
Design and Implementation of a Peer-to-Peer
Data Quality Broker

Diego Milano, Monica Scannapieco and Tiziana Catarci

Dipartimento di Informatica e Sistemistica,
Universitá degli Studi di Roma �La Sapienza�,

Via Salaria 113, Rome, Italy
{milano,monscan,catarci}@dis.uniroma1.it

Abstract Data quality is becoming an increasingly important issue in
environments characterized by extensive data replication. Among such
environments, this paper focuses on Cooperative Information Systems
(CISs), for which it is very important to declare and access quality of
data. Indeed, a system in the CIS will not easily exchange data with
another system without a knowledge on its quality, and cooperation be-
comes di�cult without data exchanges. Also, when poor quality data
are exchanged, there is a progressive deterioration of the quality of data
stored in the whole CIS.
In this paper, we describe the detailed design and implementation of a
peer-to-peer service for exchanging and improving data quality in CISs.
Such a service allows to access data and related quality distributed in
the CIS and improves quality of data by comparing di�erent copies of
the same data. Some experiments on real data will show the e�ectiveness
of the service and the performance behavior.

1 Introduction

Data quality is a complex concept de�ned by various dimensions such as accu-
racy, currency, completeness, consistency [18]. Recent research has highlighted
the importance of data quality issues in various contexts. In particular, in some
speci�c environments characterized by extensive data replication high quality of
data is a strict requirement. Among such environments, this paper focuses on
Cooperative Information Systems.

1.1 Data Quality & CISs

In current government and business scenarios, organizations start cooperating in
order to o�er services to their customers and partners. Cooperative Information
Systems (CISs) are all distributed and heterogeneous information systems that
cooperate by sharing information, constraints, and goals [14]. Quality of data is
a necessary requirement for a CIS. Indeed, a system in the CIS will not easily
exchange data with another system without a knowledge on their quality, and
cooperation becomes di�cult without data exchanges. Also, when poor quality

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357409718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data are exchanged, there is a progressive deterioration of the quality of data
stored in the whole CIS. Moreover, when a CIS is a data integration system, data
integration itself cannot be performed if data quality problems are not �xed. As
an example, results of queries executed over local sources must be reconciled
and merged, and quality problems resulting from a comparison of results need
to be solved in order to provide the data integration system with the required
information [5].

On the other hand, the high degree of data replication that characterizes a
CIS can be exploited for improving data quality, as di�erent copies of the same
data may be compared in order to detect quality problems and possibly solve
them.

1.2 The DaQuincis project

The DaQuinCIS architecture 1 has been designed to manage data quality in
cooperative contexts, in order to avoid the spread of low-quality data and to
exploit data replication for the improvement of the overall quality of cooperative
data [16,11].

The DaQuinCIS architecture o�ers several quality-oriented services that are
depicted in Figure 1.

The core component is the Data Quality Broker. The Data Quality Broker
has two main functionalities: (i) quality brokering, that allows users to select data
in the CIS according to their quality; (ii) quality improvement, that di�uses best
quality copies of data in the CIS.

With reference to the quality brokering functionality, the Data Quality Bro-
ker is in essence a data integration system that allows the access to the best
available quality data without having to know where such data are stored. The
Data Quality Broker adopts a wrapper-mediator architecture, in which wrappers
hide technological and model-related details of organizations, while a mediator
interacts with the user, presenting a uni�ed view of the databases on which
queries can be posed.

With reference to the quality improvement functionality, when retrieving
data, they can be compared and a best quality copy can be constructed. Organi-
zations having provided low quality data are noti�ed about higher quality data
that are available in the CIS.

This paper will focus on the design and implementation features of the Data
Quality Broker as a Peer-to-Peer (P2P) system. More speci�cally, the Data Qual-
ity Broker is implemented as a peer-to-peer distributed service: each organization
hosts a copy of the Data Quality Broker that interacts with other copies and has
both the functions of wrapper and mediator. While the functional speci�cation
of the Data Quality Broker is not a contribution of this paper, and has been pre-
sented in [11], its detailed design and implementation features as a P2P system
1 The DaQuinCIS approach has been developed in the context of the project �DaQuin-
CIS - Methodologies and Tools for Data Quality inside Cooperative Information
Systems� (http://www.dis.uniroma1.it/∼dq/).

are a novel contribution of this paper. Moreover, we will present some results
from tests made to prove the e�ectiveness and e�ciency of our system. A �rst
set of experiments has been performed on two real databases owned by Italian
public administrations in order to show the e�ectiveness of the Data Quality
Broker in improving their quality. Also, some experiments will be described that
illustrate the performance features of the Data Quality Broker. These tests show
the system's overhead due to its quality related features.

