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Influence of Porosity on Plane 
Strain Tensile Crack-Tip Stress 
Fields in Elastic-Plastic Materials: 
Part ll 
This paper continues the investigation of Drugan and Miao (1992). There we studied 
analytically the influence of a uniform porosity distribution on the stress field near 
a plane strain tensile crack tip in ductile (elastic-ideally plastic) material, assuming 
that material very near the tip is at yield at all angles about the tip. Our solutions 
exhibited completely continuous stress fields for porosity f< 0.02979, but for higher 
porosities they involved radial surfaces of radial normal stress jumps. Here we 
investigate whether, for this higher range of porosity, relaxing our assumption of 
yield at all angles about the tip will facilitate solutions exhibiting fully continuous 
stress fields. The answer to this is shown to be yes, with a single near-tip sector 
assembly providing such solutions for this entire higher porosity range. On either 
side of the crack symmetry plane, this solution configuration consists of a leading 
plastic sector possessing radial stress characteristics ("generalized centered fan "), 
followed by a plastic sector of constant Cartesian components of stress, followed 
finally by a sector of purely elastic material adjacent to the crack flank. The angular 
extents of these sectors vary substantially with porosity level. In regions of purely 
elastic response, we have accounted for the influence of porosity on the overall, or 
effective, elastic moduli. Among the interesting features of these new solutions are 
a significantly enlarged generalized centered fan sector as compared to that of the 
fully plastic Part I solutions for the same f values, and for f values just slightly 
above the 0.02979 level, a narrow elastic sector exists in which stresses vary so rapidly 
with angle that they appear to be nearly discontinuous. This rapid variation spreads 
out as the elastic sector enlarges with increasing f, and, in contrast to the fully plastic 
solutions, the radial normal component of stress becomes negative near the crack 
flank. 

1 Introduction 
This paper continues the investigation begun in Drugan and 

Miao (1992), hereafter referred to as Part I. That study pro­
vided an analytical first examination of the influence of the 
entire range of material porosity level on the stress field near 
a stationary plane strain tensile crack tip in ductile (elastic-
ideally plastic) material with a uniform porosity distribution, 
which arises approximately in, e.g., incompletely sintered or 
previously deformed metals and alloys. Such porosity also 
occurs in hot-isostatic-pressed material that is subjected to a 
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subsequent heat treatment, since gas trapped at high pressures 
then opens voids. We assumed that the material is at yield at 
all angles around the crack tip, obeying the Gurson-Tvergaard 
yield criterion, and that in plastically deforming near-tip re­
gions plastic strain dominates elastic. Under these assumptions 
only two types of near-tip plastic solution sector are possible: 
generalized centered fan, and constant stress (Cartesian com­
ponents); the appropriate assembly of these provides the com­
plete near-tip stress field. We showed that there are three 
permissible types of near-tip solution configuration; the ap­
plicable one depends on the porosity level, / . One is a gen­
eralized Prandtl field which exists for small / , between 0 and 
.04468/^1=/!, and reduces, as/—0, to the classical Prandtl 
field of a tensile crack in fully dense Huber-Mises material 
(Rice, 1967, 1982). Here <?i is one of the parameters Tvergaard 
(1981) introduced to improve the Gurson yield condition; it is 
typically suggested, on the basis of numerical finite element 
simulations of elastic-plastic response of voided media, that 
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qi ~ 1.5 (see Part I). Another near-tip solution type is a plane-
stress-like configuration, resembling Hutchinson's (1968) plane 
stress tensile crack solution for fully dense Huber-Mises ma­
terial, which exists for/, </<0.18043/<7i =f2. This consists of 
a generalized centered fan sector beginning at the crack sym­
metry line, followed by two constant stress plastic sectors with 
stress jumps in radial and out-of-plane normal components 
across their mutual border. For the remaining higher porosities 
/2< /< l /^ i , the stress field is an assembly of two constant 
stress plastic sectors with stress jumps across their unchanged 
mutual border; this configuration exists for the entire porosity 
range from 0 to \/q\. 

