
XML Document Transformation with

Conditional Random Fields

Rémi Gilleron, Florent Jousse, Isabelle Tellier, Marc Tommasi

INRIA Futurs and Lille University, LIFL, Mostrare Project
first.last@univ-lille3.fr — http://www.grappa.univ-lille3.fr/mostrare

Abstract. We address the problem of structure mapping that arises
in xml data exchange or xml document transformation. Our approach
relies on xml annotation with semantic labels that describe local tree
editions. We propose xml Conditional Random Fields (xcrfs), a frame-
work for building conditional models for labeling xml documents. We
equip xcrfs with efficient algorithms for inference and parameter esti-
mation. We provide theoretical arguments and practical experiments that
illustrate their expressivity and efficiency. Experiments on the Structure
Mapping movie datasets of the inex xml Document Mining Challenge
yield very good results.

1 Introduction

Semi-structured documents in xml are omnipresent in today’s computer science
applications, since xml has become the standard format for data exchange. The
essence of xml documents is their tree structure. Machine learning tasks dealing
with xml structures should account for this fact. This is why tree labeling has
become one of the most basic tasks in the xml context. It arises in information
extraction from structured documents on the Web. The basic idea is to label
nodes that are selected for some role positively and all others negatively. An-
other application is learning-based schema matching [1], where xml data for a
source schema are labeled w.r.t. a target schema. In this case, matches are to
be elaborated into mappings to enable xml data translation. In this paper, we
consider the problem of xml document transformation which is ubiquitous in
xml document engineering. For the inex structure mapping task, the problem
is to learn to transform layout-oriented html documents into content-oriented
xml documents. The transformation task can be modeled by a labeling task, by
assigning an operational semantic (local deletion, local inversion, etc.) to every
element of the labeling alphabet. Thus we reduce the problem of learning to
transform in the problem of learning to label.

The labeling task can be described as follows: given an observable x, the
problem consists in finding the most likely labeling y, of the same dimension.
Solutions to this problem based on graphical generative models try to evalu-
ate from the labeled examples the joint probability distribution p(y,x). As we
are only interested in labeling, we prefer to use conditional models that model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357409223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the conditional distribution p(y|x) directly. Thus, for learning to label trees,
we propose to extend on Conditional Random Fields (crfs) introduced in [2].
Until now, crfs have mainly been applied to sequence labeling tasks occurring
in computational linguistic applications such as part-of-speech tagging, shallow
parsing, but also to information extraction [3–7]. For an overview, see [8].

In this paper, we develop xcrfs, a new instance of crfs that properly ac-
counts for the inherent tree structure of xml documents. As a matter of fact, in
an xml document, every node has an unlimited number of ordered children, and
a possibly unbounded number of unordered attributes. Independence conditions
in crfs are governed by an undirected graph over random variables for label-
ings. The undirected graph for xcrfs is defined by: for ordered (parts of the)
trees, the maximal cliques of the graph are all triangles consisting of a node and
two adjacent children; for unordered (parts of the) trees, the maximal cliques
are edges consisting of a node and one child. With such an undirected graph,
in xcrfs, p(y|x) can be decomposed into a product of potential functions, each
applying on a one-node clique, or an edge clique or a triangular clique. And
these potential functions are themselves defined thanks to feature functions and
parameters.

A contribution of this paper is to adapt the technical apparatus associated
with crfs to this new kind of dependence relationships. We define efficient algo-
rithms for the inference problem and the parameter estimation problem in xcrfs.
Because of the unranked property of xml trees, algorithms for xcrfs implement
two recursions: a vertical recursion following the child ordering and an horizontal
recursion following the sibling ordering using both forward-backward variables
and inside-outside variables.

We have implemented xcrfs in a freely available system that allows to (learn
to) label xml documents. In the experiments section, we evaluate our model on
the Movie datasets from the Structure Mapping task of the inex xml Document
Mining challenge. This task consists in transforming layout-oriented html doc-
uments into data-oriented xml documents. To perform this task, we model such
a transformation by a labeling of the html documents. We evaluate both the
quality of the labeling of the html documents and the complete transformation.
Results show that xcrfs perform very well on this task.

