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Abstract

Context: A distributed business process is executed in a distributed computing environment. The service-oriented architecture
(SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. En-
tailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually
exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding
constraints define that a subject who performed one task must also perform the corresponding bound task(s). Objective: We aim to
provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-
based business processes. Method: Based on a generic metamodel, we define a domain-specific language (DSL) that maps the
different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC)
with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform
uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints.
We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing
literature. Results: Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime.
The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of
several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and
clean of security enforcement code. Conclusion: Our approach decouples the concerns of (non-technical) domain experts from
technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the
Web services technology stack. Our prototype implementation shows the feasibility of the approach, and the evaluation points to
future work and further performance optimizations.

Keywords: Identity and Access Management, Business Process Management, Entailment Constraints, Service-Oriented
Architecture (SOA), WS-BPEL

1. Introduction

The Service-Oriented Architecture (SOA) metaphor has been
elaborated by different communities to address different prob-
lem areas (such as enterprise application integration or business
process management, see, e.g., [1]). Amongst others, it can be
seen as a set of technology independent concepts for distributed
computing environments. In this context, it has emerged as
a popular paradigm for developing loosely coupled distributed
systems [2, 3]. Today, Web services [4] are a commonly used
technology which serves as a foundation of SOAs, as well as
distributed business processes. A distributed business process
is an intra-organizational or cross-organizational business pro-
cess executed in a distributed computing environment (such as
SOA). Business processes often require the definition and en-
forcement of process-related security policies. For example,
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such requirements result from internal business rules of an or-
ganization, or service-level agreements (SLAs) [5] with cus-
tomers. In addition, numerous regulations and IT standards
exist that pose compliance requirements for the corresponding
systems. In particular, IT systems must comply with laws and
regulations such as the Basel II/III Accords, the International
Financial Reporting Standards (IFRS), or the Sarbanes-Oxley
Act (SOX). For instance, one important part of SOX compli-
ance is to provide adequate support for definition and enforce-
ment of process-related security policies (see, e.g., [6, 7, 8]).

Role-based access control (RBAC) [9, 10] is a de-facto stan-
dard for access control in both research and industry. In the
context of RBAC, roles are used to model different job posi-
tions and scopes of duty within an information system. These
roles are equipped with the permissions to perform their re-
spective tasks. Human users and other active entities (subjects)
are assigned to roles according to their work profile [11, 12].
A process-related RBAC model (see, e.g., [13, 14]) enables
the definition of permissions and entailment constraints for the
tasks that are included in business processes. A task-based en-
tailment constraint places some restriction on the subjects who
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can perform a task x given that a certain subject has performed
another task y. Entailment constraints are an important means
to assist the specification and enforcement of compliant busi-
ness processes (see, e.g., [15, 16, 17, 18, 19, 20]).

Mutual exclusion and binding constraints are typical exam-
ples of entailment constraints. Mutual exclusion constraints
can be subdivided in static mutual exclusion (SME) and dy-
namic mutual exclusion (DME) constraints. A SME constraint
defines that two tasks (e.g. Order Supplies and Approve Pay-
ment) must never be assigned to the same role and must never
be performed by the same subject (to prevent fraud and abuse).
This constraint is global with respect to all process instances
in an information system. In contrast, DME refers to individ-
ual process instances and can be enforced by defining that two
tasks must never be performed by the same subject in the same
process instance.

In contrast to mutual exclusion constraints, binding con-
straints define that two bound tasks must be performed by the
same entity. In particular, a subject-binding constraint defines
that the same individual who performed the first task must also
perform the bound task(s). Similarly, a role-binding constraint
defines that bound tasks must be performed by members of the
same role but not necessarily by the same individual.

Motivation. As outlined above, entailment constraints are an
important means to assist the specification of business pro-
cesses and control their execution. Yet, the runtime enforce-
ment of entailment constraints in distributed SOA business pro-
cesses is a complex task, and currently there is still a lack of
straightforward solutions to achieve this task. This complexity
arises from the fact that the tasks of distributed business pro-
cesses are performed on independent, loosely coupled nodes
in a network. One of the advantages of loosely coupled sys-
tems is that the different nodes (i.e. services) can execute their
tasks independently of other nodes. However, the enforcement
of entailment constraints in a distributed system often requires
knowledge that is not available to a single node.

Moreover, to enforce access control policies in a software
system, the resulting policy models must also be mapped to
the implementation level. To account for different platforms
and implementation styles, it is important to first establish the
enforcement on a generic and conceptual level, in order to map
it to concrete platforms (e.g., SOA, as in our case).

Evidently, enforcement of RBAC policies and constraints has
an impact on the execution time of business processes. Depend-
ing on the complexity of the constraints and the amount of data
that needs to be evaluated, the impact will be more or less se-
vere. While the theory behind RBAC and entailment constraints
in business processes has been intensively studied in the past,
less attention has been devoted to the runtime enforcement, in-
cluding performance impacts, of such constraints.

With respect to the rapidly increasing importance of process-
aware information systems, the correct and efficient implemen-
tation of consistency checks in these systems is an important
issue. Therefore, the runtime performance needs to be eval-
uated thoroughly in order to ensure the efficient execution of
business processes that are subject to access constraints.

Approach Synopsis. This paper builds on our previous work
from [14, 21]. In [14], we presented a generic approach for the
specification of process-related RBAC models including a cor-
responding UML extension (see also Sections 2 and 3). In [21],
we discussed an approach for identity and access management
in a SOA context. However, while the enforcement of entail-
ment constraints in a distributed system is a very complex task
(see discussion in the Motivation section above), neither [14]
nor [21] address this important issue. In this paper, we integrate
the approaches from [14, 21] and provide multiple novel con-
tributions. In particular, we present an integrated, model-driven
approach for the definition and enforcement of RBAC-related
entailment constraints in distributed SOA business processes.
We extend our textual DSL from [21] with language primitives
for the specification of entailment constraints. Furthermore, we
significantly extended our implementation and provide an ex-
tensive performance evaluation of our solution.

In general, distributed business processes involve stakehold-
ers with different background and expertise. A technical RBAC
model may be well-suited for software architects and develop-
ers, but for non-technical domain experts an abstracted view is
desirable. In the context of model-driven development (MDD)
[22, 23, 24], a systematic approach for DSL (domain-specific
language) development has emerged in recent years (see, e.g.,
[25, 26, 27, 28]). A DSL is a tailor-made (computer) language
for a specific problem domain. To ensure compliance between
models and software platforms, models defined in a DSL are
mapped to code artifacts via automated model-transformations
(see, e.g., [29, 30, 31]). In our approach, the use of a DSL for
RBAC constraints allows us to abstract from technical details
and involve domain experts in the security modeling procedure.
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Figure 1: Approach Overview

Figure 1 depicts a high-level overview of our approach, in-
cluding the involved stakeholders, system artifacts, and rela-
tionships between them. At design time, the security experts
author RBAC DSL statements to define the RBAC model and
entailment constraints. IT specialists implement Web services
and define business processes on top of the services. At de-
ployment time, the process definition files are automatically en-
riched with tasks for identity and access management (IAM)
that conform to the corresponding entailment constraints. The
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business process is instantiated and executed by human indi-
viduals, and the IAM tasks ensure that the process conforms to
the constraints defined in the RBAC model. A policy enforce-
ment point (PEP) component intercepts all service invocations
to block unauthorized access (see also [21]).

For the sake of platform independence, we model business
processes using UML activity diagrams [32]. In particular, we
use the BusinessActivities extension [14], which enables the
definition of process-related RBAC models via extended UML
activity models. Based on the generic solution, we discuss a
concrete instantiation and show how the approach is mapped to
the Web services technology stack, including the Business Pro-
cess Execution Language for Web services (WS-BPEL) [33].

The remainder of this paper is structured as follows. In Sec-
tion 2, we present a motivating scenario. Section 3 introduces
a generic metamodel for specification of process-related RBAC
models including entailment constraints. Section 4 describes
the transformation procedure that enriches the process defini-
tions with IAM tasks to enforce runtime-compliance. In Section
5, we present a concrete WS-BPEL-based application of our ap-
proach. Implementation-related details are given in Section 6,
and in Section 7 we evaluate different aspects of our solution.
Section 8 discusses related work, and Section 9 concludes with
an outlook for future work.

2. Motivating Scenario

We illustrate the concepts of this paper based on a scenario
taken from the e-health domain. The scenario models the work-
flow of orthopedic hospitals which treat fractures and other se-
rious injuries. The hospitals are supported by an IT infrastruc-
ture organized in a SOA, implemented using Web services. The
SOA provides Web services for patient data, connects the de-
partments of different hospitals, and facilitates the routine pro-
cesses. Because the treatment of patients is a critical task and
the personal data constitute sensitive information, security must
be ensured and a tailored domain-specific RBAC model needs
to be enforced. Task-based entailment constraints in the form
of mutual exclusion and binding constraints are a crucial part of
the system.

2.1. Patient Examination Business Process

A core procedure in the hospital is the patient examination,
illustrated in Figure 2 as a Business Activity [14] model. We as-
sume that the process is implemented using a business process
engine and that the actions (or tasks) represent the invocations
of services. The arrows between the actions indicate the control
flow of the process. Note that all tasks are backed by technical
services, however, part of the tasks are not purely technical but
involve some sort of human labor or interaction.

The top part of the figure shows the BusinessActivity model
of the process, and the bottom part contains an excerpt of the
RBAC definitions that apply to the scenario. We define three
types of roles (Staff, Physician, Patient), each with a list of tasks
they are permitted to execute, and four subjects (John, Jane,
Bob, Alice), each with roles assigned to them. The names of
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Figure 2: Patient Examination Scenario Modeled As UML Business Activity

permitted tasks of a role are displayed after the string “Task:”.
Note, however, that this is only one possible graphical presen-
tation option to display the association between roles and ac-
tions (see [14]). Role inheritance hierarchies are modeled using
the role-to-role assignment (rrAssign) relationship (senior-roles
inherit the permissions of junior-roles, e.g., Physician inherits
from Staff). The role-to-subject assignment (rsAssign) associa-
tion is used to assign roles to subjects.

The first step in the examination process (see Figure 2) is to
retrieve the personal data of the patient. To demonstrate the
cross-organizational character of this scenario, suppose that the
patient has never been treated in our example hospital (H1) be-
fore, but has already received medical treatment in a partner
hospital (H2). Consequently, H1 obtains the patient’s personal
data via the Web services of H2. Secondly, the patient is as-
signed to a physician. After the patient has been assigned, the
physician requests an x-ray image from the responsible depart-
ment. The physician then decides whether additional data are
required (e.g., information about similar fractions or injuries in
the past). If so, the business process requests historical data
from partner hospitals which also participate in the SOA. For
privacy reasons, the historical data are only disclosed to the pa-
tient herself, and the Get Patient History service task has to
execute under the role Patient (see Figure 2). Another situa-
tion that requires additional data is the case of an emergency.
If the emergency demands for immediate surgery, it is impor-
tant to determine historical data about any critical conditions or
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diseases that might interfere with the surgery (task Get Critical
History). To avoid that a single physician takes wrong decisions
in an emergency, it is mandatory to get the opinion of a second
expert. Finally, the task Decide On Treatment completes the
examination and triggers the (physical) treatment.

2.2. Entailment Constraints

In this paper, we support four types of entailment constraints
which we briefly discuss in the following. The scenario process
in Figure 2 contains examples for each type of constraint.