Among these three distinct types of near-tip solution con­
figuration, the generalized Prandtl field is the only one with 
fully continuous stress fields. Although stress discontinuities 
in radial and out-of-plane normal components cannot be ruled 
out on the basis of the elastic-plastic governing equations, and 
hence the other near-tip configurations are valid solutions to 
these equations and the boundary conditions, one wonders 
whether a continuous stress field can also be found for/larger 
than/i, which is far below, e.g., the critical value f~0.15 
suggested by Tvergaard and Needleman (1984), on the basis 
of comparisons with experiments, to correspond to the onset 
of substantial void coalescence. Thus the objective of this work 
is to seek iorf>fx possible completely continuous stress fields 
by relaxing the assumption that the material experiences plastic 
response at all angles about the tip, while maintaining the other 
assumptions reviewed above. Hence possible near-tip solution 
sector types for f>f\ include the plastic generalized centered 
fan and constant stress types already analyzed, and now in 
addition a sector of purely elastic response. 

Solutions involving such elastic sectors for stationary crack-
tip fields in elastic-plastic materials have been exhibited in other 
contexts. For example, Gao's (1980) asymptotic mixed-mode 
plane strain near-tip solutions exhibited these, and Sakata et 
al.'s (1986) numerical finite element analysis of the same prob­
lem class also displayed a near-tip sector of elastic response. 
In a situation more similar to the present problem, Dong and 
Pan (1991) analyzed near-tip plane strain tensile crack fields 
in an elastic-plastic pressure-sensitive model based on a simple 
yield criterion that is a linear combination of the effective and 
hydrostatic stresses. For nonhardening materials, their solu­
tions exhibit sectors of elastic response adjacent to the crack 
flanks, as do our solutions. 

We here continue to consider a plane strain Mode I stationary 
crack in porous elastic-ideally plastic material with spherical 
microvoids uniformly distributed in the three dimensions so 
that the material is macroscopically homogeneous, isotropic, 
and hence so are its overall, or effective, elastic moduli. We 
assume that the material obeys Tvergaard's (1981, 1982) mod­
ification of Gurson's (1977) yield criterion and associated plas­
tic flow rule, and we employ a small-displacement-gradient 
formulation. Thus for the same reasons stated in Section 7 of 
Part I, on the basis of full-field numerical finite element so­
lutions referenced there, the present results are expected to be 
physically meaningful in an annular region surrounding a crack 
tip, whose inner radius is on the order of two to three times 
the crack-tip opening displacement and whose outer radius is 
sufficiently small compared with, e.g., the maximum plastic 
zone radius. For purely elastic deformations, generalized 
Hooke's Law is written in terms of the effective (macroscopic) 
moduli E (Young's modulus) and v (Poisson's ratio) and hence 
applies to macroscopic stresses and strains. 

Similarly to Part I, let Cartesian 3.XCS X\» Xi and x3 be chosen 
so that x3 and x{ are parallel, respectively, to the crack front 
and the crack surfaces, the latter being assumed traction-free. 
Throughout the paper, components of tensors with respect to 
this Cartesian system will be denoted by Latin indices /, j , k, 
I with range 1, 2, 3; the summation convention for repeated 
subscripts applies to these indices. Let r, 6 be polar coordinates 

Fig. 1 Cartesian coordinates x,, x2, x3 are fixed in the body; polar co­
ordinates r, 6 are centered at the crack tip; a measures crack length 

(b) 

Fig. 2 (a) The limiting (/= /,) generalized Prandtl stress field in terms 
of stress characteristics (02 ~ 2.3378); (b) the continuous asymptotic stress 
field configuration in terms of stress characteristics for f,<f<Mq, 

in the xx-x2 plane and centered at the crack tip with 0 = 0 
coinciding with the positive Xi-axis, as shown in Fig. 1. 

As explained in Part I, the three types of fully plastic near-
tip sector configuration derived there evolve consistently from 
one to the next as the porosity level increases. It is thus desired 
that the new continuous solutions for f>f\ we seek here would 
reduce, as / approaches ft from above, to the limiting gen­
eralized Prandtl field that applies a t /= / i , as illustrated in Fig. 
2(a). On the other hand, the structure of the plane-stress-like 
distribution, which is obtained by adding a plastic constant 
stress sector to the configuration of Fig. 2(a) for/>/1( implies 
that a possible configuration for a continuous stress field for 
/ > / i could be one or both of the following assemblies of those 
three different sectors: a generalized centered fan plastic sector 
B, beginning at the symmetry line (6 = 0), followed either by 
a constant stress plastic sector D and then an elastic sector E 
adjacent to the crack surface, as shown in Fig. 2(b); or, by 
an elastic sector first and then a constant stress plastic sector 
which ends at the crack surface. However, numerical com­
putations show that a solution with this latter configuration 
cannot exist because full stress continuity, stress symmetry and 
the traction-free crack surface boundary conditions demand a 
number of restrictions greater than that of the total undeter­
mined constants; hence all the restrictions cannot be satisfied 
simultaneously. Thus, we shall investigate the first configu­
ration in this paper. We define 92 and 64 to be the mutual 
borders between Sectors B and D, and D and E, respectively, 
as shown in Fig. 2(b). 