Apart from the Data Quality Broker, other fundamental components of the
DaQuinCIS system are the Quality Factory service, responsible for evaluating
the quality of data stored within organizations; the Quality Noti�cation Service,
which is a publish/subscribe engine allowing users to be noti�ed on changes of
the quality of speci�c data sets; and the Rating Service, that associates trust
values to data sources in the CIS. These components will be not described in
this paper. The interested reader may �nd further details in [16].

Cooperative
Gateway

Quality Notification
Service (QNS)

Data Quality
Broker (DQB)

Quality
Factory (QF)

back-end systems

internals of the
organizationOrg1

Communication
Infrastructure

Rating
Service

Cooperative
Gateway

Cooperative
Gateway Org2

OrgN

Cooperative
Gateway

Quality Notification
Service (QNS)

Data Quality
Broker (DQB)

Quality
Factory (QF)

back-end systems

internals of the
organizationOrg1

Communication
Infrastructure

Rating
Service

Cooperative
Gateway
Cooperative
Gateway

Cooperative
Gateway
Cooperative
Gateway Org2

OrgN

Figure 1. The DaQuinCIS architecture

1.3 Peer-to-Peer Systems
A peer-to-peer system is every distributed system in which nodes can act both
as clients and servers. In other words, all nodes provide access to some of the
resources they own, enabling a basic form of interoperability.

A large number of systems, having di�erent objectives and functionalities,
could be included in the basic de�nition given above.

In [2], an interesting classi�cation of P2P systems can be found which dis-
tinguishes between three models, namely: (i) a Decentralized Model in which
the architecture is completely decentralized, without common elements shared
by peers; (ii) a Centralized Model in which peers share at least one common
element (e.g. a peer search index); and (iii) a Hierarchical Model, that may be

considered as an intermediate case between the other two, in which some nodes,
called super-peers, assume particular functions such as peer address index or
local control.

We further classify P2P systems, on the basis of their interaction level, into
Loosely and Tightly coupled systems. In the former type of systems, there are
no pre-de�ned data exchanges. Data exchanges only consist of independent re-
quest/reply interactions between peers. In the latter type, exchanges are based
on pre-de�ned processes that cross organizational boundaries. Such processes
can even be transactional, thus originating a very tight interaction among the
di�erent organizations that participate to the system. All data exchanges are
placed within a de�ned process.

For the Data Quality Broker, we have chosen a peer-to-peer architecture
adopting a decentralized model with tightly coupled interactions. The choice of
a P2P architecture for the Data Quality Broker is motivated by the need of
being as less invasive as possible in introducing quality controls in a coopera-
tive system. Indeed, cooperating organizations need to save their independency
and autonomy requirements. Such requirements are well-guaranteed by the P2P
paradigm which is able to support the cooperation without necessarily involving
consistent re-engineering actions; in Section 6, we will better detail this point,
comparing our choice with a system that instead does not adopt a P2P architec-
ture. Decentralization and tightly coupling are both features that well-support
particular type of cooperative systems, such as CISs enabling e-Government [10].

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, an overview of both the
component architecture and the system architecture of the Data Quality Broker
is provided. In Sections 3 and 4, the modules Query Processor and Transport
Engine of the Data Quality Broker are respectively described in detail. The set
of performed experiments is described in Section 5. Finally, related work and
conclusions are presented in Sections 6 and 7.

2 The Data Quality Broker Architecture

In this Section, we provide an overview of the Data Quality Broker from three
di�erent perspectives. First, we summarize the Data Quality Broker functionality
in Section 2.1; then, in Section 2.2, the design of the Data Quality Broker as a
peer-to-peer system is described, while in Section 2.3 the system architecture is
detailed.

2.1 The Data Quality Broker Functionality

In the DaQuinCIS architecture, all cooperating organizations export their appli-
cation data and quality data (i.e., data quality dimension values evaluated for

the application data) according to a speci�c data model. The model for export-
ing data and quality data is referred to as Data and Data Quality (D2Q) model
[11]. The Data Quality Broker allows users to access data in the CIS according to
their quality. Speci�cally, the Data Quality Broker performs two tasks, namely
query processing and quality improvement.

The Data Quality Broker performs query processing according to a global-
as-view (GAV) approach by unfolding queries posed over a global schema, i.e.,
replacing each atom of the original query with the corresponding view on lo-
cal data sources [17,9]. Both the global schema and local schemas exported by
cooperating organizations are expressed according to the D2Q model. The spe-
ci�c way in which the mapping is de�ned stems from the idea of performing a
quality improvement function during the query processing step. Concept from
the global schema may be de�ned in terms of extensionally overlapping concepts
at sources. When retrieving results, data coming from di�erent sources can be
compared and a best quality copy can be constructed. Speci�cally, in our set-
ting, data sources have distinct copies of the same data with di�erent quality
levels, i.e., there are instance-level con�icts. We resolve these con�icts at query
execution time by relying on quality values associated to data: when a set of
di�erent copies of the same data are returned, we look at the associated quality
values, and we select the copy to return as a result on the basis of such values.
More details on the algorithm implemented for processing queries can be found
in [16]. The best quality copy is also di�used to other organizations in the CIS
as a quality improvement feedback.