• Static Mutual Exclusion (SME): The SME constraint be-
tween Get Expert Opinion and Get Patient History from Part-
ner Hospital defines that the two tasks must never be ex-
ecuted by the same subject or role, across all process in-
stances. This constraint is reasonable as we need to explicitly
separate the permissions of patients and physicians.

• Dynamic Mutual Exclusion (DME): The DME constraint
for Get Critical History and Get Expert Opinion requires
that, for each instance of the process, these two tasks are ex-
ecuted by different subjects. This ensures that the treatment
decision in an emergency clearly depends on the medical as-
sessment of two individual physicians.

• Subject Binding (SBind): An example SBind constraint is
the Get Patient History From Partner Hospital task, which
executes multiple times in a loop. To ensure that each itera-
tion is done by the same subject, the SBind attribute reflex-
ively links to the same task. A second subject binding exists
between Get Critical History and Decide on Treatment.

• Role Binding (RBind): The process defines a role-binding
constraint which demands that the Get Personal Data and
Assign Physician are performed by the same role (although
potentially different subjects).

3. Generic Metamodel for Specification of Entailment Con-
straints in Business Processes

This section gives an overview of the generic metamodel for
specification of process-related RBAC models including entail-
ment constraints. To provide a self-contained view in this paper,
Section 3.1 repeats the core definitions from [14], which form
the basis for our approach. In Section 3.2, we introduce the tex-
tual RBAC DSL which allows to define entailment constraints
in a simple textual syntax and enables a seamless mapping of
UML-based process-related RBAC models (see [14]) to the im-
plementation level. The core part of the textual RBAC DSL is
based on [21]. For this paper, it has been extended with capa-
bilities for the specification of entailment constraints.

3.1. Business Activity RBAC Models

Definition 1 (Business Activity RBAC Model). A Busi-
ness Activity RBAC Model BRM = (E,Q,D) where
E = S ∪R∪PT ∪PI ∪TT ∪TI refers to pairwise disjoint sets of
the metamodel, Q = rh∪tra∪rsa∪ptd∪ pi∪ti∪es∪er to map-
pings that establish relationships, and D = sb∪ rb∪ sme∪ dme
to binding and mutual exclusion constraints, such that:

• For the sets of the metamodel:

– An element of S is called Subject. S , ∅.

– An element of R is called Role. R , ∅.

– An element of PT is called Process Type. PT , ∅.

– An element of PI is called Process Instance.

– An element of TT is called Task Type. TT , ∅.

– An element of TI is called Task Instance.

In the list below, we iteratively define the partial mappings of
the Business Activity RBAC Model and provide corresponding
formalizations (P refers to the power set, for further details see
[14]):

1. The mapping rh : R 7→ P(R) is called role hierarchy.
For rh(rs) = R j we call rs senior role and R j the set of
direct junior roles. The transitive closure rh∗ defines the
inheritance in the role hierarchy such that rh∗(rs) = R j∗

includes all direct and transitive junior roles that the senior
role rs inherits from. The role hierarchy is cycle-free, i.e.
for each r ∈ R : rh∗(r) ∩ {r} = ∅.

2. The mapping tra : R 7→ P(TT ) is called task-to-role as-
signment. For tra(r) = Tr we call r ∈ R role and Tr ⊆ TT

is called the set of tasks assigned to r. The mapping
tra−1 : TT 7→ P(R) returns the set of roles a task is as-
signed to (the set of roles owning a task).
This assignment implies a mapping task ownership
town : R 7→ P(TT ), such that for each role r ∈ R
the tasks inherited from its junior roles are included, i.e.
town(r) =

⋃
rinh∈rh∗(r) tra(rinh) ∪ tra(r). The mapping

town−1 : TT 7→ P(R) returns the set of roles a task is as-
signed to (directly or transitively via a role hierarchy).

3. The mapping rsa : S 7→ P(R) is called role-to-subject
assignment. For rsa(s) = Rs we call s ∈ S subject and
Rs ⊆ R the set of roles assigned to this subject (the set of
roles owned by s). The mapping rsa−1 : R 7→ P(S ) returns
all subjects assigned to a role (the set of subjects owning a
role).
This assignment implies a mapping role ownership
rown : S 7→ P(R), such that for each subject s ∈ S
all direct and inherited roles are included, i.e. rown(s) =⋃

r∈rsa(s) rh∗(r)∪ rsa(s). The mapping rown−1 : R 7→ P(S )
returns all subjects assigned to a role (directy or transi-
tively via a role hierarchy).

4. The mapping ptd : PT 7→ P(TT ) is called process type
definition. For ptd(pT ) = TpT we call pT ∈ PT process
type and TpT ⊆ TT the set of task types associated with
pT .

5. The mapping pi : PT 7→ P(PI) is called process instan-
tiation. For pi(pT ) = Pi we call pT ∈ PT process type
and Pi ⊆ PI the set of process instances instantiated from
process type pT .

6. The mapping ti : (TT × PI) 7→ P(TI) is called task in-
stantiation. For ti(tT , pI) = Ti we call Ti ⊆ TI set of task
instances, tT ∈ TT is called task type and pI ∈ PI is called
process instance.
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7. Because role-to-subject assignment is a many-to-many re-
lation (see Def. 1.3), more than one subject may be able
to execute instances of a certain task type. The mapping
es : TI 7→ S is called executing-subject mapping. For
es(t) = s we call s ∈ S the executing subject and t ∈ TI is
called executed task instance.

8. Via the role hierarchy, different roles may posses the per-
mission to perform a certain task type (see Def. 1.1 and
Def. 1.2). The mapping er : TI 7→ R is called executing-
role mapping. For er(t) = r we call r ∈ R the executing
role and t ∈ TI is called executed task instance.

9. The mapping sb : TT 7→ P(TT ) is called subject-binding.
For sb(t1) = Tsb we call t1 ∈ TT the subject binding task
and Tsb ⊆ TT the set of subject bound tasks.

10. The mapping rb : TT 7→ P(TT ) is called role-binding.
For rb(t1) = Trb we call t1 ∈ TT the role binding task and
Trb ⊆ TT the set of role bound tasks.

11. The mapping sme : TT 7→ P(TT ) is called static mutual
exclusion. For sme(t1) = Tsme with Tsme ⊆ TT we call
each pair t1 ∈ TT and tx ∈ Tsme statically mutual exclusive
tasks.

12. The mapping dme : TT 7→ P(TT ) is called dynamic mu-
tual exclusion. For dme(t1) = Tdme with Tdme ⊆ TT we
call each pair t1 ∈ TT and tx ∈ Tdme dynamically mutual
exclusive tasks.

3.2. RBAC Modeling for Business Processes

Figure 3 depicts the core RBAC metamodel and its connec-
tion with the core elements of the BusinessActivity metamodel.
In particular, Figure 3 outlines how we extended our DSL from
[21] to include process-related RBAC entailment constraints
(see [14]). The different model elements are described below.
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Figure 3: Excerpt of RBAC Metamodel and Business Activity Metamodel

A ProcessInstance has a unique instanceID,
a ProcessType, and is composed of multiple Task-
Instance objects which are again instances of a certain

TaskType. The class TaskType has a name and four re-
flexive associations that define mutual exclusion and binding
constraints. Subjects are identified by a name attribute and
are associated with an arbitrary number of Roles, which are
themselves associated with Permissions to execute certain
Operations. A TaskType in the BusinessActivity meta-
model corresponds to an Operation in the RBAC meta-
model. Roles may inherit permissions from other roles (associ-
ation seniorRole). In our approach, we directly associate
Web service instances with Resources. That is, a subject
that attempts to invoke a Web service operation op on a ser-
vice resource res must be associated with a role that holds a
permission to execute op on res. A detailed description of the
BusinessActivity metamodel and corresponding OCL (Object
Constraint Language) constraints can be found in [14]. We uti-
lize the core parts of this model and focus on the mapping of
the RBAC constraints to a textual DSL and to business process
execution platforms, as illustrated for WS-BPEL in Section 5.

3.3. RBAC DSL Statements

Our RBAC DSL is implemented as an embedded DSL [27]
and is based on the scripting language Ruby as host program-
ming language. We now briefly discuss how the model ele-
ments are mapped to language constructs provided by the DSL
(see also Section 3.1 and Figure 3). Table 1 lists the ba-
sic DSL statements (left column) and the corresponding effect
(right column). In the table, keywords of the DSL syntax are
printed in bold typewriter font, and placeholders for cus-
tom (scenario-specific) expressions are printed in italics.

RBAC DSL Statement Effect
RESOURCE name [description] Define new resource
OPERATION name [description] Define new operation
SUBJECT name [description] Define new subject
ROLE name [description] Define new role
ASSIGN sub ject role Assign role to subject
INHERIT juniorRole seniorRole Let senior role inherit a junior role
PERMIT role operation resource Allow a role to execute a certain operation

on a specific resource
TASK name operation resource Define operation-to-task mapping
DME task1 task2 Define dynamic mutual exclusion (DME)
SME task1 task2 Define static mutual exclusion (SME)
RBIND task1 task2 Define role-binding (RBind)
SBIND task1 task2 Define subject-binding (SBind)

Table 1: Semantics of RBAC DSL Statements

The RBAC DSL statements RESOURCE, OPERATION,
SUBJECT and ROLE are used to create resources, opera-
tions, subjects and roles with the respective name and optional
description attributes. ASSIGN creates an association between
a subject and a role. INHERIT takes two parameters, a junior-
role and a senior-role name, and causes the senior-role to inherit
all permissions of the junior-role. PERMIT expresses the per-
mission for a role to execute a certain operation on a resource.
DME and SME allow the specification of dynamically or stati-
cally mutual exclusive operations. Using RBIND and SBIND,
two operations are subjected to role-binding or subject-binding
constraints. Finally, the TASK statement is used to establish
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a mapping from our RBAC DSL to implementation level arti-
facts. More precisely, operations are mapped to concrete WS-
BPEL tasks (see Section 5.2). The complete access control con-
figuration for the patient examination scenario, expressed via
RBAC DSL statements, is printed in Appendix A.

4. Model Transformations of Process Definitions for Run-
time Constraint Enforcement

To enforce the RBAC constraints at runtime, the business
process needs to follow a special procedure. If the process ex-
ecutes a secured task, it needs to provide a valid authentication
token for the active user. For instance, this token contains infor-
mation which subject (e.g., “Jane”) executes an operation, and
under which role (e.g. “Staff”) this individual operates. In this
section, we discuss our approach for automatically obtaining
these authentication tokens to enforce security at runtime.

Figure 4 illustrates which artifacts are utilized by the in-
stances of the business process. We follow the concepts of
the SAML framework [34] and provide the authentication data
with the aid of an Identity Provider (IdP) service. An IdP is
a service provider that maintains identity information for users
and provides user authentication to other services. The IdP is
a reusable standard component; its sole responsibility is to au-
thenticate the user and to issue an AuthData document which
asserts the user’s identity (subject and role). As such, the IdP
has no knowledge about the process structure and RBAC con-
straints. Hence, we utilize the decoupled RBAC Manager Ser-
vice which keeps track of the state of the process instances.
The RBAC Manager Service knows the process structure and
decides, based on the RBAC constraints, which subject or role
is responsible for the next task (see also [19]).