2 Asymptotic Governing Equations and Stress Distri­
butions 

As noted in the Introduction, we have made here the same 
assumptions in plastically deforming near-tip sectors as we did 
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in Part I. Thus, the asymptotic governing equations in such 
sectors are exactly the same as those previously derived, and 
so are their stress field solutions; these are reviewed as in the 
following. Stresses in a purely elastic sector (with no prior 
plastic straining) are derived here; they must satisfy the equi­
librium equations, plane strain and compatibility conditions, 
and meanwhile must not violate the yield condition. 

2.1 Near-Tip Plastic Sectors. We showed in Part I that 
the asymptotic (/"—0) governing equations in plastically de­
forming near-tip sectors with singular straining are 

[a;r + egg] 3srr + q, fofsinh ll^kk 
= 0 

3s33 + ^itf/sinn 
QiOkk = 0 

Orr-OgS+Ori = 0, (700 + 2(7^ = 0 

ffi'i sin 8 = a 12 cos 8, a22 cos 8 = a{2 sin t 

(la) 

(16) 

(lc) 

(Id) 

where (lb) is the plane strain condition; (lc) and (la') are the 
equilibrium equations in polar and Cartesian coordinates, re­
spectively; and (la) is a differential form of the Gurson-Tver-
gaard yield condition, having employed (lb). Stress 
components a-,j are normalized by the matrix material's uniaxial 
yield stress. The notation a\j is defined as 

ajj = Urn 
r-0 

do,j(r,e) 
de ' (le) 

and s = <r — I trace(a)/3 is the deviatoric stress tensor with I 
being the identity tensor. 

As detailed in Part I, the only possible solutions to this 
equation set are plastic sectors in the form of either: 

(i) generalized centered fan type, when the braced term in 
(la) vanishes, and (lb) and (lc) are satisfied. When this sector 
type begins at the symmetry line 0 = 0, the stresses are obtained 
by numerical integration of the rearranged asymptotic gov­
erning equations: 

(733 = an 

Ore ~ °m ~ arr 

°«0= — 2o"r0 

^I/cosh 

q{q2f cosh 

<72 ( Orr + ~ Om \ 

L \ /J 

Q2\.Orr+-Oee\ 

-2 

' 
+ 1 

(2a) 

(2b) 

(2c) 

(2d) '-or0 

with the following boundary values at 8 = 0 (explained in Part 
I): 

<*»(0) = ! 

ore(0) = 0 

* • ' - - - , 2 \ / i . „2„2 z-2.,,1/2 Q + -ln\[(l+cf2)(l+qiq'2f)] 

~l + q2Q 
1 
-ln(<7id/) 

<?2 

(733(0) = a„(0) = (700(0) -Q 

where 

Q = - )2 + q2
2(l+q\f)-2[(l + ql)(l + q\qlf)}W2 

(3a) 

Qb) 

(3c) 

(3d) 

(//) constant stress plastic type, when the first bracket in 
(1«) vanishes, and (lb) and'(Id) are satisfied (characterized 

by ffjj = constant, <722 = constant, an = o2\ = constant, and a33 is 
also proved to be constant; see Part I). The polar components 
of stress thus have general (asymptotic) closed-form represen­
tations in terms of the variable 8 and integration constants c„ 
(which must satisfy the plane strain condition (lb) and the 
yield condition): 

a„ = cx + c2 cos 28 + c4 sin 28 

oee = C\ — c2 cos 28 — c4 sin 28 

arB= - c2sin 28 + c4 cos 2d 

(733 = C 3 . 

