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Abstract

We extend the packet traffic network models developed
in recent years for rectangular grids to other regular net-
works, and to fragmented networks. The packet transfer
mechanism is open-loop as before. The nodes of the net-
work are either hosts or routers. Both can receive and
transmit packets towards their destination; hosts can also
create and receive packets. Long range dependent traffic
with varying Hurst parameter is introduced at the host
nodes of these networks, and comparative studies of the
onset of congestion are carried out. Results show statis-
tical robustness when the rectangular grid is adapted to
form other regular networks. Qualitative behavior is the
same, and simple mean field models accurately predict
critical points as in the rectangular case. R/S- statistics
show the presence of long range dependence even when
sources are short range dependent. Results indicate that
this long range dependence is closely linked to the queue-
ing mechanism.

1 Introduction

In 1993 Leland et al., [9], demonstrated the presence of
Long Range Dependence (LRD ) in traces of packet traffic
rates. They studied Ethernet local area network (LAN)
traffic, but subsequent work [17] has shown that LRD also
occurs in wide area networks (WAN). LRD causes bursts
in the packet rate for a given communication channel.
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This bursty behavior occurs over several orders of time
scale. Packet traffic was simulated using Poisson pro-
cesses before the discovery of LRD . Such assumptions
are appropriate for modelling voice based traffic, but they
produce memory-less, short range dependent traffic and
are not suited to modelling LRD. In the Poisson case over-
all average packet rates can be accurately predicted from
a relatively small set of measurements. The bursty na-
ture of LRD traffic means that an overall average value
cannot be accurately determined even when quite a large
number of measurements are made. We have shown in
[16] that, given the same load on a rectangular grid net-
work, LRD traffic causes an earlier onset of congestion
when compared with Poisson traffic; and that the point
at which congestion begins is much less well defined. For
these reasons we have again used chaotic dynamics ([3])
to model LRD sources. As before, we have compared our
results with those obtained when using Poisson sources.

A simple model of network packet traffic across rectan-
gular lattices was introduced by Solé and Valverde. This
was the model that was used in [16]. Solé and Valverde,
[13] showed that the time series of queue lengths at an ar-
bitrarily selected node in this network was long range de-
pendent. Since the sources were all SRD , this LRD was
caused purely by network behavior. This phenomenon
was investigated further in [16].

1.1 Long range dependence

The autocorrelation decay, γk, for time lag k, of a discrete
binary time series Xt, t ∈ 0, 1, 2, . . ., is said to be long-
range dependent if:

γk ∼ ck−β , (1)

where β ∈ (0, 1), c is a constant, and

γk =
E(XtXt+k) − E(Xt)E(Xt+k)√

V (Xt)
√
V (Xt+k)

, (2)

E(·) is the expectation or mean value, and V (·) is the
variance. The self-similar nature of the LRD traffic is
formally defined in [4]. The autocorrelation of SRD traffic
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decays exponentially rather than as a power law, with the
asymptotic behavior given by:

γk ∼ Cα−k (3)

Here α ∈ (0, 1) and C is a constant. The nature of
LRD traffic is often expressed using the Hurst parame-
ter, H ∈ [0.5, 1] (see [8]) where H = 1 − β/2 ∈ (1/2, 1),
[4]. For SRD traffic H → 1/2 and the various levels of
LRD traffic occur for H increasing in (0.5, 1].

The difference in the behaviour of SRD and LRD data
for batched segments of size N is shown in [16]. Define

X(N)
m =

1
N

(m+1)N−1∑
n=mN

Xn, (4)

for m = 0, 1, 2 . . .. The standard deviation in X
(N)
m for

the SRD traffic varies as the square root of the batch size
N , whereas it varies as a lower power than square root for
LRD traffic. This shows the bursty nature of LRD traffic.
Even when averaging over very large batch sizes, uninter-
rupted sequences of either ‘1’s or ‘0’s may still be longer
than the batch size, giving the extreme values and the
resulting high variance shown in these plots.

We show in this paper that for the same traffic loads,
higher Hurst parameters increase the queue lengths dra-
matically in triangular and hexagonal lattice models, as
was the case for rectangular grids in [16]

1.2 Nonlinear modelling of LRD

We use the Erramilli traffic map defined in [16, 3], to
provide binary sequences that model host packet produc-
tion. The output ‘1’ indicates that a packet is added
to the host queue for transmission; ‘0’ indicates that no
packet is produced. The map f is defined on the unit
interval of real numbers I = [0, 1]. The iteration of f
with an initial value x0 produces an orbit {xn} defined
by xn+1 = f(xn) in I, for n = 0, 1, 2, . . .. The sequence
{xn} in I is converted to binary output zn by associating
the symbols ‘1’ and ‘0’ with the intervals [0, d] and (d, 1]
respectively.