Related work

The idea to define crfs for tree structured data has shown up recently. Ba-
sically, works differ in the graphical structure of crfs. In [9], output variables
are independent. Other approaches such as [10, 11] define the graphical structure
on rules of context-free or categorial grammars. [12] have considered discrimina-
tive context-free grammars, trying to combine the advantages of non-generative
approaches (such as crfs) and the readability of generative ones. All these ap-
proaches apply to ordered ranked rather than unranked trees. As far as we know,
their graphical models are limited to edges, not accounting for father-child-next-
sibling triangles as in xcrfs.

xml data translation takes place in the domain of semantic integration. An
overview can be found in [1]. For schema mapping, it has been shown [13] that



xcrfs can be compared with lsd [14]. But, applications of crfs to more complex
tasks and a comparison with recent systems for schema matching remain to
be done. For information extraction, systems [15–20] deal with semi-structured
input, mainly html data, but, to the best of our knowledge, structured output
have not been considered so far by machine learning techniques.

For xml document transformation, Chidlovskii and Fuselier [21] address the
problem of semantic annotation of html documents according to a target xml

schema. They use a two-step procedure: terminals (leaves of the output doc-
ument) are predicted by a maximum entropy classifier, then the most likely
output tree is generated using probabilistic parsing for probabilistic context-free
grammars. They suppose that leaves are in the same order in the input and the
output document. The complexity of probabilistic parsing is cubic in the num-
ber of leaves, and therefore the system is not appropriate for large xml trees.
Gallinari et al have considered generative stochastic models in [22]. Such models
need to model input documents and to perform the decoding of input documents
according to the learned model. The complexity of the decoding procedure could
be prohibitive for large xml documents.

2 Conditional Random Fields for xml Trees

2.1 Conditional Random Fields

We refer to [8] for a complete introduction to crfs. A crf is a conditional
distribution with an associated graphical structure. Let X and Y be two random
fields, let G be an undirected graph over Y. Let C be the set of all cliques of G.
The conditional probability distribution is of the form:

p(y|x) =
1

Z(x)

∏

c∈C

ψc(yc,x)

where ψc is the potential function for the clique c and Z(x) is a normalization
factor. Each potential function has the form:

ψc(yc,x) = exp
(

∑

k

λkfk(yc,x, c)
)

for some real-valued parameter vector Λ = {λk}, and for some set of real-valued
feature functions {fk}. This form ensures that the family of distributions param-
eterized by Λ is an exponential family. The feature function values only depend
on yc, i.e. the assignments of the random variables in the clique c, and the whole
observable x.

The two main problems that arise for crfs are:

Inference: given a new observable x, find the most likely labeling ŷ for x, i.e.

compute ŷ = arg max
y
p(y|x).

Training: given a sample set S of pairs {(x(i),y(i))}, learn the best real-valued
parameter vector Λ according to some criteria. In this paper, the criterion
for training is the maximum conditional penalized log-likelihood.



Linear chain crfs
Y1 · · · Yt−1 Yt Yt+1 · · · YTIn first-order linear chain crfs, the max-

imal cliques of the graph are pairs of consec-
utive nodes as depicted on the right. Thus, there are feature functions over node
labels called node features, and feature functions over pairs of labels called edge
features. For ease of notation, node features and edge features are merged and
fk denotes the kth feature. The conditional probability can be written as:

p(y|x) =
1

Z(x)
exp

(

T
∑

t=1

∑

k

λkfk(yt−1, yt,x, t)
)

(2.1)

In first-order linear chain crfs, the inference task can be performed effi-
ciently and exactly by the standard dynamic-programming Viterbi algorithm.
For training linear chain crfs, the problem is, given an input sample S, to learn
the parameter vector Λ which maximizes the log-likelihood. The parameter vec-
tor can be learnt using traditional log-likelihood maximization methods. Since
the optimal parameters cannot be found analytically, gradient ascent techniques
are used. [23] has experimentally shown that the most effective technique in the
case of linear-chain crfs is the limited memory BFGS algorithm (L-BFGS) [24].
Both the function Z(x) in the likelihood and the marginal distributions in the
gradient can be computed by forward-backward techniques.