Business Process
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requests
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+ subject: String
+ role: String

issues *
uses for
service invocations

Identity Provider
Service (IdP)
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responsibility : Responsibility) 
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*
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instanceID: String,
taskName: String) 
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requests
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for tasks
AuthData

determines
for each task *

Figure 4: Relationship Between Business Process Instance and Security En-
forcement Artifacts

Combining the functionality of getResponsibility
and getAuthenticationData (see Figure 4) constitutes
the core protocol for obtaining authentication tokens that en-
able the enforcement of task-based entailment constraints in
a BusinessActivity. This recurring protocol is executed for
each secured task; hence, it need not be implemented manu-
ally, but should ideally be generated automatically on top of the
business process model that is defined by the developer. We
therefore aim at providing automatic transformations to convert

the domain-specific extensions for mutual exclusion and bind-
ing constraints in BusinessActivity models into regular activity
models which perform the required IAM tasks. This transfor-
mation is required as an intermediate step towards the gener-
ation of corresponding definitions that are directly deployable
and executable (e.g., by WS-BPEL engines). In the following,
we describe the transformation procedure in detail and discuss
different implementation and runtime aspects.

4.1. Model Transformations to Enforce Mutual Exclusion Con-
straints

Here we discuss the detailed procedure for runtime enforce-
ment of mutual exclusion constraints in the form of DME and
SME tasks. We propose an approach for transforming design-
time BusinessActivity models into deployable standard activity
models that comply with this procedure. The transformations
for enforcing mutual exclusion constraints are illustrated in Fig-
ure 5. Tasks representing invocations to external Web services
are printed in grey, while structured activities and tasks with
local processing logic are depicted with a white background.

The transformed activity models with mutual exclusion con-
straints in Figure 5 contain four additional tasks. All four tasks
are UML CallBehaviorActions [32] (indicated by the rake-style
symbol) which consist of multiple sub-tasks. The internal pro-
cessing logic depends on the concrete target platform; later in
Section 5.1 we discuss the detailed logic for WS-BPEL.

The task Get Authentication Data invokes the IdP service
to obtain the authentication data token (AuthData) to be used
for later invocation of the BusinessAction. The second inserted
task is Check Mutual Exclusion, which is responsible for check-
ing whether the provided authentication data are valid with re-
spect to the mutual exclusion constraint. A UML value pin [32]
holding the name of the corresponding task provides the input
for the pin DME (Figure 5(a)) or the pin SME (Figure 5(b)),
respectively. Additionally, the Check Mutual Exclusion task re-
ceives as input the name of the task to-be-executed (taskName,
which is known from the original process definition), and the
AuthData (received from the IdP service). The decision node
is used to determine whether Check Mutual Exclusion has re-
turned a successful result. If the result is unsuccessful (i.e., a
constraint violation has been detected) the control flow points
back to Get Authentication Data to ask the IdP again for a valid
authentication data token. Otherwise, if the result is successful,
the task Add Authentication to Request appends the user cre-
dentials in AuthData to the request message for the target Web
service operation. The fourth inserted task is Log Invocation,
which adds a new log record that holds the name of the task
(taskName) and the AuthData of the authenticated user. The in-
put pin global determines whether the log entry is stored in a
local variable of the process instance (value null) or in a global
variable accessible from all process instances (value ’true’).

4.2. Model Transformations to Enforce Binding Constraints

The approach for transforming binding constraints in Busi-
nessActions (illustrated in Figure 6) is similar to the trans-
formation for mutual exclusion constraints presented in Sec-
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(b) Transformation for SME Constraints

Figure 5: Process Transformations to Enforce Mutual Exclusion Constraints

tion 4.1. The transformed process model first requests authenti-
cation data from the IdP service. The task Check Binding Con-
straints then checks the resulting AuthData with respect to role-
bindings (RBind, Figure 6(a)) and subject-bindings (SBind, Fig-
ure 6(b)). The process asks for new user credentials and repeats
the procedure if the binding constraint is not fulfilled.

Note that the entailment constraints are checked directly in-
side the process, not by the IdP service. Even though the Au-
thData (subject, role) obtained from the IdP is trusted and as-
sumed to properly represent the user executing the process, the
AuthData may be invalid with respect to entailment constraints.
Hence, the branch “check unsuccesful” indicates that the pro-
cess instance asks for a different user to login and execute the
task. As the log of previous tasks is stored locally by each pro-
cess instance (except for SME constraints, where log entries are
also stored globally), the Check Binding and Check Mutual Ex-
clusion tasks are required directly inside the process logic and
are not outsourced to external services. This approach is able to
deal with deadlock situations (evaluated in Section 7.2).
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Automatic Transformation
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...

(a) Transformation for Role Binding
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. . .
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taskName instanceID

...

(b) Transformation for Subject Binding

Figure 6: Process Transformations to Enforce Binding Constraints

In certain deployments, the platform providers (e.g., hospi-
tal management) may be interested in tracking failed authoriza-
tions. For brevity, such mechanisms are not included in Fig-
ures 5 and 6, but extending the approach with notifications is
straight-forward.

4.3. Transformation Rules for Combining Multiple Constraints

So far, the transformation rules for the four different types
of entailment constraints in BusinessActivities (role-binding,
subject-binding, SME, DME) have been discussed in isolation.
However, as the scenario in Section 2 illustrates, Business-
Actions can possibly be associated with multiple constraints
(e.g., Get Critical History). Therefore, we need to analyze how
the transformation rules can be combined while still maintain-
ing the constraints’ semantics. A simple approach would be to
successively apply the atomic transformations for each Busi-
nessAction and each of the constraints associated with it. How-
ever, this approach is not suited and may lead to incorrect re-
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sults. For instance, if we consider the task Get Critical History
with the associated DME and SBind constraints, the process
might end up requesting the authentication data twice, which
is not desired. Therefore, multiple constraints belonging to the
same task are always considered as a single unit (see also [19]).

Figure 7 depicts the transformation template for a
generic sample BusinessAction X with multiple constraints
c1, c2, . . . , cn.

Process Design Model Process Deployment Model

Get Authentication Data

Add Authentication to Request

BusinessAction X B

Constraint c1
Constraint c2
…
Constraint cn

BusinessAction X

Check Constraint c1

Log Invocation

[c1 violated]

Check Constraint c2

[c2 violated]

. . .

[else]

Check Constraint cn

[cn violated]

[else]

[else]

Automatic Transformation

Figure 7: Generic Transformation Template for Business Action With Multiple
Constraints

5. Application to SOA and WS-BPEL

This section discusses details of the process transformation
from Section 4 and illustrates how the approach is applied to
SOA, particularly WS-BPEL and the Web services framework.

5.1. Supporting Tasks for IAM Enforcement in WS-BPEL

In the following we discuss the internal logic of the five sup-
porting IAM tasks used in the transformed activity models for
the enforcement of mutual exclusion (Section 4.1) and binding
constraints (Section 4.2).

Task Log Invocation: In general, process-related RBAC
constraints rely on knowledge about historical task executions
(see also [14]). Therefore, a mechanism is required to store data
about previous service invocations. One conceivable approach
is that the process execution engine keeps track of the invoca-
tion history. To that end, invocation data can be stored either in
a local variable of the process instance (for DME constraints)
or in a global variable that is accessible from all process in-
stances (for SME constraints). Unfortunately, WS-BPEL does
not support global variables, but we can overcome this issue by
using an external logging Web service. Figure 8(a) shows the
Log Invocation activity, which stores data about service calls,
including the name of the invocation and the AuthData of the
user under which the process executes. The invocation is first
stored in a local array variable of WS-BPEL. If the input pin

named global is not null, the data is also stored with the exter-
nal logging service (Log Invocation Globally). Currently, our
framework relies on a central logging service. As part of our
future work, we tackle advanced challenges such as privacy,
and timing issues that come with decentralized logging.

Task Get Authentication Data: This supporting IAM task
is used to obtain authentication tokens, see Figure 8(b). The
identifier of the affected process task is provided as a parameter
taskName. For instance, in the case of WS-BPEL, the name at-
tribute of the corresponding invoke statement can be used to
determine this value. As outlined in Section 4, the procedure is
split up between the RBAC Manager service and the IdP. First,
the invocation Get Responsibility asks the RBAC Manager for
the role or subject responsible for executing the next task. All
combinations of values are possible, i.e., either subject or role,
or both, or none of the two may be specified. The subject/role
responsibility information is used to execute an IdP Authentica-
tion Request. The authentication method performed by the IdP
is transparent; for instance, it may perform smartcard based au-
thentication or ask for username and password. The AuthData
output pin provided by this invocation contains the definite sub-
ject and role name of the user.

Task Add Authentication to Request: The activity in Fig-
ure 8(c) illustrates how authentication data are appended to the
invocation of Business Actions. First, the AuthData informa-
tion is used to request a SAML assertion from the IdP service.
This token contains the subject and role with a trusted signature
that ensures the integrity of the assertion content. The assertion
is then added to the request message for the target service oper-
ation (the name is specified via the input pin taskName) using
the SOAP header mechanism [35] (SOAP is the communication
protocol used by Web services). Note that this activity leaves
room for optimization. If many tasks in the process are exe-
cuted by the same subject and role, it is advantageous to cache
and reuse the SAML tokens in a local variable of the process
instance. However, caching security tokens carries the risk of
inconsistencies if the RBAC policies change.

Task Check Binding Constraints: Figure 8(d) contains the
activity Check Binding Constraints, whose internal logic is to
check the logged invocations with role-binding and subject-
binding against the AuthData information. If the SBind param-
eter is set, the activity looks up the last corresponding log entry
(the taskName of the log entry needs to be equal to SBind) in
the local invocation map of the WS-BPEL process instance. If
the returned array (named logs) is not empty, then the subject
stored in the last log entry needs to be identical to the subject in
AuthData. Analogously, if the RBind parameter is set, then the
role of the last log entry with taskName equal to RBind must be
equal to the role in AuthData. If and only if all conditions hold
true, the activity returns a success status.

Task Check Mutual Exclusion: Similarly, the Check Mutual
Exclusion activity in Figure 8(e) uses the log data to check the
AuthData against the previously performed invocations. If the
input parameter DME is set, WS-BPEL looks up the log entries
from the local invocation map. Otherwise, if an SME param-
eter is provided, the corresponding logs are received from the
external logging service (global invocation map). The activity
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Figure 8: Supporting Tasks for IAM Enforcement in WS-BPEL

returns a successful result if either the logs sequence is empty
or all log entries have a different subject and role than the given
AuthData. Due to the possibly large number of entries in the
logs sequence, it is crucial where these conditions are evaluated
(by the process or the logging service directly). To avoid trans-
mitting log data over the network, we recommend the imple-
mentation variant in which the logging service itself validates
the conditions. To that end, AuthData is sent along with the
request to the logging service and the service returns a boolean
result indicating whether the constraints are satisfied.

5.2. RBAC DSL Integration with WS-BPEL

The TASK statement of the RBAC DSL realizes a map-
ping from operations to concrete WS-BPEL tasks (invoke
activities). This corresponds to the model in Figure 3, where
TaskType in the Business Activities metamodel is mapped to
Operation in the RBAC metamodel. Using this mapping, we
are able to automatically apply all Business Activity entailment
constraints to the corresponding WS-BPEL invoke activities.

DSL Statement WS-BPEL DSL Statement
DME task1 task2 <invoke name="task1" rbac:dme="task2" ../>

SME task1 task2 <invoke name="task1" rbac:sme="task2" ../>

SBIND task1 task2 <invoke name="task1" rbac:sbind="task2" ../>

RBIND task1 task2 <invoke name="task1" rbac:rbind="task2" ../>

Table 2: Mapping of RBAC DSL Statements to WS-BPEL DSL Statements

In our approach, WS-BPEL invoke activities are con-
strained using specialized DSL statements. The DSL uses
the extension mechanism of WS-BPEL and introduces new
XML attributes rbac:dme, rbac:sme, rbac:sbind and
rbac:rbind (the prefix rbac refers to the XML namespace
these attributes are part of). These attributes are then directly
annotated to the invoke activities in WS-BPEL. Table 2 il-
lustrates how the relevant RBAC DSL statements are mapped
to the corresponding WS-BPEL DSL statements. For instance,
the DME statement is mapped to a rbac:dme attribute. The
parameters of the DSL statements in Table 2 refer to the task
types defined using the TASK statement (see Section 3.3). Note
that these rbac:* attributes can be multi-valued. That is, mul-
tiple values can be separated by commas. For example, a task
that is dynamically mutual exclusive to task1 and task2 can be
annotated with a rbac:dme="task1,task2" attribute.