2.2 The Data Quality Broker Component Architecture

The Data Quality Broker is implemented as a peer-to-peer distributed service:
each organization hosts a copy of the Data Quality Broker that interacts with
other copies (see Figure 2, left side). Each copy of the Data Quality Broker
is internally composed by four interacting modules (see Figure 2, right side).
The modules Query Processor and Transport Engine are general and can be in-
stalled without modi�cations in each organization. We have implemented both
the Query Processor and the Transport Engine; details on their implementa-
tion will be provided in the next sections. The module Wrapper has to be cus-
tomized for the speci�c data storage system. The module Propose Manager is
implemented by each cooperating organization according to the policy chosen
for taking into account quality feedbacks.

The Query Processor performs query processing, as detailed in Section 3.
It unfolds queries posed over the global schema and passes local queries to the
Transport Engine module. On receiving query results, a query refolding phase is
performed, in order to make the execution of the global query possible. A record
matching activity is then performed in order to identify all copies of same data
returned as results. Then, matched results are ranked on the basis of associated
quality. Finally, the Query Processor selects the best quality copy(ies) to be
returned as a result.

The Wrapper translates the query from the language used by the broker to
that of the speci�c data source. In this work the wrapper is a read-only module
that accesses data and associated quality stored inside organizations without
modifying them.

The Transport Engine is a communication facility that transfers queries and
their results between the Query Processor module and data source wrappers.

The Propose Manager receives feedbacks sent to organizations in order to
improve their data. This module can be customized by each organization ac-
cording to the policy internally chosen for quality improvement. As an example,
if an organization chooses to trust quality improvement feedbacks, an automatic
update of databases can be performed on the basis of the better data provided
by improvement noti�cations.

DQB2

ORG2

DQB1

ORG1

DQB3

ORG3

DQB1

Query
Processor

Transport
Engine

DATABASE

Wrapper

Propose
Manager

invoke() propose()

ORG1

DQB2

ORG2

DQB2

ORG2

DQB1

ORG1

DQB1

ORG1

DQB3

ORG3

DQB3

ORG3

DQB1

Query
Processor

Transport
Engine

DATABASE

Wrapper

Propose
Manager

invoke() propose()

ORG1

Figure 2. The Data Quality Broker as a P2P system and its internal architecture

The Query Processor is responsible for query execution. The copy of the
Query Processor local to the user query, receives the query and splits it into
queries local to the sources, on the basis of the de�ned mapping. Then, the local
Query Processor also interacts with the local Transport Engine in order to send
local queries to other copies of the Query Processor and receive the answers.

The Transport Engine provides general connectivity among all Data Quality
Broker instances in the CIS. Copies of the Transport Engine interact with each
other in two di�erent scenarios:

� Query execution: the requesting Transport Engine sends a query to the lo-
cal Transport Engine of the target data source by executing the invoke()
operation (see Figure 2, right side) and asynchronously collects the answers.

� Quality feedback: when a requesting Transport Engine has selected the best
quality result of a query, it contacts the local Transport Engines to enact
quality feedback propagation. The propose() operation (see Figure 2, right
side) is executed as a callback on each organization, with the best quality
selected data as a parameter. The propose() can be di�erently implemented
by each organization: a remote Transport Engine simply invokes this opera-
tion.

Another function performed by the Transport Engine is the evaluation of
the availability of data sources that are going to be queried for data. This fea-
ture is encapsulated into the Transport Engine as it can be easily implemented
exploiting Transport Engine's communication capabilities.

2.3 The Data Quality Broker System Architecture

The Data Quality Broker system architecture is based on web services technolo-
gies. To implement web services, we have chosen the J2EE 1.4 Java Platform,
speci�cally the Java API for XML-based Remote Procedure Call (JAX-RPC)
[8]. In JAX-RPC, request/response of remote methods is performed through the
exchange of SOAP messages over an HTTP connection. Each copy of the Data
Quality Broker is implemented by two web services, namely the Query Process-
ing Web Service and the Data Manager Web Service as shown in Figure 3. In
the Figure, the invoke() operation is executed by a client with a user query as
input, thus making the Quality Processing Web Service call the invoke() oper-
ations, executed by the Data Management Web Services of the remote copies of
the Data Quality Broker (see also Section 4).