2.2 XCRFs: Conditional Random Fields for xml Trees

xml documents are represented by their dom tree. We only consider element
nodes, attribute nodes and text nodes of the dom representation. Other types
of nodes1 are not concerned by labeling tasks. Attribute nodes are unordered,
while element nodes and text nodes are ordered. We identify a node by a position
which is an integer sequence n and we denote by xn the symbol in a tree x in
position n. The k ordered children of a node in position n are identified by
positions n.1 to n.k. As a running example, consider the two xml trees x (on
the top) and y (on the bottom) in Figure 1. The set of nodes for both trees
is {ǫ, 1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, 2.4}, ǫ being the root. The symbol in position 2.1
in x is td; in its labeling y, the label in position 2.1 is name. {2.1, 2.2, 2.3, 2.4}
is the set of children of 2. Ordered children (2.1, 2.2 and 2.3) are listed before
unordered children (2.4).

With every set of nodes, we associate a random field X of observable variables
Xn and a random field Y of output variables Yn where n is a position. The
realizations of Xn will be the symbols of the input trees, and the realizations
of Yn will be the labels of their labelings. In the following, we freely identify
realizations of these random fields with ordered unranked trees.

For their ordered parts, the structure of xml trees is governed by the next-
sibling and the child orderings. We translate this structural property into xcrfs
defining maximal cliques of the undirected graph over an ordered unranked tree

1 comments, processing instructions...



table

tr

td td

tr

td td td @class

Yǫ

Y1

Y1.1 Y1.2

Y2

Y2.1 Y2.2 Y2.3 Y2.4

account

client

name address

product

name price number id

Fig. 1. An ordered unranked tree, its graph and its labeling.

y to be triangles (Yn, Yn.i, Yn.(i+1)), for i < o, where o is the number of ordered
children of n. For unordered parts of xml trees, the graph only includes pairs
(Yn, Yn.i) because the next-sibling ordering is meaningless. In Fig. 1, we show the
graph for our running example. Feature functions are thus defined over nodes
(node features), pairs of nodes (edge features) and triples of nodes (triangle fea-
tures). Triangle feature functions have the form: fk

(

yn, yn.i, yn.(i+1),x, (n, n.i, n.(i+

1))
)

. Their arguments are the labels assigned to the node n and to two of its con-
secutive children n.i and n.(i+1), the whole observable x, and the identifier of the
clique in the tree (n, n.i, n.(i+1)). In fact, a triangular clique (n, n.i, n.(i+1)) can
be shortly identified by n.i. We denote by C the set of cliques in the dependency
graph. Every feature function fk is associated with a real-valued parameter λk,
defining the vector Λ = {λk}. It is worth pointing out that our model uses the
same set of feature functions with the same parameters for every clique in the
graph.

The introduction of triangle features is the main difference between linear
chain crfs and xcrfs. Training and inference algorithms need to be adapted
because these triangle features bring both a horizontal and a vertical recursion in
the graph structure. Therefore for ease of notation, we only consider such triangle
features in the formal definition of the algorithms. The conditional probability
distribution for an xcrf can be written as:

p(y|x) =
1

Z(x)

∏

n.i∈C

ψn.i(yn, yn.i, yn.(i+1),x) (2.2)

where

ψn.i(yn, yn.i, yn.(i+1),x) = exp
(

∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i)
)

(2.3)

and
Z(x) =

∑

y

(

∏

n.i∈C

ψn.i(yn, yn.i, yn.(i+1),x)
)

(2.4)



2.3 Algorithms for XCRFs

Inference Algorithm for Z(x) The normalization factor Z(x) must be com-
puted to compute the normalized conditional probability p(y|x) and to com-
pute the likelihood in training crfs. In xcrfs, Z(x) is defined in Eq. (2.4)
as a sum over all possible labelings. It can be efficiently computed using dy-
namic programming. To do so, for every node n and every label y ∈ Y, we
define the inside variable βn(y) as the sum of the unnormalized probabili-
ties over all the possible labelings of the subtree rooted in node n in which
n is labeled with y. The recursive definition of βn(y) is 1 if n is a leaf, and

βn(y) =
∑

(y1,...,ym)∈Ym

(

∏m

i=1 βn.i(yi)ψn.i(y, yi, yi+1,x)

)

if n has m children.

