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Abstract 

The current study investigates the problems of soft shells theory for manufacturing composite products by superimposition 

on each 2D layers. Analytical and numerical methods are considered to study the layers imposing winding around the half-

finished materials or pulling some additional shells on the surface of materials which are partly made. Based on this, the 

smoothness of layers, and the criteria of the absence of wrinkles and folds are obtained. Methods for calculation the 

deformations and residual stresses of the textile structure of used materials were established. The results obtained by the 

analytical and numerical methods indicated that it is possible to establish mathematical equations which can be applied to 

find the strains and stresses developed in the shells and bands and their pressure on the surfaces of covered solid. The results 

of the present work can also be implemented for manufacturing composite materials having complex geometric forms. 
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1. Introduction 

There are various processes to manufacturing the 

composite products by successive superimposition on each 

2D layers that are glued mutually by some adhesive 

substance [1, 2]. In this study the problems of the capacity 

bands of the layer and shells that slightly resist bending 

forces (soft shells or membranes) are investigated. The 

production of these layers imposes on the surface of the 

materials during the forming process may be winding 

around the half-finished materials or pulling some 

additional shells on the surface of mistrials which are 

partly made. The composites may also be produced by 

successive inflating soft shells inside of some half-finished 

materials. 

Whatever the methods are considered, some common 

problems of the theory of soft shells are appeared. Some of 

these problems are investigated in the present work, those 

that concern the changes undergone by textile structures of 

the bands or the shells as these bands and shells are 

fastened to the surfaces of the materials during the 

production stage . To predict the changes, it is necessary to 

develop methods for investigations of stress and strain 

distributions in the soft shells [2, 3]. The methods based on 

the mathematical study of stress-strain conditions of the 

soft shells [4] will be discussed in this paper. These studies 

include static equilibrium equations of the theory of the 

soft shell, the deformation equations of 2D materials as 

well as boundary conditions. The boundary value problems 

of various technologies for producing the composites are 

considered in connection with these equations. Solutions 

of these problems can be obtained by asymptotic analytical 

and numerical methods. Methods of small segment are 

also investigated when the problems of winding 2D bands 

around the solids of revolution which only in small 

measure differ from cylindrical ones. The bands of various 

textile structures and width are considered at different 

conditions of supplying band by feeding devises which 

determine the forms of cross sections of bands at different 

distances of the section to the solid surface. 

Numerical methods are developed for investigation the 

interaction of the soft shells when they cover a solid. For 

calculations, the finite element method was used. By 

assuming that the strain energy density of the shell 

material is known, function of the shell strain measured in 

this method leads to minimization the potential energy of 

the whole shell. Problems of the minimization were 

reduced to the solution of non-linear algebraic equations 

sets. A certain methods with respect to the loading 

parameter are used to find the solutions of such equations. 

2. Equilibrium Equations of the Theory of the Soft 

Shell  

To derive the equilibrium equation two cylindrical 

shapes are suggested. The shape of , ,R    is used to 

describe the form of the shell (see Figure 1) which is not 

subjected to any stress. This form can be defined by the 

equation: 
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 0 ,R R  
                                                         (1)     

The variables and  are considered as the Lagrange 

coordinates on the shell. In the other (spatial) system of 

cylindrical coordinates , ,R z (see Figure2) the form of 

the stressed shell is defined by the equation: 

 ,r r z                                                                (2)  

where the axis z coincides with the axis , r = the 

radius of the feeding cylinder 

According to [5,6], the stress components
11σ , 

12 21σ σ  and 
22σ   are defined by the formulas 

1 1 11 2 12σ σ σ e e                                                 (3) 

2 1 21 2 22σ σ σ e e                                                (4) 

1 /
r r 


 

e
                                                       ( 5) 

2 /
r r 


 

e                                                         (6)                                                                                                                                 

Where, 1σ  and 2σ  are the stress vectors on coordinate 

lines const   and const  , respectively. 

in this case the equilibrium equation for the shell is 

taken in the vector form [7]: 

 
2

0 0 0

1 2 11 22 12 0g g g
      

      
      

r r
σ σ q     (7)                                                                          

Where the vectorq is the intensity of the external 

forces acting on the shells surface and 
0

ijg  and ijg  (i,j=1,2) 

are metric coefficients of the shell corresponding to 

unstressed and stressed state respectively. 