5.3. Automatic Transformation of WS-BPEL Definition

At deployment time, the business process model is automati-
cally transformed to ensure correct enforcement of identity and
access control policies at runtime. The transformation can hap-
pen on different abstraction levels, either based on the platform-
independent model (PIM) or on the platform-specific model
(PSM) (see, e.g., [36]). On the PIM level, model transformation
languages such as Query/View/Transformation (QVT) [37] can
be used to perform UML-to-UML transformation of process ac-
tivity models. Our approach proposes a transformation directly
on the PSM model, i.e., the WS-BPEL process definition file.
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Algorithm 1 WS-BPEL Transformation Algorithm
Input: WS-BPEL document bpel, Fragment Templates tmpl
Output: transformed WS-BPEL document
1: add <import ../>, <partnerLink ../>, and <variable

../> statements to bpel
2: add <assign ../> statements to initialize ProcessInstanceID and

InvocationLogs variables
3: for all bpel//invoke as inv do
4: if inv/@rbac:* then
5: authInvoke← create <invoke ../> for operation getAuthentica-

tionData and partnerLink IdP
6: constraintChecks← ∅
7: for all inv/@rbac:* as constraint do
8: tasks← split value of constraint by commas
9: for all tasks as task do

10: check ← create <if>..</if> which checks outcome of
authInvoke for RBAC entailment constraint constraint and
task task

11: constraintChecks← constraintChecks ∪ check
12: end for
13: end for
14: enforcementBlock ← wrap sequence authInvoke||constraintChecks

in new <while>..</while> block
15: insert en f orcementBlock before inv
16: if inv/@rbac:sme then
17: logInvoke ← create <invoke ../> for operation logInvoca-

tion via partnerLink LoggingService
18: insert logInvoke after inv
19: end if
20: end if
21: end for

Algorithm 1 gives a simplified overview of which WS-BPEL
code fragments are injected, and where. Variable names are
printed in italics, and XML markup and XPath expressions are
in typewriter font. The input is a WS-BPEL document bpel
with security annotations. Firstly, various required documents
(e.g. the XSD files of SAML and WS-Security) need to be im-
ported into the WS-BPEL process using import statements.
Then the partnerLink declarations for the needed services
(such as the IdP service) are added to bpel, and variable
declarations are created (e.g. input/output variables for get-
AuthenticationData operations). Using assign state-
ments, some variables (such as ProcessInstanceID) are
initialized. Next, the algorithm loops over all invoke el-
ements that have an attribute from the rbac namespace as-
signed (e.g. rbac:rbind or rbac:dme). For every match-
ing invoke several WS-BPEL code injections and transfor-
mations have to be conducted. Firstly, an invoke statement
(authInvoke) is created. At runtime, this statement calls
the IdP’s getAuthenticationData operation. Next, an
empty set (constraintChecks) is created. Afterwards,
the algorithm iterates over all constraints (e.g. rbac:sbind)
that have been defined for this particular invoke statement.
The values of every constraint are split by commas. For
instance, in the case of an rbac:dme="task1,task2"
annotation, constraint is rbac:dme and tasks is a
set with two elements (task1 and task2). For every
task an if-block (check) is created. At runtime, this if-
block checks, if there is a violation of the entailment con-
straint constraint regarding another task task. Every
check added to the set constraintChecks. Next, a

new <while>..</while>-block (enforcementBlock)
is created. This block envelopes the previously cre-
ated authInvoke statement and all checks contained in
constraintChecks. Finally, this enforcementBlock
is inserted directly before the secured invoke statement. Just
in case the latter is also annotated using a rbac:sme at-
tribute, an additional invocation is injected right after the ac-
tual invoke element. This one calls the logInvocation
operation via the LoggingService PartnerLink.

6. Implementation

In this section, we discuss our prototype implementation of
the proposed approach. The implementation is integrated in
the SeCoS1 (Secure Collaboration in Service-based systems)
framework. This section is divided into four parts: firstly, we
outline the architecture of the system and the relationship be-
tween the individual services and components in Section 6.1;
secondly, the SAML-based SSO mechanism is described in
Section 6.2; in Section 6.3 we present the algorithm for au-
tomatic transformation of WS-BPEL definitions containing se-
curity annotations from our DSL; finally, Section 6.4 discusses
the implementation for checking constraints over the log data.

6.1. System Architecture

Figure 9 sketches the high-level architecture and relation-
ships between the example process and the system components.

Hospital 2

SAML Identity Provider

S

RBAC
Service

S Secured Service

IdP

PDP

PEP

SAML Request 

S

S

IdP

Hospital 1

S

PDP

PEP S

S

IdP

Hospital 3

S

PDP

PEP S
S

IdP

Instrumented 
IAM Tasks Secured Service Request 

Business Process System Architecture and Services

Figure 9: Example Process in System Architecture

The patient examination scenario from Section 2 is imple-
mented using WS-BPEL and deployed in a Glassfish2 server.

1http://www.infosys.tuwien.ac.at/prototype/SeCoS/
2https://glassfish.dev.java.net/
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Figure 10: Identity and Access Control Enforcement Procedure

The scenario involves three hospitals, which host the protected
services for patient management and examination. All ser-
vice invocations are routed through a Policy Enforcement Point
(PEP), which acts as a central security gateway, intercepts ev-
ery incoming service request and either allows or disallows its
invocation. It is important that the PEP operates transparently
and as close to the protected resources (i.e., services) as possi-
ble. Using the Java API for XML Web services (JAX-WS), the
PEP has been implemented as a SOAP message handler (inter-
face SOAPHandler). This handler can be plugged into the Web
service’s runtime engine in a straightforward manner. Once ac-
tivated, the interceptor is able to inspect and modify inbound
and outbound SOAP messages and to deny service invocations.

Each hospital runs a SAML IdP service, which is used to
issue the SAML assertions that are required in the WS-BPEL
process. The IdP’s responsibility is twofold: firstly, it authen-
ticates users; secondly, the IdP assures the identity of a subject
and its associated attributes (e.g., roles) by issuing a SAML as-
sertion SOAP header which is used in subsequent service in-
vocations. For the sake of an easy integration into the given
system environment, we decided to use the JAX-WS API for
implementing the Login Web service. This SOAP Web service
offers a login method. It requires a username/password pair
and returns a SAML assertion. Internally, we utilize the Java
Architecture for XML Binding (JAXB) for parsing and creat-
ing SAML assertions. Additionally, the Apache XML Security
for Java3 library is used for digitally signing XML documents
(i.e., the SAML assertions).

The actual decision whether an invocation should be pre-
vented or not is typically delegated to another entity, the Pol-
icy Decision Point (PDP). When deciding over the access to
a service resource the PDP has to make sure that the subject
attempting to access the resource has the permission to do so.
This decision is based on the policy information stored in the
RBAC repository (which is based on the DSL statements au-
thored by domain experts). In our implementation, the core

3http://santuario.apache.org/

functionality of the PDP is embedded into the RBAC DSL (see
Section 3.2). That is, the DSL offers an access method that
can be used to determine whether the requesting subject is per-
mitted to access the target resource (service) under the specified
context and role (see Figure 9). In order to make this function-
ality accessible to the outside of the DSL’s interpreter, we de-
veloped a RESTful Web service, that bridges HTTP requests to
the interpreter. More precisely, the PDP service uses the Bean
Scripting Framework (BSF)4 to access the interpreter. The Java
API for RESTful Web Services (JAX-RS) is used to realize the
PDP service’s RESTful Web interface.

6.2. SAML-based Single Sign-On

Figure 10 depicts an example of the Identity and Access Con-
trol enforcement procedure modeled in UML. To illustrate the
SSO aspect of the scenario, we assume that a patient with sub-
ject name “Alice” (cf. Figure 3), who is registered in hospital 2
(H2), is examined in hospital 1 (H1) and requests her patient
history from previous examinations in hospital 3 (H3). The pro-
cedure is initiated by the WS-BPEL process which requests the
execution of a protected Web service.

Prior to issuing the actual service request, the user has to
authenticate using the SAML IdP. The IdP queries the user
database to validate the credentials provided by the client. As
the credentials of user Alice are not stored in the DB of H1, the
IdP contacts the IdP of H2, which validates the credentials.

If the user credentials could not be validated, the process is
terminated prematurely and a SOAP fault message is returned.
In our example scenario, the business process receives the fault
message and activates corresponding WS-BPEL fault handlers.
Otherwise, if the credentials are valid, the IdP creates a signed
assertion similar to the one shown in Listing 1 and passes it
back to the WS-BPEL process (see Figure 10). The business
process attaches the assertion to the actual service request.

4http://commons.apache.org/bsf/
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� �
1 <A s s e r t i o n>
2 <I s s u e r>h t t p : / / h2 . com / IdP</ I s s u e r>
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e>
4 <S u b j e c t><NameID>Al ice </NameID></S u b j e c t>
5 <C o n d i t i o n s NotBefore =” 2012−05−17T09 : 4 8 : 3 6 . 1 7 1 Z”
6 NotOnOrAfter=” 2012−05−17T10 : 0 0 : 3 6 . 1 7 1 Z”/>
7 <A t t r i b u t e S t a t e m e n t>
8 <A t t r i b u t e Name=” r o l e ”>
9 <A t t r i b u t e V a l u e>s t a f f </ A t t r i b u t e V a l u e>

10 </ A t t r i b u t e>
11 </ A t t r i b u t e S t a t e m e n t>
12 </ A s s e r t i o n>� �
Listing 1: Exemplary SAML Assertion Carrying Subject and Role Information

The example SAML assertion in Listing 1 illustrates the in-
formation that is encapsulated in the header token when the sce-
nario process invokes the getPatientHistory operation
of the patient Web service of H3. The assertion states that the
subject named Alice, which has been successfully authenti-
cated by the IdP of the hospital denoted by the Issuer ele-
ment (H2), is allowed to use the the role staff in the context
default. The included XML signature element ensures the
integrity of the assertion, i.e., that the assertion content indeed
originates from the issuing IdP (H2) and has not been modi-
fied in any way. When the PEP of H3 intercepts the service
invocation with the SAML SOAP header, its first task is to ver-
ify the integrity of the assertion. The signature verification re-
quires the public key of the IdP that signed the assertion; this
key is directly requested from the corresponding IdP (under
http://h2.com/IdP) using SAML Metadata [38]. Our
implementation uses the Apache XML Security for Java library
to conduct the signature verification.� �
1 <A s s e r t i o n>
2 <I s s u e r>h t t p : / / h3 . com / IdP</ I s s u e r>
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e>
4 <S u b j e c t>
5 <NameID>Al ice </NameID>
6 </ S u b j e c t>
7 <A u t h z D e c i s i o n S t a t e m e n t D e c i s i o n =” P e r m i t ”
8 Resource =” h t t p : / / h3 . com / p a t i e n t ”>
9 <Act ion>g e t P e r s o n a l D a t a </Act ion>

10 </ A u t h z D e c i s i o n S t a t e m e n t>
11 </ A s s e r t i o n>� �

Listing 2: Exemplary SAML Authorization Decision

After the PEP of H3 has verified the message integrity, it
needs to determine whether the subject is authorized to access
the requested service operation. This is achieved by the PDP
service of H3 that allows the PEP to post a SAML Authoriza-
tion Decision Query. The PDP answers this query by returning
an assertion containing a SAML Authorization Decision State-
ment. Listing 2 shows an example SAML assertion which in-
forms the PEP that our staff member is allowed to invoke the
action (operation) getPersonalData of the resource (Web
service) http://h1.com/patient. Analogously to the
IdP service, we also used the JAX-WS API to implement the
SOAP-based interface of the PDP service. The PDP offers the
method query, which takes an Authorization Decision Query
message as argument and returns an Authorization Decision
Statement. Again, we leverage JAXB for parsing the SAML
documents.