(4a) 

(46) 

(4c) 

(4d) 

2.2 Near-Tip Elastic Sectors. As mentioned in the Intro­
duction, generalized Hooke's Law in terms of effective elastic 
moduli applies here to macroscopic stresses and strains. This 
and the plane strain condition together imply 

033 = v(°rr+°ee) (5) 

with which the compatibility equation in terms of stresses with­
out body forces becomes, for arbitrary elastic moduli 

1 9 
dr' r dr rL 38 

1 
(arr+i -0. (6) 

It was proved in Part I that all components of stress at an 
arbitrary material point must be bounded; thus, a result proved 
by Drugan (1985) applies: 

do,j 1 
as r—0, (7) 

dr \ln(R/r) 

where R is a constant with length dimensions. Taking an r-
partial derivative of this, multiplying the resulting equation by 
r, and then applying (7) gives 

r1<J un i 1 

dr o as r—0. (8) 
\ln(R/r) 

Therefore, after multiplying (6) by rl, applying these asymp­
totic relations (7) and (8) to the resulting equation, and using 
notation like that of (le) (i.e., a"j = limr^( [b2au(r, 8)/d82]), 
the compatibility condition (6) takes the asymptotic (r—0) 
form 

oZ(6)+o&(8)=0. (9) 

Hence the asymptotic governing equations in an elastic sector 
are the equilibrium Eqs. (lc), the plane-strain condition (5) 
and compatibility (9), which have the following general so­
lution for stresses in terms of the variable 8 and integration 
constants A, B, C, and D: 

an(8) = D + 2C8 +A cos28+ Bs\n28 (10a) 

(700(0) = £> + 2C0-/lcos20-.Bsin2(7 (106) 

ar8(8)= -C-Asm28 + Bcos28 (10c) 

a33(8) = 2v(D + 2C8). (lOd) 

These elastic sector stress expressions are the same as those 
obtained by Gao (1980) who simply assumed an asymptotic 
form for the Airy stress function. 

3 Asymptotic Sector Assembly Procedure 
We now attempt to establish a completely continuous asymp­

totic stress field f o r / > / i by near-tip assembly, in the manner 
illustrated in Fig. 2(6), of these three different stress sectors: 
a generalized centered fan, a constant stress plastic sector, and 
an elastic stress distribution. Hence all parameters to be de­
termined are: A, B, C, D in (10); c\, c2, c3, cA in (4); and 82 

and 04 of Fig. 2(6). As shown in Part I, the governing equations 
require all components of stress to be continuous across the 
mutual border between a constant stress plastic sector and a 
generalized centered fan plastic sector (i.e., d = 82), which, to­
gether with the assumption of stress continuity across the mu-
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tual border between Sectors D and E (i.e., d = 64) and the 
traction-free crack-face conditions, will be applied to deter­
mine all these unknown parameters. The parameters must be 
chosen such that 04>02 and the yield condition is not violated 
in Sector E, for a physically appropriate solution to exist. 

Evidently, full stress continuity results in 

Hose+ ff,.J=0 across 0 = 02. 04> U1) 

where 

Ha(0)]]^<r(0 + ) - < r ( n ; (12) 

(11) leads, via (10a,6) and (4a,b), to 

2c1 = 2(Z> + 2C04) (13a) 

2cl = aee(d2-)+<jrr(ei). (136) 

Furthermore, continuity of <733 across 0 = 02, 04 together with 
(10c?), (4d), and (2a) gives 

c} = 2p(D + 2Cd4)=arr(62), (14) 

which, via (13), implies 

°i»(02~)= — < a 0 2 ~ ) . (15) 
V 

Application of this condition to the numerical integration of 
(2) in the generalized centered fan sector determines the value 
of 02, showing where that sector ends. The other unknown 
parameters in Sector D of Fig. 2(b) are then immediately 
determined by enforcing full stress continuity across 02, which 
implies that both the plane strain and yield conditions are 
automatically satisfied and results in 

c i = - [oeeih ) + orr(d2)] (16a) 

c2=- Ore ( h ) sin 202 + - [arr(d2 ) -

ci = <yrr(6i) 

1. 

,(02~)]cos202 (166) 

(16c) 

(16c?) c4 = ffre(02 )cos2d2 + -[arr(e2)-aee(e2 )]sin202 

To determine the remaining unknown parameters, we first 
apply the traction-free boundary conditions at 0 = 7r using 
(10b,c): 

B=C; A=D + 2irC. (17a,6) 

Also, continuity of (arr(d) - aeg(6)) and <7i2(0) across 04 alto­
gether with (17), (10a,6,c) and (4a,b,c) results in 

[ c 2 - (Z? + 2TTC)]COS204+ (c4-C)sin204 = O (18a) 

C(l-cos204) = c4. (186) 

Obviously, for 04^O or ir, the above can be solved for D 
and C in terms of c2, c4 and 04; these expressions are used in 
(13a) to obtain an algebraic equation for 04 alone. The resulting 
equations are 

sin 204 + 2(TT - 04) 
C i - C 2 + C4- 1 - cos 204 

- = 0 

sin 204 + 2-7T 
D = c2-~ —-c 4 

C--

1 - cos 204 

1 
-c 4 . . 