Figure 1.The shell in unstressed state 

Figure 2. The shell on the solid’s surface 

3. 

Established equations of shell material 

By considering the macroscopically measures of the 

shell deformation, the magnitude of the extension strains 

of coordinate lines are: 

1 1 1                                                               (8)                                                         

2 2 1                                                                    (9)                                                                                                

Where
1 and

2 are the elongation rates of coordinate 

lines. 

The magnitude of the angle between these lines   is 

determined by the equation: 

0 0

12 11 22 1 2 sing g g    .                            (10)                                                                                                                                     

1  and 
2  can be determined by formulas: 

 

11
1 0

11

g

g
                                                           (11)                                                                                                             

22
2 0

22

g

g
                                                               (12)                                                                                                                      

The established equations are obtained for deformation 

shells which allow the introduction of the potential strain 

energy. In previous works [5, 9], the equations are given in 

the following form: 

11
0 0

1 12 11 22

1 u ctg u

g g

   
   

    
                  (13)                                                                                              

22
0 0

2 21 11 22

1 u ctg u

g g

   
   

    
              (14)                                                                            

12 21
0 0

1 2 11 22

1

sin

u

g g


    

  
              (15)                                                                                                                

Where u is the density of the strain energy, related to 

the unit of the area of the unstressed shell. 

In [5] u was calculated as a function of , 1 , 2  for 

some various textile structures. This study will concentrate 

by considering the shell is made of nets with rectangular 

meshes. 

4. Investigation of The Variation Principle of Pulled 

Shell on The Solid Surface 

The surface of the solid on which the shell will be 

pulled (see Figure 2), can be defined by the following 

equation: 

 , ,R R z                                                 (16)

                                                                                                                       

where,   is an artificially introduced parameter 

variation which leads to the  changing of the solids form. 

The radius-vector of any particle M of the shell when it 

is pulled on the solid surface can be presented as follows: 
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       

          
0

0

, , , cos , ,

, , , sin , , , ,

R

R w

             

                 

r i

j k

  (17)                                  

               

where  , ,     is the increment of the angular 

coordinate of the particle M,  , ,     and 

 , ,w     are the radial and vertical displacements, 

respectively; , ,i j k  are unit vectors along the  axes x, y 

and z respectively. 

It is obvious that the following equations are true: 

        0, , , , , , , , ,R w R                                                                                           (18)                                                 

 , ,                                               (19)                                                                                                                                                                               

 , ,z w                          (20) 

The equation (18) shows that to obtain the full 

description of shell deformation it is enough to know the 

functions  , ,     and  , ,w    . 

To describe the deformation of the shell on the surface 

of the solid, the expressions for the metric coefficients can 

be written firstly, to initial unstressed state, and, secondly, 

to final deformed state. According to equations (1-6), these 

coefficients are given by the following equations: 
2

0 20
11 0

R
g R

 
  

 
                (21)                                                                                       

2

0 0
22 1

R
g

 
  

 
                                            (22)                                                                          

0 0 0 0
12 21

R R
g g

 
 

 
                                      (23)                                                                     

2

11g
 

  
 

r                                                          (24)                                                                    

2

22g
 

  
 

r
                                                   (25)                                                                        

12 21g g
 

 
 

r r
                                           (26)                                                                         

Where, r  is defined by Eq. (17) and Eq. (18) which 

allow to eliminate  , ,    . 