DBCLIENT

User Interface

Query Processor

Transport Engine

Propose Manager

DQBi

WRAPPER

Web Service
Invoker

Invoke() Propose()

Quality Processing

Web Service

Data Management

Web Service

Propose(data)

Invoke(query)

Invoke (query)

D2Q

Schema

Figure 3. The Data Quality Broker system architecture

3 The Query Processor Design and Implementation

The Query Processor module of the Data Quality Broker implements the me-
diation function of a data integration architecture [19]. It performs query pro-
cessing according to a GAV approach, by unfolding queries posed over a global
schema. Both the global schema and local schemas exported by cooperating or-
ganizations are expressed according to the D2Q model. The D2Q model is a

semistructured model that enhances the semantics of the XML data model [7]
in order to represent quality data. The schemas and instances of the D2Q model
are almost directly translated respectively into XML Schemas and XML docu-
ments. Such XML-based representations are then easily and intuitively queried
with the XQuery language [4]. The unfolding of an XQuery query issued on the
global schema can be performed on the basis of well-de�ned mappings with local
sources. The exact de�nition of the mapping is beyond the scope of this paper,
but the interested reader can �nd more details in [13].

3.1 Query Processing Steps
Query processing is performed according to the sequence of steps described in
Figure 4.

UNFOLDING REFOLDING

PE
Extraction

Translation

Re-Translation

Materialization

Global Query Execution

Global Query

Queries to
Local Sources

Results from
Local Sources
(Data+Quality)

Query Result

TE

PE
Pre-processing

Framing

Figure 4. Sequence of steps followed in the query processing phase

The entire process may be logically divided into two phases: an Unfolding
phase, which involves a global query and produces a set of sub-queries to be sent
to local organizations, and a Refolding phase, which collects the results of local
sub-queries execution, rewrites the global query and �nally executes the global
query. In the following, we will brie�y revise the steps of these two phases.

The Unfolding phase starts by receiving a global query and analyzing it in or-
der to extract those path expressions that access data from the integrated view.
Only these parts of the query will be actually translated and sent to wrappers for
evaluation. During the path expression extraction phase, the Query Processor
looks for path expressions. The extraction is straightforward most of the times2.
2 In some cases, a nested expression may contain direct or indirect references to data in
the global view. Such cases must be handled in a slightly di�erent way. Our current

The result of the path expression extraction phase is a number of path expres-
sions that have been identi�ed and need to be translated. Before the translation
phase, they are submitted to some preprocessing steps.

The preprocessing step decomposes each path expression into a set of path
expressions whose concatenation yields a result equivalent to that of the original
expression. The elements of this set are still expressed over the global schema
alphabet, and are therefore translated into local organizations alphabets, accord-
ing to the mapping speci�cation.

After translation, sub-queries are ready to be executed at local sources. A
further preliminary step is needed to make possible to re-translate their results.
Usually, results of a query contain nodes and their descendants. Any informa-
tion regarding their ancestors is lost. We adopt a framing mechanism in order
to keep trace of ancestors and thus simplifying the retranslation phase. After
retranslation, framing elements may be discarded and result fragments may be
safely concatenated to form a single document.

After all the steps of the Unfolding phase have been completed, sub-queries
may be passed to a Transport Engine module, which is in charge of redirecting
them to local sources for execution and to subsequently collect results.

The Refolding phase starts with a step in which the received results are re-
translated according to the global schema speci�cation. Results coming from
di�erent organizations answering the same global path expression are then con-
catenated into a single, temporary �le.

Each occurrence of a path expression previously extracted from the global
query is replaced with a special path expression that accesses one of the tempo-
rary �les built during the previous step. In this way, the global query is changed
into a query that only uses local �les, and can then be executed. Execution of a
query yields a result that may contain duplicate copies of the same objects com-
ing from di�erent sources. For each object, a best quality representative must
be chosen or constructed. For this purpose, results undergo a record matching
phase that identi�es semantically equivalent objects and groups them into clus-
ters. Copies in each cluster are compared and a best quality object is either
selected or constructed; more details on this process can be found in [16]. Fi-
nally, the results best �tting with the user query requirements are sent back to
the user. Moreover quality feedbacks are sent to the Transport Engine that is in
charge of propagating them throughout the system.

3.2 Implementation

The Query Processor has been implemented as a Java application. Figure 5
shows the main components; the phases of query processing that are executed
by each component module are also represented.

approach is to split any path expression containing a problematic step and to treat
the two parts separately. Speci�cally, when reverse steps are involved, they must be
taken into account to perform the splitting properly.