(19) 

(20a) 

(206) 
1 - cos 204 

By solving (19) numerically (having substituted (16)), satisfying 
O<02<04<7T, the parameters A, B, C, D will be determined 
by using (20) and then (17). These results are acceptable if and 
only if the stresses in (10) with the coefficients.given by (20) 
and (17) do not violate yield for all 04<0<7r. 

As far as the special case 04 = ir is concerned, one observes 
that in the limit 04— ir, l'Hopital's rule shows that in (19) the 
term [sin204 + 2(7r04)]/[l-cos204] has a limit of zero, which 

together with the boundedness of all the c„'s given by (16) 
implies 

lim C[ = lim c2. 
« 4 -7 r 9 4 - i r 

(21) 

On the other hand, (18a) and (13a) show, via (21) and the 
boundedness of c4, that Csin 204—0, or C = o (1/sin 04) as 04—7r. 
Application of this asymptotic equation to (186) further im­
plies that c4 = o(sin04); that is 

limc4 = 0. (22) 

Evidently, (21) and (22) show that 04 = 7r would result in a 
physically appropriate solution if and only if c{ = c2 and c4 = 0, 
which are indeed the two traction-free conditions on the crack 
surface when the elastic sector vanishes, and thus the constant 
stress Sector D ends at the crack surface. In this situation, the 
features of stresses in Sector D here and those in Sector C in 
the limiting generalized Prandtl field of Fig. 2(a) are the same. 
Numerical calculations show that this situation can occur, with 
the complete solution reducing precisely to the limiting Prandtl 
field, if and only if the porosity/decreases to / i . This indicates 
a smooth evolution from the continuous generalized Prandtl 
field to the current continuous solution. 

Now consider the other special case, namely 04 = O. As a 
limiting case of the solution having the configuration of Fig. 
2(6), this could be true only if 02 = O holds as well, which 
requires v = arr(0)/[age(0) + arr(0)] as detailed later. Conse­
quently, (16c/) gives c4 = 0 and thus (186) demands Cbe finite, 
while (18a) and (13a) together imply D = cx and C= ( c i - c 2 ) / 
27T. With these and (17) and the particular value of v as well, 
full stress continuity across the internal borders is satisfied and 
so are the traction-free crack surface and stress symmetry con­
ditions. However, the numerical computations to be described 
show that this purely elastic stress field as a limiting case of 
the solution we seek here cannot occur. 

4 Existence of the Solution and Solvability Conditions 
In order to obtain a complete stress field with the assumed 

configuration shown in Fig. 2(6) it is necessary for the key 
Eqs. (15) and (19), which determine the sector boundary lo­
cations 02 and 04, respectively, to have solutions satisfying the 
basic requirement 

O<02<04<ir. (23) 

We first prove that for each fixed value of / i n the range 

fx<f<l/qu (24) 

(15) has a unique solution for 02 for a certain range of Poisson's 
ratios. Recalling the plane strain condition in the generalized 
centered fan sector (see Part I), we have 

1 
oee-orr = qxq1fsmh Q2\°rr + -, (25) 

With reference to the numerical calculations of Part I, we 
found that for every fixed / satisfying (24), there is a unique 
O<0( / )<7r ina generalized centered _fan sector bordering_0 = 0 
such that <rkk(6) = 0 and om(6) = 0 = arr(6); and for all 0 < 0 < 0 (f), 
Okk(6)>0, arr(d)>0 and a^(0)>O, which together with (25) in­
dicates aee(9) > arr(d). Also, the continuous function am(9)/arr(d) 
decreases monotonically as 6 increases. Thus by using these 
results and rewriting (15) as 

v a, 
1 

my 
(26) 

one can easily find that 1 + [ f fes^) /^ , -^) ] >2 , and hence for 
each/in the range (24) andeach orr(Q)/[uee(0) + arr(0)] < v < (1/ 
2), there is a unique 02£(O, 6(f)) such that (26), or (15), holds; 
and the larger the v, the larger the value of 02. It is noticed 
that for 02 = O with v = arr(0)/[age(0) + arr(0)], the generalized 
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centered fan sector vanishes. It is also noticed that v must be 
less than 1/2, which means that the porous material considered 
here must also be elastically compressible. In fact, as mentioned 
in the Introduction, for porous materials the v used here is 
indeed the macroscopic (effective) Poisson's ratio and hence 
it is smaller than that of the matrix material, even if the matrix 
materia! is elastically incompressible, because material with 
nonzero porosity is no longer macroscopically elastically in­
compressible. 