By the computation, it was assumed that all points of 

the bottom edge 1  of the soft shell have 

coordinates 0  , and points of the top edge 
2   have 

coordinates H  . Thus the potential energy of the 

whole shell equals 
2

0 0 0

11 22 12

0 0

H

U u g g g d d



              (27)                                                                                    

Where, u is a function of  , depending on 

displacements ( , , )     and ( , , )w     of the 

shell particles and the first derivatives of these 

displacements:   

, , , , , , , ,
w w

u w
    

     
    

         (28)                                                                        

to investigate the displacements ( , , )     

and ( , , )w    , which satisfy the boundary conditions 

of the clamped edges, the conditions are given by the 

following equations: 

   0 0( , ,0)                       (29)  

   1 1( , , )H                           (30)                                                           

   0 0( , ,0)w w w                        (31)                                                                        

   1 1( , , )w H w w                      (32)                                                                      

where, 
0 , 

0

 , 
1 , 

1

 , 
0w , 

0w
, 

1w  and 
1w

 are 

arbitrary given functions. 

The analysis of the deformed state of the shell is based 

on the variation principle of the minimum of the potential 

strain energy [8]. Based on this principle, the equilibrium 

state of the shell corresponds to the minimum of the 

energy 

5. Finite Element Method for the Investigation of 

Pulled Shell on the Solids’ Surface 

Minimization of the functional U  was accomplished 

by the finite element method and small parameter method 

[9,10]. To apply the finite element method, the definition 

domain of functions ( , , )     and ( , , )w     is 

subjected to the triangulation. These functions are 

approximated as follows [4]: 

k k

k

Т p              (33)                                                         

k k

k

w V p                                                          (34)                                                                                                         

Where, 
kp  is shape functions, 

kТ
 and 

kV  are nodal 

magnitudes of ( , , )     and ( , , )w     respectively, 

k =1,…, and r is the node number (number of coefficients  

kX ). 

When using such approximations of U  by the formula 

(14), U  can be appeared as a function of coefficients 
kТ  

and
kV . By equating the partial derivatives of this function 

with respect to mentioned coefficients to zero, a group of 

algebraic equations is obtained. The solution provides the 

nodal displacements. 

At the topmost and bottommost strings of nodes (their 

quantities will be denoted by 2m ) in accordance to Eqs. 

(21-26). The values of 
iТ  and 

iV  may be given arbitrary. 

Thus, the following designations can be given: 

2 1 2,k k m k k mX T X V                (35)                                                                                                                

In this case U  transforms into the function of
kX . 

To derive equations for the calculation of the 

coefficients
kX , the conditions of minimum energy U  

can be represented by the following equation: 

0
k

U

X





                                                                  (36)                                                                
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In order to analyze the results of nonlinear equation, the 

differentiation can be taken for all equations with respect 

to the parameter . As a result, a linear equation in 

regarding to derivatives kdX

d
  can be obtained. 

The last equation set may be represented in the 

following form: 

     , ,
dX

C X B X
d

    


         (37)                                                                                                        

Where, C  is a matrix of the format r r , B  is a 

vector of length r , X  is a required vector of the length. 

Thus, the equation (37) represents a group of the ordinary 

differential equations from which ( )kT   and ( )kV   should 

be found. The solution of this group leads to the Cauchy 

problem if (0)kT  and (0)kV , or more definitely (0)kX , are 

known values. By rewriting Eq. (37) in the form of: 

     1 , ,
dX

С X B X
d

    


                     (38) 

the required solution can be achieved by the following 

method: 

   

       
0

1

0

0 0, 0 0, 0

dX
X X

d

X С X B X






   

 


   

                     

(39)

                                                                             

   

       1 , ,

k

k k

k k k k k

dX
X X

d

X С X B X






      

 


        

            

(40)

                                                        

 

Thus, the deformation of the shell can be calculated at 

any given value of  . If the solution of this problem is 

known at 0  , i.e. if initial conditions are known for 

Cauchy problem, this can be related to equation (38). 

It is possible to specify various methods to establish 

such initial conditions. The elementary method consists 

one-parametrical group of solids with the parameter . 