The Erramilli maps, [3], f = f(m1,m2,d) : I → I, are
defined by

f(x) =
{
x + (1 − d) (x/d)m1 , x ∈ [0, d],
x− d ((1 − x)/(1 − d))m2 , x ∈ (d, 1],

(5)

Here d ∈ (0, 1) and the parameters m1,m2 ∈ [3/2, 2] in-
duce intermittency, of order m1 and m2, at the points
x = 0 and x = 1 respectively. The graph of the map f
consists of two segments and each has a tangency with
the line y = x, [16]. The iteration of the map f with
initial condition x0 forms a ‘web’ generating the iterative
sequence, or orbit, xn, where xn = f(xn−1), n = 1, 2, . . ..
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Figure 1: Autocorrelation output for the intermittency
map in given by eqn. 5 with m = 1.5. The log-log graph
for γk vs. k agrees with the predicted asymptotic slope
for which H = 1/2 which is indicated by the thickened
line.

Note that the tangencies at x = 0, 1 gives a ‘slow’ change
in the values of the sequence xn, and therefore the output
zn provides long sequences of consecutive ‘0’s or ‘1’s.

The intermittency produces slowly incrementing streams
of orbital values, [12]. This, in turn, ensures the so-
called ‘memory’, or LRD, in the digital output zn. It
has been shown that the autocorrelation of the output
function z, γk ∼ k−β , k ∈ Z+, has the decay constant
β = (2 − m)/(m − 1) ∈ (0, 1) with m = max{m1,m2},
[7, 10]. This in turn implies that the Hurst parameter
H = (3m− 4)/(2m− 2). Hence an appropriate selection
of m enables the generation of traffic with any desired H
value.

2 Network structures

The basic model we consider here, [13], has a lattice net-
work of interconnected nodes which are either hosts or
routers. All nodes can transfer packets and, additionally,
hosts can both transmit and receive packets. Both types
of node have buffers for storing packets. Packets when
produced are allocated another host destination which is
chosen randomly. When a packet arrives at the head of a
buffer, it is then transferred to the queue at an adjacent
node which is closer to its destination. We consider per-
formance factors such as average delivery time of packets
and the throughput of packets for this model below. Sev-
eral network topologies have been studied.
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2.1 Routing Algorithms

A routing algorithm is needed to model the dynamic as-
pects of the network. Packets are created at source hosts
and sent through the lattice one step at a time until they
reach their destination host. In real packet-switching net-
works, packets carry header and information payloads
with them. They may also carry information about the
state of the network. To simplify the modelling, we record
only the time of creation and the source and destination
addresses when passing packets through the network. No
information about the network state is carried.

The routing algorithm operates as follows:
• first a host creates a packet using either a uniform

random distribution (Poisson) or a distribution defined
by a chaotic map (LRD), as described in section 1.

• if a packet is generated it is put on the end of the
queue for that host. This is repeated for every host in the
lattice.

• packets at the head of each queue are sent to a neigh-
boring node which is closer to the destination node (using
the least used link if necessary). If nodes are equidistant
from the destination, and link usage is equal, a random
selection is made.

This process is repeated for each node in the lattice.
The whole procedure of packet generation and movement
represents one time step of the simulation. There is no
feedback applied to queue lengths in this algorithm and
hence the model is uncontrolled.

2.2 Regular and Depleted Lattices

A first model for the study of global network traffic is
also discussed in [13],[11], [6], and most recently in [16].
The network takes the form of a rectangular (R) lattice in
which each node has four neighbors. This is also known
as a Manhattan lattice. The finite rectangular lattice Z
consists of L2 nodes. The position of each node in the
lattice Z is given by the coordinate vector r = (i, j) where
i and j are integers in the range 1 to L.

We use periodic boundary conditions and hence the
network can be seen as having a toroidal topology in
which nodes on one edge of the lattice are connected to
nodes on the opposite edge. To measure the distance be-
tween a pair of nodes in the doubly-periodic ‘Manhattan’
lattice Z, the metric

dR(r1, r2) = L−
∣∣∣∣|i2 − i1| − L

2

∣∣∣∣ −
∣∣∣∣|j2 − j1| − L

2

∣∣∣∣ . (6)

is used, where the points r1 = (i1, j1) and r2 = (i2, j2) of
Z give the positions of the two nodes.