Clearly, the sum over all possible label assignments for the children of n again
leads to a combinatorial explosion. Therefore we also use a dynamic program-
ming technique for the horizontal recursion. For every node n with m children,
for every k ≤ m, and for every pair of labels (y, y′) ∈ Y2, we define the back-

ward variable β′
n,k(y, y′) as the sum of the the unnormalized probabilities over

all labelings of the subtree rooted in the node n whose k − 1 first subtrees
are deleted and where n is labeled with y and n.k with y′. If k = m we have
β′

n,k(y, y′) = βn.m(y′) , and otherwise

β′
n,k(y, y′) = βn.k(y′)

∑

y′′∈Y

(

ψn.k(y, y′, y′′,x)β′
n,k+1(y, y

′′)
)

Therefore, βn(y) =
∑

y,y1∈Y×Y

β′
n,1(y, y1)

Thus, Z(x) =
∑

y∈Y βǫ(y) can be computed in O(N ×M3) where N is the
number of nodes of x and M is the number of labels in Y.

Inference for XCRFs When computing Z(x), the aim was to compute the sum
of the unnormalized conditional probabilities for all labelings. Here, we want to
compute the most likely labeling. The Viterbi recursion is obtained by replacing
the sum function by the max function in the inside and backward recursions of
the computation of Z(x). Finding the most likely labeling ŷ then consists in the
memorization of the Viterbi path associated with the maximum unnormalized
conditional probability.

Training XCRFs Training an xcrf means learning its parameter vector Λ. We
are given iid training data S of pairs of the form (observable tree, labeled tree).
Parameter estimation is typically performed by penalized maximum likelihood.
The conditional log-likelihood, defined as LΛ =

∑

(x,y)∈S log p(y|x;Λ), is used.
This function is concave and the global optimum is the vector of parameters with
which the first derivative is null. However, finding analytically this derivative
with respect to all the model parameters is impossible. A gradient ascent (L-
BFGS), which requires the calculation of the partial derivatives of LΛ for each



parameter, is therefore used. Replacing p(y|x;Λ) by its definition (c.f. equation
(2.2)), LΛ becomes:

LΛ =
∑

(x,y)∈S

∑

n.i∈C

∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i) −
∑

(x,y)∈S

logZ(x) . (2.5)

Thus partial derivatives can be written as:

∂LΛ

∂λk

=
∑

(x,y)∈S

∑

n.i∈C

fk(yn, yn.i, yn.(i+1),x, n.i)−

∑

(x,y)∈S

∑

n.i∈C

∑

y1,y2,y3

P (y1, y2, y3)fk(y1, y2, y3,x, n.i)

where P (y1, y2, y3) = p(Yn = y1, Yn.i = y2, Yn.i+1 = y3|x;Λ). The computa-
tion of the first term is relatively straightforward. On the opposite, calculating
the second one, i.e. the marginal probability for a given clique, is more difficult
since it requires to sum over all possible labelings outside the clique. To make
these computations tractable, we introduce a dynamic programming algorithm
using both forward-backward variables and inside-outside variables.

For every node n and every label y, the outside variable αn(y) is the sum of
all the unnormalized probabilities over all the possible labelings of the context
of the subtree rooted at the node n, in which n is labeled with y ∈ Y. We have

αn(y) = 1 if n is the root and αn(y) =
∑

y′∈Y αn′(y′)βn′ (y′)
βn(y) if n = n′.i.