There is an obvious trivial solution at 0X  , and if the 

group remains the same at 
  , therefore, the surface 

of a body will have the demanded form, and at 0   this 

surface coincides with a surface of no deformed shell. 

By considering the position of a cylindrical shell with 

the radius
0R  and length H  on the solid surface, 

mathematically, this can be represented by the following 

equation [11]:   

  0 sinR z R z A                                     (41)                                                                                                          

Where,   is the above mentioned parameter and A  is 

some arbitrary chosen parameter. 

In this case of zero value of the parameter  it is 

possible to subject to such position of the shell on the solid 

surface, then this shell would not be deformed. This exact 

solution can be used as initial condition in the 

investigation of Cauchy problem for calculation of the 

state of the shell. Boundary conditions will be chosen so 

that one edge of the shell corresponds to the 

coordinate 0z  , and another to the coordinate z H . In 

this case metric coefficients corresponding to the 

unstressed state of the shell are as follows: 

0 2 0 0 0

11 0 12 21 22, 0, 1g R g g g             (42)                                                                                                      

By referring to equations (13) and (23) the metric 

coefficients corresponding to the deformed state of the 

shell are given by: 

 

 
2 2 2

22

11 0cos 1 sin 1
w w

g A R z A
         

                 
         

                    (43)                                        

                                                                                                                          

 
2 2 2

22

22 0cos 1 sin 1
w w

g A R z A
         

                 
         

                                                    (44)                                              

 

If 0   then it is easy to notice that equations (42), (43) and (44) coincide 

6. Analytical Method of Small Segment for 

Investigation of Shell Pulled on the Solid Surface 

There are many difficulties in interpretation of above 

mentioned cases when numerical methods fail. As a rule, it 

is insignificant modification of boundary conditions to 

reach smoothness of shell and destroy convergence of 

computation process. For this reason the applying of 

analytical methods may give substantial contribution in 

development of numerical methods. Thus, the analytical 

investigations can be used under the assumption that the 

shell is made of linearly elastic net with rectangular 

infinitely small cells. In this case and referring to Eq. (27), 

the potential energy functional U can be written in the 

form: 

 
2

2 2 0 0 0

1 1 2 2 11 22 12

0 0

H

U k k g g g d d



                        (45)  

Where, 
1k  and 

2k  the coefficients describing elastic 

properties of the threads that are disposed along coordinate 

lines and confine meshes of the net. 

The limitation of the analysis by axisymmetric 

problems of interaction between cylindrical shell that has 

radius 
0R  and the solid obtained by the rotation around 

axis z of line given by the following equation: 

0 0( ) cos
2

z
R z R R

l


                         (46)                                                                                                                          

where,   and l  are arbitrary chosen quantities. 

Because of axial symmetry the shell angular 

displacements  , ,     are zero and all the 

deformations are defined by axial displacements w , which 

do not depend on , and may be presented as follows: 

  0, ( ) ( ) ....w u u                        (47)  

At zero and first order approximation of Euler’s 

equation for extreme problem concerning U can be given 

in the following form [6]: 
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2 2

0 1 2 0

2 2

1 0

( ( ))
0, sin 0, ....

2 2

d u d u k u

d d k l R l

     
  

 
 (48)

                                                          

The solutions of various boundary values, problems for 

equations (48) can be obtained easily. For example, the 

formula for calculation of pressure exerted by shell with 

free edges on the solid surface can be represented by: 

2

0 0

cos
2

k
q

R R l

  
   

 

                             (49)                                                                                                         