Each node has a queue of unlimited length in which
to store packets.

The hexagonal (H) and (T) and triangular lattices are
shown in Fig. 2. Note that the H and T lattices can be

obtained from the R lattice by the removal and addition
of edges. Thus the lattices are embedded on the torus
in such a way that the edge sets, e(·) of the H, R and T
networks satisfy the set inclusions e(H) ⊂ e(R) ⊂ e(T ),
(see Fig. 2). The metrics dT and dH for the distance
between the two nodes in the T and H lattices cannot
be so simply stated as for the rectangular case, but do
satisfy the rule:

dT (r1, r2) ≤ dR(r1, r2) ≤ dH(r1, r2)

(a) (b)

Figure 2: (a) The triangular, and (b), the hexagonal lat-
tices are obtained from the underlying rectangular grid
by respectively adding and subtracting edges.

We can also consider depleted networks. In these edge
removals have been made from the rectangular lattice,
creating irregularity in the node degrees. The edge con-
nections are retained independently with a probability p
for each edge. Probabilities larger that 1

2 are best used
as the percolation threshold for an infinite connected net-
work is pc = 1

2 . Study of these depleted networks is an
intermediate steps in extending the work to other irregu-
lar networks, especially scale-free networks, see [1].

2.3 Hosts and Routers and Traffic Generation

The density of hosts ρ ∈ [0, 1] is the ratio between the
number of hosts and the total number of nodes in the
network. Hosts are randomly distributed throughout the
network and we fix ρ = 0.164 for the initial simulations
considered here, although a range of ρ values have been
considered to confirm that the results are robust.

Incremental change from SRD to LRD traffic can be
considered by adjusting the intermittency parameters m1,m2.
For simplicity the m1,m2 are kept equal to a value m ∈
[1.5, 2]. It should be noted that when the exponents
differ, the strongest intermittency dominates the auto-
correlation behavior, [7, 10]. Poisson-like traffic is in-
dependently created by repeatedly choosing randomly a
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number on the interval [0, 1]. If it is below a discrimina-
tor value d ∈ (0, 1), then a packet is emitted. Hence, for
a uniform distribution, the average rate at which packets
are produced at a host is λ = d. As in previous simula-
tions, we have used the same value of λ for all sources.

3 Onset of Congestion

We have used two performance indicators to study the
onset of congestion. The first is average packet lifetime
(< τ >). This is the average time spent by packets in the
network. The packet lifetime includes the time taken in
travelling from source to destination, and the time spent
waiting in queues en route. The second is the throughput
which is the ratio of packets delivered to packets created.
In [13] and [16] < τ > was seen to increase dramatically
as the load was increased. This type of rapid change can
be best described as a phase transition, [2, 5, 11], in this
case from a free phase to a congested phase. As load is
further increased a critical load λc is reached. This is
the point at which the throughput of packets decreases
as load increases. In the following sections we study a
variety of different lattice types. End effects are present
in all experiments, so run lengths are all the same to make
direct comparisons possible.

3.1 Triangular, Rectangular and Hexagonal Lat-
tices

Different traffic sources are compared in a rectangular
toroidal lattice, as used in [16]. The host density ρ =
0.164. In Fig. 3, < τ > is plotted against the load λ. The
sources at the hosts are Poisson and LRD with different
values of H. The nature of the traffic changes from SRD
at m = 1.5 (H = 0.5) to full LRD at m = 2 (H = 1).

A key observation in [16] (see Fig 3(a)) is the cor-
responding behavior of LRD traffic for increasing load
levels. The statistic < τ > is almost the same as for
SRD traffic for λ > λc. However, for λ < λc the behavior
of < τ > is far more erratic, and does not have the sharp
phase transition of the SRD traffic. Average lifetimes in
this region can be an order of magnitude greater. This
makes the prediction of < τ > for LRD traffic almost
impossible at low load levels.

In Fig. 3(b) throughput is plotted against λ for the
same types of source. The peak in throughput occurs
at the critical point. This is also where the network
reaches its peak efficiency. The peak value of through-
put is slightly lower for the LRD sources, emphasizing
the longer lifetimes of packets. However, the difference
is less pronounced than that seen in average lifetimes.
Away from the peak, values of throughput for the two
types of traffic source are very similar. For the T and
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Figure 3: (a) The phase change in < τ > for SRD traffic
as the load λ is increased in a rectangular toroidal grid,
see [16]. A relatively smooth transition to congestion is
shown for the Poisson sources. (b) The corresponding
response of throughput to introducing LRD as the Hurst
parameter from H = 0.5 to H = 0.9.