The forward variable α′
n,k(y, y′) is introduced for horizontal recursion. It is

defined as the sum of the unnormalized probabilities over all labelings of the
subtree rooted in the node n whose (m − k + 1) last subtrees are deleted and
where n is labeled with y and n.k with y′. We have α′

n,k(y, y′) = 1 when k = 1,
otherwise

α′
n,k(y, y′) =

∑

y′′∈Y

(

βn.(k−1)(y
′′)ψn.k−1(y, y

′′, y′,x)α′
n,k−1(y, y

′′)
)

Then, the marginals can be computed by:

P (y1, y2, y3) =
1

Z(x)
αn(y1)ψn.i(y1, y2, y3,x)

α′
n,n.i(y1, y2)βni(y2)β

′
n,n.(i+1)(y1, y3) (2.6)

Complexity Issues and Discussion We have shown that Z(x) can be com-
puted in O(N ×M3) where N is the number of nodes of x and M is the number
of labels in Y. This result can be extended to the computation of the marginal
probabilities in the gradient. This leads to an overall complexity for training in



O(N ×M3 ×G) where N is the total number of nodes of the trees in the input
sample S, M is the number of labels in Y, and G is the number of gradient steps.
For linear chain crfs only a factor M2 occurs.

We have presented the inference algorithms for xcrfs as extensions of the
algorithms for linear chain crfs. An alternative approach would be to consider
xcrfs as a particular case of general crfs. Indeed, the treewidth of undirected
graphs for xcrfs is 2. For every graph associated with an xcrf, a junction tree
can be computed in linear time. Then the belief propagation algorithm can be
applied [25, 7]. The inference algorithms for xcrfs, given in the previous section,
can be considered as inference algorithms for general crfs using the knowledge
of the tree-shaped graphical structures associated with xcrfs.

3 Experiments with the XCRF System

3.1 The XCRF System

The xcrf model is implemented by a freely available JAVA library 2. For train-
ing, parameters are estimated by maximizing the penalized log-likelihood. The
L-BFGS gradient ascent package from the “RISO Project”3 is used. The sys-
tem allows to label element, attribute and text nodes of xml trees. An xcrf

is specified by an xml file. Feature functions are 0-1 valued functions defined
by xpath expressions. There are node features, edge features, attribute features
(edge features for unordered children), and triangle features. An example of tri-
angle feature is given in Fig. 2.

<Feature name="f_title" weight="7.46" xsi:type="TriangleFeature">

<Y value="0" />

<Yi value="title" />

<Yj value="year" />

<TestX value="parent::*/name() = ’tr’"/>

<TestX value="name() = ’td’"/>

<TestX value="name(following-sibling::*[1])=’td’"/>

</Feature>

Fig. 2. XML definition of a feature function of weight 7.46 defined by
ftitle(yn, yn.i, yn.(i+1),x, n.i) = 1 if yn = ⊥, yn.i =’title’, yn.(i+1) =’year’, xn =’tr,
xn.i =’td’, xn.(i+1) =’td’

3.2 Feature Generation

In the following experiments, the set of feature functions we used were auto-
matically generated from a set of labeled documents, typically the learning set.

2 http://treecrf.gforge.inria.fr/
3 http://riso.sourceforge.net/



Attribute Description

nbChildren number of children of the node
depth depth of the node

childPos node is the ith child of its father
Table 1. Structure Attributes computed during the preprocessing

Attribute Description

containsComma text contains a comma
containsColon text contains a colon

containsSemiColon text contains a semi-colon
containsAmpersand text contains an ampersand

containsArobas text contains an arobas
isUpperCase text is in upper case

firstUpperCase first letter is in upper case
onlyDigits text is made of digits
oneDigit text is a single digit

containsDigits text contains digits
rowHeader text value of the row

header in a table (html only)
columnHeader text value of the column

header in a table (html only)
Table 2. Text Attributes computed during the preprocessing

There are essentially two kinds of generic feature functions: structure features
and attribute features.