6.3. Automatic Transformation of WS-BPEL Definition

Since both WS-BPEL and SAML are XML based standards,
we are able to reuse and utilize the broad line-up of existing
XML tooling. The transformation procedure of WS-BPEL pro-
cess definitions is hence based on XSLT (Extensible Stylesheet
Language Transformations) [39], a language for arbitrary trans-
formation and enrichment of XML documents.

2
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Figure 11: Artifacts of the Transformation Process

In general, the original WS-BPEL process is transformed by
enriching the process definition file with code fragments that
perform the IAM tasks (cf. Section 5.1). In principle, these
fragments are generic and static, i.e., for arbitrary WS-BPEL
processes nearly the same fragments can be injected. However,
some fragments contain volatile elements that are specific to
every single WS-BPEL process. As these fragments need to be
adapted to fit a specific WS-BPEL process, we propose a two-
stage transformation process. Figure 11 depicts an overview of
the document artifacts involved in the transformation process,
as well as the flow relations between them. The leftmost part
of the figure indicates how the original WS-BPEL process def-
inition file and various XML fragment files serve as input for
the Template Generator XSLT file. This Template Generator
constitutes the first transformation step and turns the generic
fragment templates into fragments tailored to the target process
definition. The last transformation step injects the generated
fragments into the original WS-BPEL process file.

6.4. Checking Business Activity Constraints

The process transformation approach presented in Section 4
ensures runtime enforcement of Business Activity entailment
constraints. For highly business- or security-critical systems we
propose log analysis to additionally monitor that the process in-
stances behave as expected (see, e.g., [40]). To check whether
all constraints are fulfilled in the log data, we require an en-
gine capable of querying the state of historical invocation data.
As our framework is operating in a Web Services environment,
XML is the prevalent data format and we focus mainly on XML
tooling. We hence utilize XQuery [41] to continuously perform
queries over the invocation logs stored in XML. To facilitate
the handling of these queries, we use WS-Aggregation [42], a
platform for event-based distributed aggregation of XML data.

Listing 4 prints exemplary log data that are emitted by the
transformed business process and handled by WS-Aggregation.
Each log element in the listing represents one invocation event.
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� �
1 l e t $cons := <c o n s t r a i n t s >
2 <r b i n d> <t a s k>G e t P e r s o n a l D a t a </ t a s k> <t a s k>A s s i g n P h y s i c i a n </ t a s k> </ r b i n d>
3 <sb ind> <t a s k>Dec ide On Trea tmen t </ t a s k> <t a s k>G e t C r i t i c a l H i s t o r y </ t a s k> </ sb ind>
4 <dme> <t a s k>G e t C r i t i c a l H i s t o r y </ t a s k> <t a s k>G e t E x p e r t O p i n i o n </ t a s k> </dme>
5 <sme> <t a s k>G e t E x p e r t O p i n i o n </ t a s k> <t a s k>G e t P a t i e n t H i s t o r y </ t a s k> </sme>
6 . . .
7 </ c o n s t r a i n t s >
8 l e t $ l o g s := / / l o g
9

10 SME Tasks :
11 every $sme in $cons / sme , $ t 1 in $sme / t a s k , $ t 2 in $sme / t a s k s a t i s f i e s ( $ t 1 = $ t 2 o r
12 ( every $ i in $ l o g s [ @taskName= $ t 1 ] s a t i s f i e s (
13 not ( e x i s t s ( $ l o g s [ @taskName= $ t 2 ] [ @role= $ i / @role ] ) )
14 and
15 not ( e x i s t s ( $ l o g s [ @taskName= $ t 2 ] [ @subjec t = $ i / @subjec t ] ) ) ) ) )
16 DME Tasks :
17 every $dme in $cons / dme , $ t 1 in $dme / t a s k , $ t 2 in $dme / t a s k s a t i s f i e s ( $ t 1 = $ t 2 o r
18 ( every $ i in $ l o g s [ @taskName= $ t 1 ] s a t i s f i e s (
19 not ( e x i s t s ( $ l o g s [ @taskName= $ t 2 ] [ @subjec t = $ i / @subjec t ] [ @ins tanceID = $ i / @ins tanceID ] ) ) ) ) )
20 S u b j e c t −Bind ing :
21 every $ s b i n d in $cons / sb ind , $ t 1 in $ s b i n d / t a s k , $ t 2 in $ s b i n d / t a s k s a t i s f i e s ( $ t 1 = $ t 2 o r
22 ( every $ i in $ l o g s [ @taskName= $ t 1 ] s a t i s f i e s (
23 every $ j in $ l o g s [ @taskName= $ t 2 ] [ @ins tanceID = $ i / @ins tanceID ] s a t i s f i e s $ i / @subjec t = $ j / @sub jec t ) ) )
24 Role−Bind ing :
25 every $ r b i n d in $cons / r b i n d , $ t 1 in $ r b i n d / t a s k , $ t 2 in $ r b i n d / t a s k s a t i s f i e s ( $ t 1 = $ t 2 o r
26 ( every $ i in $ l o g s [ @taskName= $ t 1 ] s a t i s f i e s (
27 every $ j in $ l o g s [ @taskName= $ t 2 ] [ @ins tanceID = $ i / @ins tanceID ] s a t i s f i e s $ i / @role = $ j / @role ) ) )� �

Listing 3: XQuery Assertion Expressions for Enforcing Business Activity Constraints

� �
1 <l o g taskName=” G e t P e r s o n a l D a t a ” s u b j e c t =” john ”
2 r o l e =” s t a f f ” i n s t a n c e I D =” i 1 ” t ime =” 1316423654600 ”/>
3 <l o g taskName=” A s s i g n P h y s i c i a n ” s u b j e c t =” john ”
4 r o l e =” s t a f f ” i n s t a n c e I D =” i 1 ” t ime =” . . . ”/>
5 <l o g taskName=” G e t P e r s o n a l D a t a ” s u b j e c t =” john ”
6 r o l e =” s t a f f ” i n s t a n c e I D =” i 2 ” t ime =” . . . ”/>
7 <l o g taskName=” G e t C r i t i c a l H i s t o r y ” s u b j e c t =” bob ”
8 r o l e =” p h y s i c i a n ” i n s t a n c e I D =” i 1 ” t ime =” . . . ”/>
9 . . .� �

Listing 4: Format of Invocation Data Logged as Events

Listing 3 prints the constraint enforcement queries, expressed
as XQuery assertion statements that are expected to always
yield a boolean true value. Lines 1-7 contain an excerpt of
the constraint definitions in our scenario. For instance, the two
tasks named Get Personal Data and Assign Physician are in
a role-binding relationship and hence combined in an element
rbind. Moreover, the code binds the log elements from List-
ing 4 to the variable $logs (line 8). Finally, Listing 3 contains
the four XQuery expressions used for enforcing constraints
concerning SME tasks (lines 11-15), DME tasks (lines 17-19),
subject-bindings (lines 22-25) and role-bindings (lines 27-30).

The four expressions use universal quantification
(every...in...satisfies) to express assertions about
pairs of tasks defined in the constraints list. The variables
$t1 and $t2 refer to the names of the respective tasks. The
query for SME loops over all pairs of SME tasks and ensures
that the logs do not contain invocations for both tasks that
use the same subject or the same role. The DME query tasks
is similar, with the difference that only the subject is queried
and additionally the instanceID attribute of the log entries is
considered. Subject-binding is checked by ensuring that for
all log entries of a particular process instance two tasks $t1
and $t2 are executed by the same subject. The role-binding
query works analogously, but instead of using the subject
attribute, here we require the role attribute to match for all
rbind-connected tasks that occur in the same process instance.

7. Evaluation and Discussion

In this section, we evaluate various aspects to highlight the
benefits, strengths, and weaknesses of the presented solution.
Five business processes with entailment constraints were se-
lected to conduct the evaluation, including our example pro-
cess from Section 2 and four additional processes from exist-
ing literature. The examples represent typical processes from
different domains and cover all constraint types supported by
our approach. The key properties of the evaluated processes are
summarized in Table 3: ID identifies the process (P1 is our sam-
ple process), |TT | is the total number of task types per process,
|CTT | is the number of task types associated with entailment
constraints5, |R| is the number of roles defined in the scenario,
|S | is the number of subjects used for the test, and |HR| is the
number of senior-junior relationships in the role hierarchy6.

ID Name |TT | |CTT | |R| |S| |HR|
P1 Patient Examination 7 6 3 4 1
P2 Purchase Order [43] 6 4 2 3 1
P3 Paper Review [14] 5 4 3 5 0
P4 Tax Refund [16] 5 4 2 5 0
P5 Credit Application [14] 5 3 2 4 1

Table 3: Characteristics of Business Processes Used in the Evaluation

Although not all results of our evaluation are fully generaliz-
able, they are arguably valid for a wide range of scenarios and
SOA environments in general. An evident observation is that
runtime enforcement of security constraints is computationally
intensive, and therefore performance effects need to be taken
into account. We also show that the proposed DSL greatly sim-
plifies development of security-enabled WS-BPEL processes,

5CTT = { t ∈ TT | sb(t) , ∅ ∨ rb(t) , ∅ ∨ sme(t) , ∅ ∨ dme(t) , ∅ }
6HR = { (s, j) ∈ R × R | j ∈ rh(s) }
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which becomes apparent when comparing the number of code
artifacts before and after automatic transformation. However,
the approach also has certain limitations which we also want
to document explicitly. Overall, our evaluation is organized in
four parts: first, we evaluate the runtime performance in Section
7.1; second, in Section 7.2 we verify the behavior of secured
processes when provided with valid and invalid authentication
data7; third, Section 7.3 evaluates the WS-BPEL transforma-
tion procedure; fourth, in Section 7.4 we discuss current lim-
itations in the framework and general threats to validity. The
experiments in Sections 7.1, 7.2 and 7.3 were executed on a
machine with Quad Core 2.8GHz CPU, 8GB RAM, running
Ubuntu Linux 9.10 (kernel 2.6.31-23).

7.1. Performance and Scalability
For our scalability evaluation we have defined, deployed, and

executed different process instantiations (based on the example
in Section 2) in a Glassfish server (version 2.1.1) with WS-
BPEL engine (version 2.6.0). Here, we are only interested in
the net processing time of the Web service invocations, the du-
ration of human tasks is not considered. Therefore, the execu-
tion of business operations (e.g., Obtain X-Ray Image or Decide
On Treatment) has zero processing time in our testbed.
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Figure 12: Process Execution Times – Secured vs Unsecured

The WS-BPEL process has been deployed in different sizes
(multiple scopes, one invoke task per scope), once with en-
forced security (i.e., annotated with security attributes, auto-
matically transformed at deployment time), and once in an un-
secured version. The deployed processes were executed 100
times and we have computed the average value to reduce the
influence of external effects. Figure 12 plots the execution time
(minimum, maximum, average) for both the secured (top line)
and the unsecured version (bottom line). The top/bottom of
each box represents the maximum/minimum, respectively, and
a trendline is drawn for the average value8. We observe that a

7Note that all processes from Table 3 where implemented and evaluated
with the same rigor. However, we do believe that certain parts of our evaluation
are best explained in detail based on a single process. Therefore, Sections 7.1
and 7.2 exemplarily discuss the results from the patient examination example.
This discussion applies analogously to the other processes from Table 3. The
aggregated results for all processes are discussed in Section 7.2.3.