To investigate conditions under which (19) will have solu­
tions 646(0, 7r), we first rewrite it, for c 4 ^0 , as 

C\ 

c4 

- c2 sin 204 + 2 ( T - 04) 

and we define 

( l -cos20 4 ) 

CI-C2 

c4 

0, 

G(x, a) = a + 
s in2x+2( i r -x) 

( l - c o s 2 x ) 

(27) 

(28a) 

(286) 

Thus the root of Eq. (27) is the same as the zero point of the 
function G(x, a); the latter can be more easily studied by 
analyzing the features of G(x, a). Evidently, via (28b), we 
have for each fixed a 

G(0, a)= +oo, G(TT, a) = a. (29) 

Also the function G(x, a) decreases monotonically on the 
interval [0, IT] for each fixed a since for every x€(0, ir) its first-
order derivative with respect to x is always negative: 

2 
- [s inx+cosx( i r -x)]<0. (30) 

dG 

Tx{x>a)" sin x 
Hence, (27) will have a unique solution on the interval (0, 7r) 
if and only if a < 0 , which via (28a) requires (c[-c2)/c4<0 
(according to (4), this means that a22 and ai2 in the constant 
stress plastic Sector D must have opposite signs), and it will 
have a root x=it and a = 0. This latter case, as mentioned 
earlier, cannot result in an acceptable stress field unless both 
the conditions c, = c2 for c4 = 0, representing the traction-free 
boundary conditions, can be satisfied. 

As regards the special situation c4 = 0, (186) demands either 
C = 0 , or 04 = O or ir. With C = 0 and c4 = 0, (17a) gives B = 0; 
(18a) and (176) require A=D = c2, while 13(a) and (176) 
demands =D = C\. Thus if c ,#c2 , no such solution can exist; 
otherwise (10) gives, after substituting all these results for those 
parameters, exactly the same stress distribution in the elastic 
Sector E as that in the constant stress Sector D given by (4) 
with c4 = 0 and C] =c2. In this case, 04 is arbitrary, and indeed 
Sectors E and D join to become one constant stress plastic 
sector; the features of the entire stress field are hence similar 
to those of the limiting Prandtl field of Fig. 2(a) (see Part I). 
Similarly, as in Section 3, 04 = 7r with c4 = 0 may lead to a 
solution if and only if Ci=c2. As mentioned previously, this 
will take place only when/approaches/ . However, with 04 = 0, 
one has to require 02 = 0, otherwise no solution will exist. 

Thus we have shown that there is a unique 02 for each / in 
the range (24) and some arr(0)/[aee(0) + <jrr(0)]<v< 1/2; and 
with (cj -c2)/c4<0 there is a unique 04€(O, IT). As long as (23) 
is satisfied and yield is not violated in the elastic Sector E, an 
acceptable solution for such a n / a n d v is thus found. 

5 Results 

Since the stresses in the generalized centered fan sector must 
be determined by numerical integration, all the unknown pa­
rameters satisfying (15), (16), (17), (19), (20), and (23) are thus 
numerically determined. The results show that a stress field 
with the configuration illustrated in Fig. 2(6) does exist for 
a l l / in the range (24) and for certain ranges of Poisson's ratio 

which depend on the value o f / The results also indicate that 
the locations of both internal boundaries 02 and 04 and the 
angular extent of each of the sectors are strongly influenced 
by not only the void volume fraction/but'also Poisson's ratio 
v. both 02 and 04 decrease as/increases (see Table 1); but for 
each fixed / , they increase as Poisson's ratio does on its cor­
responding range, as do the angular spans of the constant stress 
plastic Sector D and the generalized centered fan Sector B. 
The angular extent of the elastic Sector E decreases as v in­
creases. These trends will be seen in Figs. 3 and 4. 

