
50 453164.00 453167.63 453149.47 0.00 0.00 84.77 18.61
55 422770.00 422787.63 422728.75 0.00 -0.01 248.40 18.13
60 397784.41 397722.53 397704.09 -0.02 -0.02 187.88 14.94
65 376759.50 376731.88 376700.44 -0.01 -0.02 198.58 32.31
70 357385.00 357360.25 357375.28 -0.01 0.00 176.29 97.63
75 340242.00 340177.72 340215.66 -0.02 -0.01 203.20 292.48
80 326053.19 326105.72 326107.78 0.02 0.02 293.27 185.97
85 313738.19 313851.50 313687.50 0.04 -0.02 223.21 54.29
90 302837.00 302743.75 302786.09 -0.03 -0.02 98.92 276.60
95 292875.09 292751.81 292454.81 -0.04 -0.14 139.21 228.69
100 283113.00 282769.22 282778.19 -0.12 -0.12 186.52 163.52
105 274576.00 273758.63 273811.84 -0.30 -0.28 205.76 60.00
110 265801.00 265316.47 265261.00 -0.18 -0.20 297.66 31.14
115 257605.00 257199.06 257098.28 -0.16 -0.20 129.79 136.64
120 249584.00 249345.88 249386.44 -0.10 -0.08 172.19 70.61
125 242930.00 242241.38 242205.61 -0.28 -0.30 274.28 194.29
130 236154.00 235598.81 235505.97 -0.24 -0.27 268.37 194.00
135 230431.00 229428.47 229307.31 -0.44 -0.49 264.50 148.61
140 224504.00 223412.30 223416.47 -0.49 -0.48 191.08 88.78
145 218279.00 217762.50 217657.17 -0.24 -0.28 215.79 222.33
150 212926.00 212643.89 212519.81 -0.13 -0.19 162.25 189.94

Average -0.093 -0.107 189.66 127.23
# best 28 29

# new best 20 24

Table 7: Comparison of VNS1 and VNS2 (n = 1060)
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5. Discussion and conclusion

A new local search for continuous location problems that systematically
oscillates between the continuous space and a discretised space is proposed.
In each iteration new potential sites obtained in the continuous phase are
added to the discrete space in order to improve the quality of the discrete
approximation. We implemented this idea on the well known multi-source
Weber problem with encouraging results. In brief, once the new Weber loca-
tions are found at a local minimum in the continuous space, these are added
to the set of potential sites in the discrete space. If an improved solution is
found in the discrete space, it then serves as an initial solution in the contin-
uous space and a new iteration begins. This process is repeated until there
is no change in the solution in either space. We also incorporated this local
search within VNS and this proved to be very competitive when tested on
the classical data sets from the literature.

The proposed methodology can be adapted and applied to many other
location models. For example, consider the continuous p-center problem
and the relation to its well-known discrete vertex p-center problem, or the
simple plant location problem on the plane and its relation to its discrete
counterpart. Another variant related to discrete location problems includes
the capacitated case on the plane. Indeed, the idea of exploring the relation
between discrete and continuous location problems presents in our view a
rich new area of research.

Acknowledgement The authors would like to thank two anonymous refer-
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