8The standard deviation was in the range of 39.21 to 413.69 ms (lowest and
highest values are for processes with 1 scope and 18 scopes, respectively) for
the secured version, and in the range of 10.38 to 58.78 ms (for 13 scopes and 8
scopes, respectively) for the unsecured version.

single BusinessAction invocation in the unsecured version is
very fast, whereas the secured version incurs a considerable
overhead. The overhead is hardly surprising considering that
for each business logic service the process needs to invoke the
IdP and RBAC services, as well as apply and check XML sig-
natures. However, the measured results indicate that the current
implementation has potential room for additional optimization.
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Figure 13: Execution Time of Constraint Queries for Increasing Log Data

In addition to the end-to-end performance of the secured WS-
BPEL process, we also evaluated the performance of enforc-
ing the BusinessActivity constraints using the XQuery based
querying approach. To that end, we stored 10000 entries with
SME, DME, SBind and RBind constraints to the invocation log
and measured the time required to execute the four constraint
queries in Listing 3. The results are illustrated in Figure 13,
which plots the time for every 100th invocation over time. As
the testbed started cleanly from scratch, the first logged invoca-
tion(s) took longer (∼250ms) because of internal initialization
tasks in the log store and the WS-Aggregation query engine.
Starting from the second data point (invocation 100), we see the
query time increasing by around 6ms per 100 queries. To pro-
vide an insight about resource consumption, the CPU utilization
and Java heap space usage are plotted in Figure 14. The slight
fluctuations in heap space are due to Java’s garbage collection
procedure. The four constraint queries are executed in parallel,
but since they access a shared data structure with log data, inter-
nal thread synchronization is applied. Hence, CPU utilization
reaches only a peak value of ∼70% (i.e., 3 of the 4 cores).
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Figure 14: Resource Consumption for Constraint Queries

The increase of time is inherent to the problem of querying
growing log data. We argue that query performance is feasible
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for medium-sized to even large scenarios. Firstly, as evidenced
in Figure 14, the execution time appears to grow only linearly
(we have also performed a linear regression which showed al-
most perfect fit for y = 20 + 0.06x). The reason is that the
queries are formulated in a way that always only the last added
log entry needs to be compared to the other entries (hence, the
queries are executed for each new log entry). Secondly, even
for large logs (tens of thousands of entries) the execution time
is still in a range of only a few seconds. If we extrapolate the
test values for very huge logs (millions of entries), however, the
current approach would take in the order of minutes, which may
not be feasible for real-time processes. Hence, additional opti-
mizations will be required for such very-large scale situations –
a problem we actively tackle in our future work.

7.2. Reaction of the Secured Process to Valid and Invalid Au-
thentication Data

In the second experiment, we utilize the five evaluation pro-
cesses (see Section 7) to evaluate how our approach deals with
authentication data of authorized and unauthorized users pro-
vided by the IdP service. As outlined in Section 4, the task of
the IdP is solely to authenticate users, but the authorization in
terms of RBAC constraints is enforced by the process instance
(and, additionally, by the log data queries from Section 6.4).
Hence, the reason for performing this experiment is to test the
ability of the transformed business process to cope with unau-
thorized users who attempt to execute restricted process tasks.
Moreover, we are interested in evaluating under which circum-
stances the RBAC rules may become overconstrained such that
the process ends in a deadlock and is unable to continue. Our
methodology in this experiment is to execute all possible in-
stances of the test processes with respect to user authorization
(given a set of subjects and process tasks, try each combination
of subjects performing a task; see Section 7.2.1 for details). The
chosen scenario processes have a feasible size to perform this
full enumeration. We discuss detailed results based on the pa-
tient examination process (P1) in Section 7.2.2, and aggregated
results over all five processes (P1-P5) in Section 7.2.3.

7.2.1. Permutation of RBAC Assignments

We define the domain [TT → (S × R)] of RBAC assignment
functions, where TT is the set of BusinessAction task types, S is
the set of subjects and R is the set of roles (cf. Section 3.1). The
function defines which authentication data should be used for
each task type. We then consider all possible permutations of
function assignments in this domain, with the restriction that for
each pair (s, r) ∈ S × R the subject s is directly associated with
role r. To keep the domain small, inherited roles are not con-
sidered. For instance, in our scenario the pair (Bob,Physician)
is included, but (Bob,Staff ) is not considered, although Bob
inherits the role Staff through Physician. Furthermore, note
that SME constraints are checked at design-time when defin-
ing a process-related RBAC model. The static correctness rules
ensure the consistency of the corresponding RBAC models at
any time (see [14]). This means that it is not possible to de-
fine an inconsistent RBAC model where, for example, a sub-
ject or role possesses the right to execute two SME tasks. The
respective RBAC model is then applied to make access deci-
sions and to perform task allocations for all process instances.
In other words, because for each process instance the allocation
of the respective task instances is based on a consistent process-
related RBAC model, it is not necessary to check the fulfillment
of SME constraints again at runtime (see also [19]).

For each permutation one process instance has been exe-
cuted, and the IdP service in the test environment is configured
to return the authentication data that correspond to the respec-
tive permutation. The IdP keeps track of getAuthenticationData
requests and registers how many duplicate requests are issued
for any task type in each process instance. Recall that a du-
plicate request is always issued if the IdP provides authentica-
tion data of a non-authorized user. Thus, each duplicate getAu-
thenticationData request represents a blocked execution of a
restricted task (which is the desired/expected behavior).

The purpose of this experiment setup is to empirically
evaluate 1) whether the secured process correctly allows/de-
nies access for valid/invalid provided credentials, respectively,
and 2) how the platform deals with unresolvable conflicts (if
the process deadlocks due to mutual exclusions). For instance,
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Figure 16: Execution Time of Secured BPEL Process Instances Over Time

when Get Personal Data in our scenario has been invoked with
(Bob,Physician) and the IdP provides (John,Staff ) for Assign
Physician, then it is required to get new authentication data be-
cause of a violated role-binding constraint. In this case, the IdP
simply provides the next available authentication data, simu-
lating the real-life situation that a new subject logs in after an
unauthorized subject has been denied access. This procedure is
repeated as long as new pairs of subject and role can be pro-
vided; if the process has unsuccessfully attempted to invoke a
task with all possible combinations, the whole process termi-
nates with a fault message. Note that this method of deadlock
detection is suitable for our scenario which defines only a small
number of subjects; for more advanced detection of deadlocks
and unsatisfiable constraints we refer to related work [44, 45].

7.2.2. Detailed Discussion for the Patient Examination Process
In our scenario, the domain (S × R) consists of the four

pairs ((John,Staff ), (Jane,Physician), (Bob,Physician), (Al-
ice,Patient)), and six task types exist (|TT | = 6). Hence, the
total number of possible assignment function permutations is
46 =4096. However, the process structure allows to reduce this
number because the decision node (whether the patient is in an
emergency situation) splits the process into two possible exe-
cution paths (one path with 5 tasks and the other path with 4
tasks). The decision node has been simulated to uniformly use
both of the two possible conditional branches. Therefore, in
total only 45 + 44 =1280 process instances have to be executed.

Figure 15 illustrates the number of blocked authorization re-
quests for each process instance. Considering the procedure of
security enforcement (cf. Section 4), a blocked request means
that the authentication data provided by the IdP violate any con-
straints (which is expected in many cases, since all permuta-
tions are tested). Table 4 summarizes the aggregated values:
20 of the 1280 generated RBAC assignments were completely
valid from the start and no blocked requests were necessary.
The remaining instances required between 1 and 11 blocked re-
quests until a final state (successful or unsuccessful) is reached.

While there have been 1024 successful executions of the
process, 256 failed instances had to be aborted because of
deadlock situations. Deadlocks can result from the complex

Result Outcome Instances Result Outcome Instances
No Blocked Requests 20 7 Blocked Requests 140
1 Blocked Request 56 8 Blocked Requests 80
2 Blocked Requests 108 9 Blocked Requests 32
3 Blocked Requests 163 10 Blocked Requests 10
4 Blocked Requests 228 11 Blocked Requests 1
5 Blocked Requests 232 Successful Execution 1024
6 Blocked Requests 210 Failed (Deadlocked) 256

Total Instances 1280

Table 4: Process Executions with Permutations of TT → (S × R) Assignments

inter-dependencies of BusinessActivity access rules (see, e.g.,
[18, 46]). For instance, consider the operation sequence in Ta-
ble 5. The deadlock is caused by the subject-binding between
Get Critical History and Decide On Treatment, combined with
the fact that both tasks can be executed by different roles (the
former by Patient and Physician, and the latter only by Pa-
tient). In fact, all process executions in which the patient Alice
executes Get Critical History lead to this conflicting situation.
Note that the focus of this paper is to enforce RBAC constraints
and to detect deadlocks9. In our future work we also investi-
gate techniques to check the satisfiability of a certain process
and avoid deadlocks in advance (see, e.g., [18, 44, 45, 47]).

Task Sub. Role Effect
Get Personal Data John Staff Role Staff must Assign Physician

John must Assign Physician
Assign Physician John Staff -
Obtain X-Ray Image Bob Physician -
Get Critical History Alice Patient Alice must not Get Expert Opinion

Alice must Decide On Treatment
Get Expert Opinion Jane Physician -
Decide On Treatment ? ? Deadlock, because the bound subject

Alice is not permitted

Table 5: Operation Sequence Leading to a Constraint Conflict (Deadlock)

9Note that the deadlocks in our evaluation result from the fact that we auto-
matically generate and execute all possible process instances (see Section 7.2).
Because our process-related RBAC models adhere to the static and dynamic
consistency requirements defined in [14, 19] the resulting RBAC models are
always consistent. However, even though we always have consistent models, it
is still possible that a certain process is not satisfiable (see, e.g., [44, 45]).
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The same experiment setup has been used to measure the ex-
ecution time of the secured process instances over time (Fig-
ure 16). Again, we see a slight upwards trend in the processing
time. The reasons for this trend are twofold. First, the more
instances have executed, the more log data must be checked for
constraint conflicts. Second, particularly for SME constraints
an increasing number of log data increases the likelihood that
the blocked requests need to be issued because the provided test
authentication data are in a conflict with one or more previous
invocations. The spikes in Figure 16 indicate different execu-
tion times of instances with few versus many blocked requests
(see also Figure 15). Notice that the execution time shows a cer-
tain pattern between roughly 0 and 1000, and a different pattern
between 1000 and 1280. These patterns are a direct result of the
experiment design, because we first execute 1024 instances that
follow the “emergency” path in the scenario process, and after-
wards 256 instances that follow the “non-emergency” path.