As regards the solution existence range, the results clearly 
indicate that for e a c h / i n the range (24), there is a smallest 
value of v, which is larger than arr(G)/[aM(G) + arr{G)] and is 
here called cmin, at which d4 = 62, meaning the constant stress 
plastic Sector D vanishes, and below which 04<02 so that the 
solution does not hold. In this situation, both 04 and 02 attain 
their smallest values over the interval (cmi„, >w)> a s defined 
later. Similarly, there is a vmax such that if e>!W> the yield 
condition is violated in the elastic sector. Values of both vm\n 

and cmax are dependent on the void volume fraction / , which 
indicates in one way the inner link between the macroscopic 
elastic moduli and the porosity level. Therefore, the solution 
exists only on the interval (pmi„, vmax), and the extent of this 
interval varies with/: it is nearly 0 in the l imits/—/ and/— 1/ 
q\. It is also observed that both the values of vmin and yraax 

decrease as/increases. This emax is smaller than 1/2, the value 
of Poisson's ratio for elastically incompressible materials; this 
shows that in the present / > 0 analysis the material must be 
macroscopically elastically compressible for a solution to exist. 

Since the solution can exist only for v < vmax ( /) , one wonders 
what this vmax(f) means. Does it correspond to the actual 
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1 . 5 

1 

0 . 5 

o 
- 0 . 5 

I —-°ai_ 
- ° r r 033 

/ =0.044683/qi 

^ f S 

/ = 0 . 0 4 4 6 8 4 / q i 

O v 

0 .08 /q i 

O j 

av 

Fig. 3 Polar components of stress as functions of angle 0 with the 
solution configuration of Fig. 2(b): (a) for f= U (or, f~ f,+), with v = .481611, 
92 = 2.3378, e4 = ir; (b) for /«.044684/q„ with » = .481610, 02 = 2.33779, 
04 = 3.14157; (c) for r=.08/<j„ with y = .468081, 02 = 2.O2623, 04 = 2,8411O 
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effective Poisson's ratio for this porous material? The ap­
proximate effective elastic moduli in porous material have been 
investigated by several researchers including, for example, Zhao 
et al. (1989), By employing their work, we determine the ef­
fective Poisson's ratio, ve (see the Appendix and Table 1), for 
the porous material considered in this study. Specifically, when 
the matrix material is assumed to be elastically incompressible, 
as in our solutions, ve values for smal l /are very close to our 
"max- F ° r instance, f o r / = / , , the relative difference (ve- vm&x)/ 
"max" .006; and f o r / = . 2 5 / ? i , ( > e - i w ) / » W = - 0 6 1 . These 
comparisons show that vmm(f) appears to be the actual ef­
fective Poisson's ratio for a given/. Both veand vmsx for selected 
/ values are shown in Table 1. 

An interesting related phenomenon is that a s / — / , 62 and 
04 corresponding to vmm(f) = .481611 approach 2.3378 and ir, 
respectively, and the elastic sector vanishes in this limit. Also 
conditions (21) and (22) are satisfied. This shows that the 
solution family corresponding to the set of i>mix(f) reduces to 
the limiting generalized Prandtl field of Fig. 2(a), derived in 

ov 
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2 -
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0 . 5 -

O -

0 . 5 -

- 1 -

_J%) 
^ 3 3 ~7y 

u r r 
a r 9 

/ = 0 . 1 5 / q i 

a r r 

~ ~ \ ^ V 
% ) ^ \ 033 

/ =0.25/qi 
Oy 

f=0.5Q/qx 

Fig. 4 Polar components of stress as functions of angle (I with the 
solution configuration of Fig. 2(b) (continued): (a) for f= .15/q,, with 
»».443256, 82 = 1.73909, 04 = 2.56225; (b) for f=.25fq„ with v~.409936, 
»2 = 1.53475, fl4 = 2.35114; (c) for /=.50/q, with x = .332823, #2 = 1.29846, 
9, = 2.05549 

Part I, a s / — / . Thus this solution family will be taken as the 
new continuous solutions for those porosities in the range (24), 
since it evolves consistently from the generalized Prandtl field. 
Stress distributions for selected values of / corresponding to 
this solution family having v=vmsix are displayed in Figs. 3 and 
4. 

One observes, see e.g., Fig. 3(b), that for / v e r y close to 
f{

+, the angular extent of the elastic sector is almost zero: for 
/ = / i + l.Ox 10 6/<7!, 04<=ir-2.Ox 10~5 rad., and stress com­
ponents a„ and a33-seem to " jump" from positive to negative 
values within a small transition zone of angular width less than 
2.Ox 10~5 radian. As/increases, 04 corresponding to cmax(/) 
decreases (see Table 1) so that the angular span of the elastic 
sector increases, and the apparent "stress jump" is smoothed 
out. 