UNFOLDING REFOLDING

Query parser

Translator/
ReTranslator

IPSI-XQ

•PE Extraction
•PE Pre-
processing

•Global Query
Execution

•Translation
• Framing
•Re-Translation
•Materialization

Figure 5. Implementation Modules of the Query Processor

The Query Parser performs the �rst query processing steps. To implement it,
a parser for the XQuery language has been generated with the help of the JavaCC
tools. The Translation/Retranslator module manages everything related to the
translation and retranslation of queries and their results. For query execution a
third-party query engine may be used. The engine used in our implementation
is IPSI-XQ [1]. Let us note that we made IPSI-XQ quality-aware by adding
some quality functions to it. These functions are written in XQuery, and allow
to access quality data; they are simply added to the query prolog of each query
submitted to the engine. Further details on this aspect may be found in [13].

4 The Transport Engine Design and Implementation

The Transport Engine component of the Data Quality Broker provides the con-
nectivity and communication infrastructure of the DaQuinCIS system. In Figure
6 the internal components of the TE are shown; the sequence of interactions
among such modules is also depicted.
The Availability Tester module works in background continuously executing
connectivity tests with servers from other organizations. It executes a ping func-
tion on the servers in the cooperative system opening HTTP connections on
them.

The Transport Engine Interface is the module that interfaces the Query Pro-
cessor and the Transport Engine. Speci�cally, it uses a data structure to store
queries and query results, once the latter have been gathered from each organiza-
tion. The data structure is organized as an array: each element is representative
of a single query execution plan and is composed by a list of queries that are
speci�c of such a plan. Such queries are passed by the Query Processor (step 1).
Then, the Transport Engine Interface activates the Execute-Query module with
plans as input parameters (step 2).

The Execute-Query interacts with the Availability Tester module that per-
forms an availability check of the sources involved in the query execution (step

Transport Engine
Interface

Execute-Query

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Availability
Tester

(2)

(4)

(5)

QP

(6)

Propose
Manager

TEi
(1)

(3)

Transport Engine
Interface

Execute-Query

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Availability
Tester

(2)

(4)

(5)

QP

(6)

Propose
Manager

TEi
(1)

(3)

Figure 6. Internal modules of the Transport Engine of organization i

3). Then, the Execute-Query activates the Web Service Invoker module that car-
ries out the calls to the involved organizations (step 4). The call is performed in
an asynchronous way by means of suitable proxy SOAP client. Before invoking
data management web services, an availability check is performed by the Avail-
ability Tester module. When the result of the di�erent plans are sent back, the
Execute-Query module stores them in a speci�c data structure and gives it to
the Transport Engine Interface (step 5) that, in turn, gives it back to the Query
Processor (step 6). The data structure is very similar to the input one; the main
di�erence is the substitution of the query �eld with a special record containing
data and associated quality provided as query answers.

Notice that the same interaction among modules shown in Figure 6 occurs
when quality feedbacks need to be propagated. The Query Processor selects the
best quality copies among the ones provided as query answers and then sends
back the result to the Transport Engine Interface that activates the Execute-
Query module with the best quality copies and the organizations to be noti�ed
about them as input parameters. The best quality copies are then sent by theWeb
Service Invoker. On the receiver organization side, the Execute-Query module
noti�es the Propose Manager modules of involved organizations about the better
quality data available in the system, thus implementing the quality feedback
functionality that the Data Quality Broker provides at query processing time.

Notice that the Execute-Query module, on the sender organization side, also
interacts with the Availability Tester modules: this makes quality noti�cation

not to be performed in a one-step process. Instead, a transaction starts that
commits only when the set of sources that has to be noti�ed is exhausted.

5 Experiments

In this Section, we �rst show the experimental methodology that we adopted in
Section 5.1; then, in Sections 5.2 and 5.3, we show respectively quality improve-
ment experiments and performance experiments.

5.1 Experimental Methodology
We performed two types of experiments. The �rst set shows the e�ectiveness of
the Data Quality Broker to improve data quality. The second set shows some
performance features of the Data Quality Broker.

We used two real data sets, each owned by an Italian public administration
agency, namely:

� the �rst data set is owned by the Italian Social Security Agency, referred to
as INPS (in Italian, Istituto Nazionale Previdenza Sociale). The size of the
database is approximately 1.5 millions of records;

� the second data set is owned by the Chambers of Commerce, referred to as
CoC (in Italian, Camere di Commercio). The size of the database is approx-
imately 8 millions of records.

Some data are agency-speci�c information about businesses (e.g., employees
social insurance taxes, tax reports, balance sheets), whereas others are common
to both agencies. Common items include one or more identi�ers, headquarter and
branches addresses, legal form, main economic activity, number of employees and
contractors, information about the owners or partners.