7.2.3. Aggregated Results for All Test Processes

ID Inst- Dead- Blocked Requests Execution Time (ms)
ances locks min avg max min avg max

P1 1280 256 0.0 4.8 11.0 1802.0 3199.6 5222.0
P2 729 243 0.0 3.3 7.0 3990.0 5009.0 8881.0
P3 625 0 0.0 3.6 8.0 3444.0 5464.8 8057.0
P4 3125 0 0.0 6.9 16.0 2984.0 8356.6 14363.0
P5 64 0 0.0 1.8 4.0 2799.0 3070.1 5530.0

Table 6: Aggregated Test Execution Results of the Five Evaluated Processes

Table 6 summarizes the test results for the five test processes.
The table contains the process ID that refers back to Table 3, the
total number of executed instances which were generated from
the RBAC assignment permutations, the number of deadlocks
that occurred, the blocked requests (minimum/maximum/aver-
age) per process instance, and the aggregated execution time
per instance. In general, the number of instances corresponds
to |S ||TT |, except in cases where we can take advantage of the
process structure to reduce the number of instances (i.e., 1280
instead of 4096 instances for P1). Process P4 has the highest
number of instances (3125). The aggregated values are com-
puted over all process instances; for example, the average num-
ber of blocked requests over all 1280 instances of process P1
is 4.8. The difference between minimum and maximum execu-
tion time depends on the executed tasks, and hence correlates
strongly with the number of blocked requests. The maxium ex-
ecution time was roughly 14 seconds (for an instance of process
P4), and the shortest instance (of P1) executed within less than
2 seconds. Depending on the process definition and the cho-
sen subjects, either all generated process instances were able
to execute successfully (P3, P4, P5), or some instances dead-
locked (P1, P2). Some process definitions are prone to dead-
locking (e.g., 20% of P1’s possible instances lead to a dead-
lock), whereas in other processes deadlocks are not even possi-
ble. For instance, the tax refund process [16] (P4) was run with
the smallest possible number of subjects (at least 2 clerks and 3
managers are required), but out of the 3125 instances (each sub-
ject tries to access each of the five task types, 55 = 3125) not a
single instance deadlocks. Even though satisfiability of access

constraints at different points of the process execution can be
determined algorithmically (see, e.g., [18]), we argue that it is
equally important to test the running system, and to empirically
verify the number of successful and blocked requests, as shown
in this evaluation.

7.3. WS-BPEL Transformation Algorithm
Concerning the evaluation of the WS-BPEL transformation

algorithm, we consider the same twenty test process definitions
with different sizes described earlier in Section 7.1.
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Figure 17 shows the number of WS-BPEL elements of the
process definition before and after the automatic transforma-
tion. The results indicate that the size of the WS-BPEL defini-
tion rises with increasing number of scopes. While our test pro-
cess with a single scope contains 33/115 WS-BPEL elements
before/after transformation, the process definition for 10 scopes
grows to 60/484 WS-BPEL elements before/after transforma-
tion, respectively. These numbers are determined by counting
all XML (sub-)elements in the WS-BPEL file using the XPath
expression count(//*). At the beginning of the transfor-
mation, 41 elements are added (import, partnerLink and
variable declarations), and for each new scope 41 elements
are added for the IAM task definitions (note that both values are
41 coincidentally). We observe that the ability to define secu-
rity annotations in WS-BPEL keeps the process definition clear
at design time. In fact, the additional code for security enforce-
ment in WS-BPEL is often larger than the actual business logic.
This can be seen as an indicator that our approach can reduce
the development effort as compared to manual implementation,
although we did not empirically evaluate this aspect in detail.

7.4. Limitations
In this section, we discuss the current limitations and weak-

nesses of our approach and the corresponding Web service tech-
nology projection. We also propose possible mechanisms and
future work to mitigate the consequences and risks associated
with these limitations.

• Parallel Process Flows: WS-BPEL provides the flow
command for concurrent execution of tasks. Security en-
forcement of tasks that execute in parallel poses a chal-
lenge for various reasons. Firstly, if two tasks are started

17



with mutually exclusive access rights, a race condition is
created with respect to the first task to access the authen-
tication token. Secondly, since we make use of “global”
(process-instance-wide) variables, the injected IAM tasks
for each single WS-BPEL invoke action are supposed to
execute atomically and should not access these variables
concurrently. To handle parallel execution, we hence pro-
pose to extend the injected IAM tasks with two additional
tasks to acquire and release an exclusive lock when en-
tering and leaving the critical region, respectively. Since
BPEL does not provide a corresponding language con-
struct, an external Web service is used to acquire the ex-
clusive lock on a semaphore. For brevity and clarity, these
additional synchronization tasks have not been added to
the transformation in Section 4. In future work, we fur-
ther plan to introduce more sophisticated synchronization
using the WS-BPEL link mechanism.

• Deadlocking: If the RBAC policies are conflicting, the
procedure for obtaining and checking user authentication
data can end up in a deadlock that is unable to terminate
with a successful result. To mitigate the effect of policy
conflicts, it is therefore required to perform timely satisfia-
bility checks. In Section 8 we discuss related work that fo-
cuses on this topic, in particular we refer to previous work
in [18, 19, 46, 47].

• Single Point of Failure: Our Web service technology pro-
jection builds on the assumption that the IdP and Logging
services operate reliably and continuously. An outage of
any of these services would imply that the access control
procedure cannot be performed in its entirety or that cer-
tain log data cannot be stored. Depending on the process
definition at hand, the consequences can be more or less
severe. The IdP service is the key component that pro-
vides the basis for user authentication. If it is unavailable,
the secured execution fails. A possible strategy for cer-
tain application scenarios would be to define break-the-
glass (BTG) rules (see, e.g., [48, 49, 50]) which allow to
temporarily access the protected resources with fallback
security settings, in order to provide for continuous op-
eration. An outage of the Logging service is less severe,
because it is strictly only required to perform a posteriori
conformance checks of global constraints that may affect
all (or at least multiple) process instances (see, e.g., [51]).
Instance-specific constraints are local to a certain process
instance and can be enforced by means of instance-specific
log data stored in WS-BPEL variables (see Section 5).

• Security Token Hijacking: Malicious users may attempt to
gain access to services they are not entitled to. Consider
an attacker who intentionally does not follow the process-
ing logic of the transformed process but invokes the target
Web services directly. The attacker may obtain a SAML
token by executing getAuthenticationData, which asserts
its subject and role. Assume that the token is used in com-
bination with the instanceID of an active process instance
to invoke the Decide On Treatment; this situation must be

avoided under any circumstances. To enforce the subject-
binding with Get Critical History and other RBAC rules it
is imperative that all access constraints are validated on the
service side. In our architecture we hence require a policy
enforcement point (PEP) which intercepts and analyzes all
invocations.

• Invalid WS-BPEL Modification: For the approach to
work reliably, it is important that the WS-BPEL definition
should not be modified after the automated code transfor-
mation step. We therefore propose the use of a trusted de-
ployment component which provides exclusive access to
the business process execution engine. As part of transfor-
mation process the WS-BPEL file is signed with an XML
signature [52], which is then checked by the deployment
component to enforce integrity.

• Human Factors: In the end, a business process involving
human labor can only be as safe and reliable as the per-
sons who perform it. That is, control mechanisms such as
mutual exclusion (e.g. to enforce the four-eyes principle)
can provide a strong instrument for improving quality and
reliability, but human errors can never be fully ruled out.

8. Related Work

This section provides a discussion of related work in the area
of model-driven IAM and their application to SOA business
processes. Our analysis focuses on three main research areas:
security modeling for Web service based systems, DSL-based
security modeling, and techniques for incorporating runtime en-
forcement of security constraints into business processes.

8.1. Security Modeling for Web Service Based Systems

Jensen and Feja [53] discuss security modeling of Web ser-
vice based business processes, focusing on access control, con-
fidentiality and integrity. Their approach is based on Event-
driven Process Chains (EPC) [54] and defines different secu-
rity symbols that the process definitions are annotated with.
Their implementation is integrated into the ARIS SOA Archi-
tect software, which is also able to transform the EPC model
into an executable SOA business process. The paper describes
the generation of WS-SecurityPolicy [55] policies, but does not
discuss mutual exclusion and binding constraints in process-
related RBAC models, nor does it discuss in detail how the
process engine enforces the policies and constraints at runtime,
which in contrast is a core part in our work.

Kulkarni et al. [56] describe an application of context-aware
RBAC to pervasive computing systems. As the paper rightly
states, model-level support for revocation of roles and permis-
sions is required to deal with changing context information.
The approach has a strong focus on dynamically changing con-
text (e.g., conditions measured by sensors) and the associated
permission (de-)activation. In our framework, context informa-
tion is part of the RBAC model definitions (more details can
be found in [21]). In this paper, the context information in the
RBAC model has been abstracted from, but as part of our future
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work we plan to integrate the Business Activity model in [14]
with context information (see also [57]).

Although our model does not directly build on the notion of
trust, access control policies can also be established dynami-
cally by deriving trust relationships among system participants
[58]. Skoksrud et al. present Trust-Serv [59], a solution for
model-driven trust negotiation in Web service environments.
Similar to our approach, the policy enforcement is transparent
to the involved Web services. Another similarity is that trust
credentials (such as user identifier, address or credit card num-
ber) are exchanged iteratively throughout the process, which is
also the case for the authentication credentials in our approach.
However, trust-based policies in [59] are monotonic in the sense
that additional trust credentials always add access rights and
never remove existing ones, which is in contrast to access con-
trol in this paper, where the execution of tasks can activate en-
tailment constraints which progressively narrow down the set
of valid access control configurations.

Our approach was also influenced by Foster et al. [60] who
present an integrated workbench for model-based engineering
of service compositions. Their approach supports service and
business process developers by applying formal semantics to
service behavior and configuration descriptors, which can then
be analyzed and checked by a verification and validation com-
ponent. The policies enforced by the workbench are quite gen-
erally applicable and hence require developers to perform appli-
cation specific modeling, whereas our proposed DSL and WS-
BPEL annotations are tailored to the domain of RBAC and en-
tailment constraints and arguably straight-forward to apply.

Seminal contributions in the context of modeling support
for Web service based business processes are provided within
the Web Services Modeling Framework (WSMF) by Fensel et
al. [61], and the modeling ontologies that emerged from this
project. For instance, security requirements can be modeled in
WSMF by declaring the subject and role as input data and defin-
ing pre-conditions for all operations that require certain authen-
tication data. In the previous years, the Semantic Web com-
munity has been pushing forward various ontologies to draw
an ever more exact picture of the functionality exposed by Web
services, in order to allow for sophisticated discovery, execu-
tion, composition and interoperation [62]. In fact, although not
very frequently used in practice, semantically annotated Web
services also allow for a more fine-grained definition of access
control policies, from the interaction level down to the message
level. Whereas annotations in semantic Web services are used
mostly for reasoning purposes, the BPEL annotations used in
our approach are utilized as metadata for runtime access con-
trol enforcement. Such business process model abstractions,
which are the underpinning of semantic equivalence and struc-
tural difference, have been empirically studied in [63], and our
approach can be seen as the reverse operation of abstraction
(i.e., concretization) for the specific application domain of task-
based entailment constraints.

Various other papers have been published that are related to
our work or have influenced it, some of which are mentioned
in the following. The platform-independent framework for Se-
curity Services named SECTISSIMO has been proposed by

Memon at al. [64]. The conceptual novelty of this framework
is the three-layered architecture which introduces an additional
layer of abstraction between the models and the concrete imple-
mentation technologies. In contrast, our prototype only consid-
ers two layers (i.e. modeling of RBAC constraints and transfor-
mation of WS-BPEL code). However, the presented modeling
concepts (see Section 3) as well as the model transformations
(see Section 4) are independent from concrete implementation
technologies too.