The solution configuration shown in Fig. 2(b) is maintained 
for al l / in the range (24). In addition, as predicted by the yield 
criterion, the magnitudes of the stress components and the 
hydrostatic stress decrease as the porosity level increases. That 
this decrease in hydrostatic stress level with increasing porosity 
is substantial is illustrated in Fig. 5, which shows hydrostatic 
stress directly ahead of the tip as a function of/. The super­
scripts I and II correspond to the predictions from the fully 
plastic solutions of Part I and those of the present solutions, 
respectively. The close agreement between these two predic­
tions is remarkable, especially over the practically important 
range of, say, 0 < / < 0 . 1 5 . 

Comparing Fig. 5 in Part I with Fig. 3 here, one observes 
that the border between the generalized centered fan sector 
and the constant stress plastic sector shifts backward substan­
tially, and what were stress jumps in the fully plastic solutions 
are now rapid but continuous variations in the elastic stress 
sector. Thus the extent of the generalized centered fan sector 
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Fig. 5 Hydrostatic stress level (normalized by the matrix material's 
uniaxial yield stress) directly ahead of the crack tip versus void volume 
fraction, as predicted by the fully plastic solutions of Part I (superscript 
I) and the present elastic-plastic solutions (superscript II). 

Table 1 Parameter values for fully continuous stress field solutions 
having the configuration of Fig. 2(b) (/>/,) 

51/ 

.044683 

.044684 

.080000 

.150000 

.250000 

.500000 

82(rad) 

2.33780 

2.33779 

2.02623 

1.73909 

1.53475 

1.29846 

e4(rad) 

3.14159 

3.14156 

2.84110 

2.56225 

2.35114 

2.05549 

c l 

.5422 

.54216 

.48623 

.37092 

.25710 

.10788 

°2 

.5422 

.54216 

.42701 

.19598 

.01618 

-.11400 

"3 

.52222 

.52222 

.45519 

.32883 

.21079 

.07181 

H 

.00000 

-.00001 

-.29207 

-.43262 

-.41887 

-.25779 

A 

-.63863 

-.51550 

-.46529 

-.39847 

-.24974 

B = C 

-13442 

-1.6668 

-.72169 

-.41468 

-.16463 

D 

84458 

9.9574 

4.0692 

2.2070 

.78469 

vmax 

.48161 

.48161 

.46808 

.44326 

.40994 

.33282 

ve 

.48449 

.48449 

.47379 

.45574 

.43541 

.40146 
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is enlarged, the magnitude of the stress in the constant stress 
plastic sector is reduced and hence the stresses become negative 
near the crack surfaces. 
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A P P E N D I X 

The Effective Poisson's Ratio 
For a material which is an aggregate of an isotropic elastic 

matrix and three-dimensional randomly distributed voids, the 
effective bulk and shear moduli are given approximately, as 
suggested in Zhao et al. (1989), by 

£ = _ 1 _ J± = -L_ (AU 
• K0 \+fp ft, 1+fq K ' 

where p and q are functions of Poisson's ratio, and quantities 
with or without the subscript " 0 " denote, respectively, those 
of matrix material and the corresponding effective one. With 
reference to Zhao et al. these functions simplify, for spherical 
voids, to 

3 1 

2 1-
"o q=Wz 

1 "o (A2) 
-2c0 7 -5v 0 

By using the definition of the bulk modulus and the relation 
among the elastic moduli, and via (A2), (Al) become 

1 - 2v0 E K 2(1 ~2v0) 
1 - 2v E0 

l + v0 E 

«0 

M 
Mo 

"2(1 

7 -

-2v0) 

7-

5̂ 0 + 

+ 3/(1 

-5c0 

1 4 / ( 1 -

-"o) ' 

"o)' 

(A3a) 

(A36) 
1 + c E0 

Elimination of E/E0 from the above equations and rearrange­
ment of the resulting equation gives the effective Poisson's 
ratio as a function of that of the matrix material and the void 
volume fraction: 

6(7 -5vQ)VQ+f(l-vo)(l + 43y0) 

" 6(7-5x0)+/(l-*<o)(77+ 41^ ) ' 
(A4) 

For an elastically incompressible matrix material (v0= 1/2), 
the effective Poisson's ratio, via (A4), becomes 

18+19/ 
"36 + 65/" 

(A5) 
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