As far as quality improvement experiments, we have associated quality values
to the INPS and CoC databases. Speci�cally, we have associated completeness
and currency quality values to each �eld value. Completeness refers to the pres-
ence of a value for a mandatory �eld. As far as currency values, timestamps were
already associated to data values in the two databases; such timestamps refer to
the last date when data were reported as current. We have calculated the degree
of overlapping of the two databases that is equal to about 970000 records.

As far as performance experiments, a P2P environment has been simulated.
Each data source has been wrapped by a web service; such web services are de-
ployed on di�erent computers connected by a LAN at 100 Mbps and interacting
each other using the SOAP protocol.

5.2 Quality Improvement Experiments
The experimental setting consists of the two described real data bases that are
queried by a third data source that cooperates with them. We consider how this
CIS behaves with regards to the quality of its data, in two speci�c cases. In the

�rst case, a �standard� system is considered; this system does not perform any
quality based check or improvement action. In the second case, the CIS uses the
Data Quality Broker functionality of query answering and quality improving.

Values for the frequency of queries and updates on the data bases and av-
erage query result size are derived from real use cases. We have estimated the
frequency of changes in tuples stored in the two databases to be around 5000
tuples per week. Average query frequency and query result size are, respectively,
of 3000 queries per week and 5000 tuples per query. In a real setting, updates
are distributed over a week. Anyway, to simplify our experimental setting, we
have chosen to limit updates to the beginning of each week.

We consider how the quality of the entire CIS changes throughout a period of
�ve weeks. Note that such variations are due to both updates on the databases
and exchanges of data between them. In the standard system, these exchanges
are only due to queries. With the Data Quality Broker, each time a query is
performed, an improvement feedback may be propagated. For both the Data
Quality Broker and the standard system, we calculate the overall Quality of the
system, as the percentage of the high quality tuples in the system. We adopt
simpli�ed quality metrics by considering that a tuple has high quality if it is
complete and current on all its �elds. Conversely, a tuple has low quality if it is
not complete and/or current on some �elds.

To clarify how the two systems reacts to updates, we have considered an
update set composed by both high quality and bad quality tuples equally dis-
tributed.

In the Figure 7, the behaviors of the Data Quality Broker and the standard
system with respect to quality improvement are shown. In the standard system
(Figure 7.a), the overall quality is roughly constant, due to the same number
of high quality and low quality tuples spread in the system. Instead, with the
Data Quality Broker (Figure 7.b), the improvement of quality in each period is
enhanced by data quality feedbacks performed by the system and low quality
data are prevented to spread. This causes a growing trend of the Data Quality
Broker curve, in spite of low quality inserted tuples. The actual improvement is
about 0.12%; given that the size of the two databases is about 9.500.000 tuples,
the improvement consists of about 11.500 tuples.

As a further experiment, in Figure 8 we show the detailed behavior of the
Data Quality Broker when considering a single period and varying the number of
performed queries and the size of the result. This curve better shows the typical
trend of the Data Quality Broker improvement due to quality feedbacks.

5.3 Performance Experiments

For the performance set of experiments, we have considered the Data Quality
Broker and the standard system behavior with �ctitious sources, in order to vary
some parameters in�uencing performance experiments.

The �rst performance experiment shows the time overhead of the Data Qual-
ity Broker system with respect to the standard system. In such experiment we

79,5

79,55

79,6

79,65

79,7

79,75

79,8

79,85

79,9

79,95

80

0 7 14 21 28 35

Days

Q
u

a
lit

y
 o

f
th

e
 C

IS
 (

%
)

(a) Data quality improvement in the standard system

79,5

79,55

79,6

79,65

79,7

79,75

79,8

79,85

79,9

79,95

80

0 7 14 21 28 35

Days

Q
u

a
lit

y
 o

f
th

e
 C

IS
 (

%
)

(b) Data quality improvement with the Data Quality
Broker

Figure 7. Data quality improvement in the standard system and with the Data Quality
Broker.

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

10

0 1 2 3 4 5 6 7

Days

N
u

m
b

er
 o

f
Im

pr
o

ve
d

 tu
pl

es
 (

Th
ou

sa
n

ds
)

200 queries, result size: 5000 tuples

300 queries, result size: 5000 tuples

200 queries, result size: 10000 tuples

Figure 8. The Data Quality Broker improvement within a single period while varying
query size and query number

draw a normalized transaction time de�ned by the fraction:

DataQualityBrokerElaborationTime−StandardElaborationtime
StandardElaborationtime

The elaboration time is the time required by the system for processing a
query. The normalized transaction time is drawn when varying the degree of
overlapping of data sources. The overlapping degree signi�cantly in�uences the
Data Quality Broker. Indeed, the Data Quality Broker accomplishes its func-
tionalities in contexts where data sources overlap and such an overlapping can
be exploited to improve the quality of data. The Figure 9 shows how the nor-
malized transaction time varies in dependance on the percentage of data sources
overlapping with two �xed query result sizes, namely q1=1000 tuples, q2= 5000
tuples. The number of overlapping sources is �xed to 3. This means that once
a query is posed over the system, three sources have data that can be provided
as answer to the query, though the system can have a larger number of sources.
The Figure 9 shows the actual time overhead of the Data Quality Broker sys-
tems with respect to a standard system. The Data Quality Broker system has
an acceptable time overhead. The worst depicted case is for the query result size
q2=5000 and a percentage of overlapping equal to 40%; in such a case, there is
a 50% time overhead with respect to the standard system.