H lattices the qualitative behavior as the networks be-
come congested is the same as for the rectangular lattice.
Comparisons are shown in Fig. 4 shows the correspond-
ing plots for T in Fig. 4(a,b) and for H in Fig. 4(c,d)
lattices respectively. In the case of the hexagonal lattice
the critical point is below the Manhattan value and for
the triangular lattice it is above. This is not surprising
as the hexagonal lattice has 3 connections per node and
therefore lower carrying capacity, whereas the triangular
has 6 connections per node, and hence a higher carrying
capacity. This critical behavior is discussed in more detail
in section 4.

3.2 Depleted Rectangular Lattice

Depleting the lattice has the effect of greatly reducing the
number of possible paths in the network, and increasing
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Figure 4: (a) The packet lifetime < τ > and (b), the throughput for SRD and LRD traffic as the load λ is increased
in the triangular toroidal grid. (c) The packet lifetime < τ > and (d), the throughput for SRD and LRD traffic as
the load λ is increased in the hexagonal toroidal grid. The SRD traffic is obtained by setting m1 = m2 = 1.5 and
the LRD has two values m1 = m2 = 1.8 and m1 = m2 = 1.95.

the average queue lengths. This effect is accentuated by
the simple routing algorithm which only allows shortest
paths. The reduced numbers of paths lead to relative
congestion in the routers along the paths between hosts.
Hence routers become congested before hosts, which is
the opposite case to that of all the regular lattices. Con-
gestion also occurs at much lower loads for the depleted
lattice.

4 Mean Field Models

Simple mean field models have been developed, [13, 16],
to describe the global network performance in rectangular
grids below the critical point. We show that a simple
extension of the concept to other regular networks can be
used to give the different critical values.

The critical load λc can be estimated by looking at
the total distance that all the packets at time t have to
travel to reach their destination. Consider the congested
phase in which there are queues at all nodes. Then the

change in the total distance traveled by packets in one
time step of the simulation is:

D(Nt+1) −D(Nt) (7)

where Nt is the number of packets in the queues at time
t and D(Nt) is the aggregate distance of all these packets
from their destinations at time t. The number of packets
in the network increases by ρλL2 in the time step. Let dav

be the average distance to destination on a given lattice,
then dav(L) = L/2 for the R-lattice, dav(L) ∼ 0.39L for
the T-lattice, and dav(L) ∼ 0.55L for the H-lattice as L →
∞. Hence the overall distance added by packets entering
the network is ρλL2(dav(L)). In contrast, the aggregate
distance is reduced by L2, since every packet at the head
of the queue moves one step closer to its destination. Thus
the change in total distance to destination between time
t and t + 1 is:

D(Nt+1) −D(Nt) = ρλL2(dav(L)) − L2. (8)

The critical load λc occurs when the total distance no
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longer decreases giving

λc = 1/ρdav(L) (9)

for the various lattices. This result was obtained for the
R-lattice (for the special case ρ = 1) in [6]. It should
be noted that as ρ increases, typically the total load on
the system increases and the phase transition becomes
sharper. Estimating the load at which congestion begins,
λ′

c < λc requires a more sophisticated derivation and is
obtained by taking into account differences between the
host and router traffic. In [16] we derived the formula

λ′
c = 1/(ρ

L

2
− ρ + 1) (10)

where λ′
c is called the local critical point.This can be triv-

ially extended to the other regular grids as

λ′
c = 1/(ρdav(L) − ρ + 1). (11)

4.1 Mean field critical behavior

The accuracy of the mean field model described above is
illustrated in Fig. 5. As was found for the rectangular
lattice in [16], the prediction of critical load λc agrees
very well with the simulation for both the hexagonal and
triangular lattices. The estimation of local critical load,
λ′

c is good, but the quality of the approximation decreases
with the connectivity of the lattice. The values of λc

reduce as the connectivity of the network decreases, with
the hexagonal lattice having the lowest λc. However, the
quality of the mean field assumptions appears to depend
on the regularity of the networks and breaks down when
depleted lattices are considered. In particular, there is
strong evidence that the mean field approach becomes
an increasingly poor predictor of criticality at low loads
for depleted regular graphs. The underlying regularity of
the lattice seems to be an essential part of the successful
modelling.