7. Influence of the Deformation Properties of the 

Textile Materials 

The influence of the deformation properties of the 

textile materials that are used during the production of 

composite products is certainly significant but not easy to 

be taken into account. Now, consider the deformations of 

structures of reinforcing textile tapes for manufacturing of 

composite products by winding process, the production of 

such composite materials shows increased requirements to 

uniformity of structures of tapes. Heterogeneity of the 

structures can be developed due to the deformations of 

winding process. By assuming that the tape has a structure 

of a plain weave and its basic strings go along a tape and 

have the visco-elastic properties. The deformations of 

these strings during winding process can be studied with 

reference to Figure3. From this figure, V
c

 is the vertical 

velocity of the cylinder on which the tape is reeled up,   

and R  are the angular velocity and the radius of the 

cylinder,   and r  are the angular velocity and the radius 

of the feeding cylinder;   is the angle of geodetic lines 

along which the basic strings are settled down, L  is the  

length of the bottom string part which is located between 

the cylinders.  

Figure  3. The winding of the tape 

By considering that the axis of feeding cylinder is 

perpendicular to these strings, the following equation for 

calculation of the tension of string can be applied: 

(1 )( )
A A B A

T E V V
L L


     


         (50)                                             

Where 
A

  deformation of basic strings on the feeding 

cylinder: 

, / cos
A B

V r V R               (51)                           

                            

By referring to Eq. (50) the tension of strings are non-

uniform and depends on their place in a tape and the 

elimination of this non-uniformity is possible by various 

methods. 

8. Conclusion  

1. A mathematical study of the stress-strain curve 

(behavior) based on the static equilibrium and 

established equations of membranes were developed to 

evaluate the problems of the manufacturing of 

composite materials.  

2. The study considered that the little capacity of the 

layers assumed to be membranes with a small 

resistance to the bending moments.  

3. To predict the changes in the textile structure of the 

layer materials, the stress-strain behavior of the layers 

(membranes or soft shells) was investigated.  

4. By asymptotic analytical methods of small segment, the 

strain energy and finite elements methods were used to 

evaluate the boundary problems and textile structural 

changes of the layers.  

5. A criterion of smoothness of layers was developed and 

a method of calculating the deformations of the textile 

structure of the layers was proposed.  

References 

[1] Bernadou, M., Ciarlet P G, Miara B. Existence theorems for 

tow-dimensional linear shell theorems. J. Elasticity, Vol. 34, 

1994, 111-138.  

[2] Zendehudi, G., Kazemi, A., The accuracy of thin-shell in 

estimation of aneurysm rupture. Journal of Biomechanics, 

Vol. 40, No. 14, 2007, 3230-3235.  

[3] Carnaby, G.A., and Pan, N., Theory of the Compression 

Hysteresis of Fibrous Assemblies, Textile Res. J., Vol. 59, 

No. 5, 1989, 275-284.  

[4] Berdichevsky, V., Some forms of the equation of shell 

theory. Soviet Physics-Doklady, Vol. 22, No. 4, 1996, 1-233.  

[5] Chaikin, V. A., Applied problems of threads mechanics. 

Journal of SPSUTD, 2005: 144-148(In Russian).  

[6] Pan, N., Development of a Constitutive Theory for Short-

fiber Yarns .4. The Mechanics of Blended Fibrous Structures, 

J. Textile Inst., Vol. 87, No. 3, 1996, 467–483.  

[7] Ugural, A. C., Stresses in plates and shell. New York 2nd 

edn., McGraw-Hill, 1994.  

[8] Dneprov, I.V., Ponomarev, A.T., and Radchenko, A.V.: The 

Stress-Strain State of Soft Shells of Arbitrary Shape. Journal 

of Mathematical Sciences, Vol. 72, No.5, 1994, 3293-3298.  

[9] Schlebusch, R., Zastrau, B., Variational formulation of a 

three-dimensional surface-related solid-shell finite element. 

Archive of Applied Mechanics (Ingenierur Archive), 2008: 

Accepted for publication.  

[10] Zienkiewicz, O., Finite Element Method in Engineering 

Science, McGraw-Hill, New York, 1971  

[11] Sheng Zhang, A linear shell theory based on variational 

principles. Pennsylvania: Pennsylvania state University, 

2001.  

 