Before the automatic generation of the feature functions, a first step consists
in preprocessing additional attributes. These attributes are purely informative.
Therefore, during the experiments, the xcrfs do not consider them as regular
nodes and do not attempt to label them. These preprocessed attributes give
additional information on the structure of the trees and basic information on the
content of the text nodes. Tables 1 and 2 show the different kind of information
given by these preprocessed attributes.

The first kind of automatically generated feature functions are structure fea-
tures. These feature functions are node features, edge features and triangle fea-
tures testing solely the node symbols (nodes can be element, attribute or text
nodes) and labels. Let 1p be 1 if and only if predicate p is true. If the tree in
Figure 3 is part of the learning set, the following features are generated:

– Node features testing the label of node n its the node symbol, e.g. 1(yn=title)(xn=td)

– Node features similar to the previous one, but testing if the node symbol is
different from the one in the learning set, e.g. 1(yn=title)(xn 6=td)

– Edge features testing the labels of a node n and one of its children i and the
node symbols, e.g. 1(yn=⊥)(yi=title)(xn=tr)(xi=td)

– Triangle features on the same principle as the edge features above, but testing
on two consecutive children i and j of node n:
1(yn=⊥)(yi=title)(yj=year)(xn=tr)(xi=td)(xj=td)



table

tr

td td

⊥

⊥

title year

Fig. 3. Feature generation example

The second kind of feature functions that are generated are attribute features.
These feature functions are based on attribute values. The attributes used to
generate these features are both the ones originally in the corpus, for instance
the class attribute of a div element in html, or attributes resulting from the
preprocessing performed earlier. With all these attributes, for each node in the
tree we generate feature functions testing the label assigned to this node and one
or two attributes of the node itself, its father, grandfather, great-grandfather,
previous sibling and next sibling. For instance, on the example in Figure 3, the
following feature functions are generated:

1(yn=title)(father(xn)@nbChildren=2)(xn@childPos=1)

1(yn=title)(x@ndepth=2)

With such a generation procedure, we get feature functions that are mostly
domain independent. However, they prove to be a very relevant set of feature
functions when dealing with well-structured xml documents.

3.3 Experiments on the Structure Mapping Task

This second experiment is on a bigger scale. It was conducted as part of the Struc-
ture Mapping task of the xml Document Mining Challenge [26]. The Structure
Mapping task consists in transforming layout-oriented html documents into
content-oriented xml documents. The dataset is made of html descriptions of
movies taken from the website allmovie4 and their xml counterpart taken from
the IMDB repository5. Each document gives thorough information about a single
movie such as the title, the director, the cast and crew, related movies, etc. Since
the dtd of the output xml documents was not given as part of the challenge,
we used the algorithm given in [27] to build it. The dtd contains 63 elements,
among which 39 contain textual information.

There are two tasks with two different input html datasets, called html1
and html2. Both html datasets describe the same movies, but the documents in
html1 contain only the html table describing the movie, whereas the documents
in html2 also contain useless information. Documents from the html1 dataset are
therefore subtrees of the documents in the html2 dataset. This makes the task a
bit harder for html2. The average number of nodes in a document is 470 in the
html1 dataset, and 530 in the html2 dataset.

4 http://www.allmovie.com/
5 http://www.imdb.com



Method We chose to model a transformation from an html document into an
xml document by a labeling of the input html document.

In the html documents, a text node can contain several distinct information,
which will appear in different text nodes in the output xml document. For
instance, the release date, the movie format and the movie length are all located
in the same text node of the html document. Therefore, as a preprocessing step,
text nodes are tokenized in several nodes.

The labels used in the labeling task are: the names of the 39 elements of
the output dtd which contain textual information, e.g. director, synopsis;
the labels indicating that a node is part of a set of consecutive nodes cor-
responding to a single element of the output dtd,e.g. director continued,
synopsis continued; the label ⊥ for useless nodes. This leads to a total num-
ber of 79 labels. However, only 66 of them are useful, since some information
are never split over several text nodes in the html documents (e.g. the year of
release, the duration, etc.).