The second performance experiment shows the normalized transaction time
with query size varying (see Figure 10). For a �xed degree of overlapping equals
to 15%, we draw the normalized transaction time for three di�erent numbers
of overlapping organizations, namely n1=3, n2=4 and n3=5. This experiment
shows the behavior of the Data Quality Broker when increasing the number of
organizations and the size of queries. Speci�cally, the normalized transaction
time increases slowly with an almost linear trend. The positive result shown in

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25 30 35 40

Percentage of overlapping

N
o

rm
al

iz
ed

 T
ra

n
sa

ct
io

n

T
im

e

5000 records 1000 records

Figure 9. Normalized transaction time wrt percentage of overlapping data sources

Figure 10 is that when the number of overlapping data sources increases, the
trend does not substantially change.

0

0,2

0,4

0,6

0,8

1

5000 7000 9000 11000 13000 15000

Query Size

N
o

rm
al

iz
ed

 T
ra

n
sa

ct
io

n

T
im

e

3 Overlapping Organizations 4 Overlapping Organizations

5 Overlapping Organizations

Figure 10. Normalized transaction time wrt query sizes

6 Related Work

Data quality has been explicitly addressed in a few works. In [15], an algorithm
for querying for best quality data in a LAV integration system is proposed.
The mapping between the local schemas and the global schema is expressed by
means of assertions called Query Correspondence Assertions (QCA's). Quality
values are statically associated to QCA's and to data sources. Instead, some
quality values are associated to user queries at query time. In the Data Quality
Broker framework, we share with [15] the idea of querying for best quality data.
However, the main di�erence of our work with respect to [15] is the semantics
of our system. Our aim is not only querying, but also improving quality of data.
To such a scope, the query processing step has a speci�c semantics that allows
to perform quality improvement on query results.

The MIT Context Interchange project (COIN) [6] is based on the idea of
modeling a �context" for integrating heterogeneous sources. Such a context con-
sists of metadata that allows for solving problems, such as instance level con�icts
that may occur in the data integration phase. An integration system based on
the LAV approach implements query processing with contexts. The Data Qual-
ity Broker di�ers mainly for considering a much more general and explicit way

of representing quality of data. Instead, the COIN approach focuses only on one
aspect of data quality, namely data interpretability.

In [12], the basic idea is querying web data sources by selecting them on the
basis of quality values on provided data. Speci�cally, the authors suggest to pub-
lish metadata characterizing the quality of data at the sources. Such metadata
are used for ranking sources, and a language to select sources is also proposed.

In the Data Quality Broker system, we associate quality to data (at di�erent
granularity levels) rather than to a source as a whole. This makes things more
di�cult, but allows to pose more speci�c queries. For instance, the Data Quality
Broker easily treats the quite common cases in which a source has some data
which have a low quality and some other ones that have instead a higher quality,
by making the source be an actual data provider only for better quality data.
No improvement feature is present in [12].

As an e-Government initiative, the Italian Public Administration in 1999
started a project, called �Services to Businesses�, which involved extensive data
reconciliation and cleaning [3]. The approach followed in this project consisted
of three di�erent steps: (i) linking once the databases of three major Italian
public administrations, by performing a record matching process; (ii) correct-
ing matching pairs and (iii) maintaining such status of aligned records in the
three databases by centralizing record updates and insertions only on one of
the three databases. This required a substantial re-engineering of administrative
processes, with high costs and many internal changes for each single adminis-
tration. Di�erently from the approach adopted in the �Services to Businesses�
project, the choice of implementing the Data Quality Broker functionality in a
completely distributed way through a P2P architecture avoids bottlenecks on a
single cooperating organization. Even more important, no kind of re-engineering
actions need to be engaged when choosing to use the Data Quality Broker, as
query answering and quality improvement can be performed with a very low
impact in terms of changes on cooperating organizations.