5 R/S measurements

Rescaled range statistical analysis, R/S analysis, is one
of a number of methods used for estimating the Hurst
parameter H. It is described in [4].

In tables 1, 2 and 3 we show H values obtained with
R/S analysis for the three regular networks using Poisson-
like sources. Host densities and network size are the same
for all three cases. The network topologies differ only in
the degrees of each node. The degrees are 6 for the T-
lattice, 4 for the R-lattice and 3 for the H-lattice. Three
time series have been studied:

• the average host queue length at each time step;
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Figure 5: Mean field approximation for critical load λc

showing strong agreement with numerical simulations for
the (a) triangular, (b) rectangular lattice, and (c) hexag-
onal lattice. The onset of the critical load λ′

c is also in-
dicated although the quality of this approximation de-
creases with connectivity. Note the critical load λ = λc

reduces through the graphs (a),(b),(c) reflecting the de-
creasing connectivity T → R → H.
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• the average router queue length at each time step;

• and the total number of packets leaving the network
at each time step.

For each lattice type, three λ values below the local crit-
ical point have been chosen: one well below the local
critical point; one slightly below; and one very close to
this threshold, but still below this value. Time series for
these load values are all steady state. The abbreviations
are AHQL - Average host queue lengths; ARQL - Average
router queue; PLS - Packets leaving system.

Table 1: H values for the H- hexagonal lattice with
Poisson-like sources. Three time series have been an-
alyzed: average host queue lengths at each time step,
average router queue lengths at each time step and the
number of packets leaving the network at each time step.

Load(λ) AHQL ARQL PLS
0.10 0.61 0.66 0.53
0.18 0.70 0.71 0.53
0.195 0.86 0.69 0.53

Table 2: H values for the R- rectangular lattice with
Poisson-like sources. The time series analyzed are the
same as in table 1.

Load(λ) AHQL ARQL PLS
0.10 0.61 0.64 0.53
0.27 0.84 0.76 0.53
0.29 0.92 0.76 0.53

Table 3: H values for the T- triangular lattice with
Poisson-like sources. The time series analyzed are the
same as in table 1.

Load(λ) AHQL ARQL PLS
0.10 0.60 0.61 0.53
0.30 0.75 0.68 0.52
0.33 1.00 0.70 0.53

Time series of the packets leaving the network always
have the Hurst parameter H ≈ 0.5. That is to say none
of them exhibit LRD . The time series of average queue
lengths, however, all show some degree of LRD . H values
rise sharply close to the local critical point, especially for
the hosts (where congestion occurs first). Very close to
the local critical point they approach 1 for host queues
for all the regular topologies.

The fact that this behavior only occurs in queues sug-
gests that the self-similarity is closely linked to the queue-
ing mechanism.

6 Conclusions

In this paper we have extended our previous work, [16], by
considering different topologies of networks. The T- and
H- lattices can be seen to be part of the same family as
the rectangular lattice by set inclusion and so robustness
of results on congestion have been assessed - in particular
the critical load parameters increase with the sparseness
of the network.

The mean field models, both for critical and local crit-
ical point work well for the new regular topologies. This
breaks down for the depleted lattice. The path to con-
gestion for this network is clearly fundamentally different
to that of the regular networks.

We have seen LRD in networks with purely SRD sources
in this work and also in [13] and [16]. However high H val-
ues have only been seen in measurements of queue lengths
near or above the local critical point. This suggests that
the queueing mechanism is the predominant factor. This
requires further investigation.

In our current work we aim to model real networks,
especially the internet, more closely. This requires the
modelling of a packet transfer mechanism that includes
feedback, and the move to a more realistic network topol-
ogy, see [1].
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[13] R. V. Solé and S. Valverde, Information transfer and
phase transitions in a model of internet traffic, Phys-
ica A 289, 2001, 595-605.

[14] X-J Wang, Statistical physics of temporal intermit-
tency, Phys Rev A 40(11), 1989, 6647-61.

[15] S. Zhou and R.J. Mondragón, Towards modelling the
Internet Topology - the Interactive Growth Model,
preprint, Dept. of Elec. Eng., QM, University of
London.

[16] M. Woolf, D.K. Arrowsmith, R.J. Mondragon, J.M.
Pitts, Optimization and Phase Transitions in a
Chaotic Model of Data Traffic, Phys Rev E 66,
046106 (2002).

[17] V. Paxson and S. Floyd, Wide-Area Traffic: The
Failure of Poisson Modeling, IEEE/ACM Trans. on
Networking, 3,no. 3, 1995, 226-244.

8