Lin et al. [65] propose a policy decomposition approach. The
main idea is to decompose a global policy and distribute it to
each collaborating party. This ensures autonomy and confiden-
tiality of each party. Their work is particularly of relevance for
cross-organizational definition of RBAC policies, as performed
in our multi-hospital use case scenario. Currently, our proto-
typical implementation relies on a single, global RBAC Web
service. However, we plan to adopt this complementary pol-
icy decomposition approach, which will allow each hospital to
employ its own dedicated RBAC Web service.

8.2. DSL-Based Security Modeling

An integrated approach for Model Driven Security, that pro-
motes the use of Model Driven Architectures in the context of
access control, is presented by Basin et al. [66]. The foundation
is a generic schema that allows creation of DSLs for model-
ing of access control requirements. The domain expert then
defines models of security requirements using these languages.
With the help of generators these models are then transformed
to access control infrastructures. However, compared to our
approach, [66] does not address the definition of task-based en-
tailment constraints.

The approach by Wolter et al. [36] is concerned with mod-
eling and enforcing security goals in the context of SOA busi-
ness processes. Similar to our approach, their work suggests
that business process experts should collaboratively work on
the security policies. They define platform independent models
(PIM) which are mapped to platform specific models (PSM).
At the PIM level, XACML and AXIS 210 security configura-
tions are generated. Whereas their approach attempts to cover
diverse security goals including integrity, availability and audit,
we focus on entailment constraints in service-based business
processes.

A related access control framework for WS-BPEL is pre-
sented by Paci et al. in [67]. It introduces the RBAC-WS-BPEL
model and the authorization constraint language BPCL. Simi-
lar to our approach, the BPEL activities are associated with re-
quired permissions (in particular, we associate permissions for
invoke activities that try to call certain service operations).
However, one main difference is related to the boundaries of
the validity of user permissions: RBAC-WS-BPEL considers
pairs of adjacent activities (a1 and a2, where a1 has a control
flow link to a2) and defines rules among them, including sepa-
ration of duty (a1 and a2 must execute under different roles) and
binding of duty (a1 and a2 require the same role or user). As

10http://axis.apache.org/axis2/java/core/
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elaborated in previous work [21], our approach also allows to
annotate scopes (groups of invoke tasks) in BPEL processes
and hence to apply RBAC policies in a sequential, but also in a
hierarchical manner.

XACML [68] is an XML-based standard to describe RBAC
policies in a flexible and extensible way. Our DSL could be
classified as a high-level abstraction that implements a subset of
XACML’s feature set. Using a transformation of DSL code to
XACML markup, it becomes possible to integrate our approach
with the well-established XACML environment and tools for
policy integration (e.g., [69]).

8.3. Runtime Enforcement of Security and Other Constraints in
Business Processes

Various approaches have been proposed to incorporate exten-
sions and cross-cutting concerns such as security features into
business process models. Most notably, we can distinguish dif-
ferent variants of model transformation [70, 30] and approaches
that use aspect-oriented programming [71].

A dynamic approach for enforcement of Web services Secu-
rity is presented in [72] by Mourad et al. The novelty of the
approach is mainly grounded by the use of Aspect-Oriented
Programming (AOP) in this context, whereby security enforce-
ment activities are specified as aspects that are dynamically wo-
ven into WS-BPEL processes at certain join points. Charfi and
Mezini presented the AO4BPEL [73] framework, an aspect-
oriented extension to BPEL that allows to attach cross-cutting
concerns. The aspect-oriented language Aspects for Access
Control (AAC) by Braga [74] is based on the same principle
and is capable of transforming SecureUML [75] models into
aspects. A main difference is that AAC does not operate on
BPEL, but on Java programs, and can hence be applied directly
to Java Web service implementations to enforce access control.

Essentially, our approach can be regarded as a variant of
AOP: the weaved aspects are the injected IAM tasks, and join
points are defined by security annotations in the process. A ma-
jor advantage of our approach is the built-in support for SSO
and cross-organizational IAM. An interesting extension could
be to decouple security annotations from the WS-BPEL defini-
tion, to store them in a separate repository and to dynamically
adapt to changes at runtime.

A plethora of work has been published on transformations
and structural mappings of business process models. Most no-
tably, our solution builds on work by Saquid/Orlowska [76],
and Eder/Gruber [77] who presented a meta model for block
structured workflow models that is capable of capturing atomic
transformation actions. These transformation building blocks
are important for more complex transformations, as in our
case when multiple process fragments for enforcement of en-
tailment constraints are combined for a single action in WS-
BPEL. While this work focuses mainly on deployment time
model transformations, other research also investigates runtime
changes of service compositions. For instance, automatic pro-
cess instrumentation and runtime transformation have previ-
ously been applied in the context of functional testing [78] of
service-based business processes. Weber et al. [79] investi-
gate security issues in adaptive process management systems

and claim that such dynamicity increases the vulnerability to
misuse. Our approach is adaptive in that it allows the “envi-
ronment” (e.g., access policies) to change at runtime. However,
we currently assume that the process definition itself does not
change. In our ongoing research, we are complementing our
approach with support for online structural process adaptation.

An important aspect of security enforcement is the way how
constraint conflicts are handled at runtime. Consequently, our
approach is related to a recent study on handling conflicts of
binding and mutual exclusion constraints in business processes
[46, 47]. Based on a formalization of process-related RBAC,
this work proposes algorithms to detect conflicts in constraint
definitions, as well as strategies to resolve the conflicts that have
been detected. In our evaluation (see Section 7), we illustrated
an example constraint conflict that lead to a deadlock and dis-
cussed how the platform is able to detect such conflicts. In order
to anticipate and avoid deadlocks altogether, we will eventually
integrate these algorithms with our RBAC DSL.

Although not necessarily concerned with security (i.e., ac-
cess control) in the narrower sense, the area of Web service
transaction processing [80, 81] and conversational service pro-
tocols [82, 83] is related to our work on secured business pro-
cesses. Put simply, a transactional protocol is a sequence of
operations with multiple participants that have a clearly defined
role and need to collaboratively perform a certain task. Anal-
ogously, BusinessActivities are performed by subjects with
clearly defined roles and limited permissions. One could argue
that while the responsibility of transaction control is to ensure
that all participants actually do perform their task, the main pur-
pose of access control is to ensure that subjects do not perform
tasks they are not authorized to. Amongst others, our approach
was influenced by von Riegen et al. [81] who model distributed
Web service transactions with particular focus on complex in-
teractions where participants are restricted to only possess lim-
ited local views on the overall process. These limited views are
comparable to our access control enforcement. Our approach
also detects if a process instance is about to break the required
conversational protocol (i.e., access control policies), in which
case we apply a sequence of compensation actions [80] (e.g.,
repeat authentication or terminate instance due to deadlock).

9. Conclusion

We presented an integrated, model-driven approach for the
enforcement of access control policies and task-based entail-
ment constraints in distributed service-based business pro-
cesses. The approach is centered around the DSL-driven devel-
opment of RBAC policies and the runtime enforcement of the
resulting policies and constraints in Web services based busi-
ness processes. Our work fosters cross-organizational authen-
tication and authorization in service-based systems, and facili-
tates the systematic development of secured business processes.
From the modeling perspective, the solution builds on the
BusinessActivity extension – a native UML extension for defin-
ing entailment constraints in activity diagrams. We provided a
detailed description of the procedure to transform design-time
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BusinessActivity models into standard activity models that en-
force the access constraints at runtime. Based on a generic
transformation procedure, we discussed our implementation
which is based on WS-BPEL and the Web services framework.

Our approach based on BusinessActivities allows to abstract
from the technical implementation of security enforcement in
the design time view of process models. The detailed evaluation
of the process transformation has shown that process definitions
with injected tasks for security enforcement grow considerably
large. In fact, the additional code for security enforcement in
WS-BPEL is often larger than the actual business logic. This
can be seen as an indicator that our approach can reduce the
development effort as compared to manual implementation, al-
though we did not empirically evaluate this aspect in detail.

Our extensive performance evaluation has illustrated that the
proposed runtime enforcement procedures operate with a slight
overhead that scales well up to the order of several ten thousand
logged invocations. We can conclude that the overhead consists
of three main parts: 1) the approach builds on digital signatures
for ensuring message integrity, 2) the process determines the
role and permissions of the currently executing user, which re-
sults in additional requests and increased execution time, and
3) the enforcement of entailment constraints requires querying
the log traces of previous executions of the process. Note that
the overhead for 1) and 2) does not increase over time (with
rising number of process executions), whereas the overhead for
3) inherently rises because the log traces are accumulating over
time, and more data have to be evaluated.

The implementation of our prototype still has limitations, and
we discussed strategies to improve some of these limitations in
future work. For instance, advanced synchronization mecha-
nisms are required for business processes with highly parallel
processing logic. Moreover, the query mechanism that checks
security constraints for validity needs to be further optimized
for very large log data sets (in the order of millions of invo-
cations). We envision advanced data storage and compression
techniques, as well as optimized query mechanisms to further
reduce this increase of overhead over time. In our ongoing
work we also investigate the use of additional security anno-
tations and an extended view of context information. Finally,
we plan to shift from a process-centric to a more data-centric
view and integrate the concept of entailment constraints to our
recent work on reliability in event-based data processing [84]
and collaborative Web applications [85].
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Appendix A. RBAC DSL Statements for Scenario Process

Listing 5 contains the complete access control configuration
of the Patient Examination scenario process (two involved hos-
pitals), expressed using RBAC DSL statements.

� �
1 RESOURCE P a t i e n t S e r v i c e 1 ” h t t p : / / h o s p i t a l 1 . com / p a t i e n t s ”
2 RESOURCE P a t i e n t S e r v i c e 2 ” h t t p : / / h o s p i t a l 2 . com / p a t i e n t s ”
3 OPERATION r e t r i e v e D a t a
4 OPERATION makeAssignment
5 OPERATION g e t H i s t o r y
6 OPERATION g e t O p i n i o n
7 OPERATION q u e r y P a r t n e r
8 OPERATION makeDecis ion
9 ROLE S t a f f

10 ROLE P h y s i c i a n
11 ROLE P a t i e n t
12 INHERIT S t a f f P h y s i c i a n
13 SUBJECT John
14 SUBJECT J ane
15 SUBJECT Bob
16 SUBJECT A l i c e
17 ASSIGN John S t a f f
18 ASSIGN J ane P h y s i c i a n
19 ASSIGN Bob P h y s i c i a n
20 ASSIGN A l i c e P a t i e n t
21 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s ( h o s p i t a l 1 )
22 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 1
23 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 1
24 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 1
25 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 1
26 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 1
27 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 1
28 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 1
29 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s ( h o s p i t a l 2 )
30 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 2
31 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 2
32 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 2
33 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 2
34 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 2
35 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 2
36 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 2
37 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s ( h o s p i t a l 1 )
38 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 1
39 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 1
40 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 1
41 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 1
42 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 1
43 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 1
44 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s ( h o s p i t a l 2 )
45 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 2
46 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 2
47 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 2
48 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 2
49 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 2
50 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 2
51 # t a s k −based e n t a i l m e n t c o n s t r a i n t s
52 RBIND G e t P e r s o n a l D a t a A s s i g n P h y s i c i a n
53 DME G e t C r i t i c a l H i s t o r y G e t E x p e r t O p i n i o n
54 SBIND G e t C r i t i c a l H i s t o r y DecideOnTrea tment
55 SBIND G e t P a r t n e r H i s t o r y G e t P a r t n e r H i s t o r y
56 SME G e t E x p e r t O p i n i o n G e t P a r t n e r H i s t o r y� �

Listing 5: Exemplary RBAC DSL Statements for Hospital Scenario
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