7 Concluding Remarks

In this paper, we have described the detailed design and implementation of the
Data Quality Broker service, and in particular two modules, namely the Query
Processor and the Transport Engine. We have also described some experiments
that validate our approach with respect to quality improvement e�ectiveness.
Such experiments show that the Data Quality Broker succeeds in controlling
and improving quality of data in a CIS. Moreover, when compared to a standard
system, i.e. a system with no quality management features, the Data Quality
Broker exhibits a limited performance degradation. Such a performance degra-
dation is not a serious problem in speci�c scenarios, such as e-Government, in
which the quality of data is the main enabling issue for service provisioning.
Indeed, we remark that such scenarios are the reference ones for the DaQuinCIS
system. Future works will include the deep validation based on the adoption of
the proposed P2P system in some Italian e-Government pilot initiatives.

References

1. IPSI-XQ, Available from http://ipsi.fhg.de/oasys/projects/
ipsi-xq/index_e.html.

2. K. Aberer and Z. Despotovic, Managing Trust in a Peer-2-Peer Information Sys-
tem, Proceedings of the 10th International Conference on Information and Knowl-
edge Management (CIKM'01), Atlanta, Georgia, USA, 2001.

3. M. Bertoletti, P. Missier, M. Scannapieco, P. Aimetti, and C. Batini, Improv-
ing Government-to-Business Relationships through Data Reconciliation and Pro-
cess Re-engineering, Advances in Management Information Systems-Information
Quality Monograph (AMIS-IQ) Monograph (Richard Wang, ed.), Sharpe, M.E.,
to appear, 2004. Shorter version also in ICIQ 2002.

4. S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J. Robie, and J. Simèon,
XQuery 1.0: An XML Query Language, W3C Working Draft. Available from
http:///www.w3.org/TR/xquery, November 2003.

5. M. Bouzeghoub and M. Lenzerini (editors), Special Issue on Data Extraction,
Cleaning, and Reconciliation, Information Systems 26 (2001), no. 8.

6. S. Bressan, C.H. Goh, K. Fynn, M.J. Jakobisiak, K. Hussein, K.B. Kon, T. Lee,
S.E. Madnick, T. Pena, J. Qu, A.W. Shum, and M. Siegel, The COntext INter-
change Mediator Prototype, Proceedings ACM SIGMOD International Conference
on Management of Data (SIGMOD 1997), Tucson, Arizona, USA, 1997.

7. M.F. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walshand,
XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft. Available from
http:///www.w3.org/TR/query-datamodel, November 2002.

8. JSR-101 Expert Group, Java(tm) api for xml-based remote procedure call (jax-rpc)
speci�cation version 1.1, Sun Microsystems, Inc., October 2003.

9. M. Lenzerini, Data Integration: A Theoretical Perspective, Proceedings of the 21st
ACM Symposium on Principles of Database Systems (PODS 2002), Madison, Wis-
consin, USA, 2002.

10. M. Mecella and C. Batini, A Review of the First Cooperative Projects in the Italian
e-Government Initiative, Proceedings of the 1st IFIP Conference on e-Business, e-
Commerce, e-Government, Zurich, Switzerland, 2001.

11. M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci, and C. Batini,
The DaQuinCIS Broker: Querying Data and their Quality in Cooperative Infor-
mation Systems, Journal of Data Semantics 1 (2003), no. 1. Shorter version also
appeared in CoopIS 2002.

12. G. Mihaila, L. Raschid, and M. Vidal, Using Quality of Data Metadata for Source
Selection and Ranking, Proceedings of the 3rd International Workshop on the Web
and Databases (WebDB'00), Dallas, Texas, 2000.

13. D. Milano, M. Scannapieco, and T. Catarci, Quality-driven Query Processing of
XQuery Queries, Submitted to International Conference, 2004.

14. J. Mylopoulos and M.P. Papazoglou (eds.), Cooperative Information Systems (Spe-
cial Issue), IEEE Expert Intelligent Systems & Their Applications 12 (1997), no. 5.

15. F. Naumann, U. Leser, and J.C. Freytag, Quality-driven Integration of Heteroge-
nous Information Systems, Proceedings of 25th International Conference on Very
Large Data Bases (VLDB'99), Edinburgh, Scotland, UK, 1999.

16. M. Scannapieco, A. Virgillito, M. Marchetti, M. Mecella, and R. Baldoni, The
DaQuinCIS architecture: a Platform for Exchanging and Improving Data Quality
in Cooperative Information Systems, Information Systems (to appear, 2004).

17. J.D. Ullman, Information Integration Using Logical Views, Proceedings of the 6th
International Conference on Database Theory (ICDT '97), Delphi, Greece, 1997.

18. R.Y. Wang and D.M. Strong, Beyond Accuracy: What Data Quality Means to Data
Consumers, Journal of Management Information Systems 12 (1996), no. 4.

19. G. Wiederhold,Mediators in the Architecture of Future Information Systems, IEEE
Computer 25 (1992), no. 3.