A very simplified example of a labeled html tree is given in Figure 4. The xml

output documents are then computed using a simple post-processing function
which takes a labeled html document and the output dtd as parameters.

table

tr

td

b

The Big Sleep

tr

td

Director:

td

H. Hawks

⊥

⊥

⊥

title

The Big Sleep

⊥

⊥

Director:

director

H. Hawks

Fig. 4. a (simplified) HTML input tree (left) and its labeling (right) for the Structure
Mapping task of the XML Mining challenge

We assume that the text nodes appear in the same order in the input html

document and in its output xml counterpart, which is the case in this Structure
Mapping task. With this assumption, one can easily build the learning set of
labeled html documents from the original learning set of (html, xml) pairs of
documents. Indeed, automatically finding the labeling of the html document
corresponding to the transformation is straightforward. One only has to parse
both the html and the xml documents at the same time and label the text
leaves of the html document which occur in the xml document.

For the testing phase of our experiments, the assumption we made also gives
us the ability to easily transform an html document into an xml document.
Indeed, we first have to label the html document using xcrfs. Then, from this
labeled document, and knowing the dtd of the output xml document and the
fact that the text leaves will appear in the same order, we can build this output
using a very simple xslt stylesheet or an easily writable script.

An xcrf is defined with more than 7000 feature functions over the set of 66
labels. It should label html trees of average size 950 nodes (after tokenization).



A naive application should fail for complexity reasons: 7000×950×663 ≈ 2.1012.
Therefore, we had to use a technique called “sequential partition composition”
of xcrfs to perform this task.

This technique consists in breaking the complexity factor M3, where M is
the number of possible labels in the xcrf, by combining several xcrfs where
M is considerably smaller than the original one. Let Y be the original set of
labels. First, we need to build a partition Y1, . . . ,Yk of Y. The choice of this
partition is guided by the dtd of the output xml documents. For instance, all
the information about an award (name, location and year) are in a single part,
whereas the title of the movie is alone, since it is not directly related to any
other information. With this policy, we obtained a partition of k = 30 subsets
of labels containing from 2 to 6 labels.

Then, we define k xcrfs over the k parts of the partition. To label a docu-
ment, these k xcrfs are applied sequentially, following the order on the subsets
of labels. At step i, the xcrf labels the html document with the labels in Yi.
Since the xcrfs are applied sequentially, labeling at step i can use the labelings
performed at the previous steps j, where j < i. Previous labeling are encoded in
the html document. This allows for long distance dependencies between these
labels. Once the html documents have been labeled by the k xcrfs, for some
nodes, two or more labels might have been predicted by different xcrfs. In this
case, a choice needs to be made. We decided to choose the label with the higher
marginal probability.

The training of the k xcrfs is also performed sequentially. When training
the ith xcrf, the learning set is composed of the html documents enriched with
the labels of the previous subsets of labels Yj , where j < i.

Using this method, the xcrfs were trained on a learning set of 692 labeled
documents. We evaluated them on a testing set of 693 documents. We first
evaluate the quality of the labeling performed by the xcrf. Then, we evaluate
the performance of our method on the overall html to xml transformation task.

Evaluation of the xcrf for the labeling task To evaluate the quality of the
labeling performed by the xcrfs, we measure precision, recall and F1-measure
for all the 66 labels in the task. In Table 3, we only show the micro-average
of these results. Since these results might be biased by the great proportion of
nodes labeled with ⊥, i.e. nodes which are not used in the final transformation,
we also give the micro-average without this insignificant label.

Dataset Average method Rec. Prec. F1

html1 Micro 93.00 94.11 93.55
Micro (without ⊥) 94.96 77.09 85.10

html2 Micro 92.41 93.10 92.76
Micro (without ⊥) 94.10 69.95 80.24

Table 3. Evaluation of the labeling on the Structure Mapping task



First, it is worth noticing that the micro-averaged results over all the labels
are very good on both versions of the dataset. Both the recall and the precision
are above 92%, which proves the quality of the labeling. When averaging over
all the labels except ⊥ (i.e. only on the significant labels), two behaviours occur.
On the one hand, the recall increases, meaning that most of the significant
information in the html documents are correctly identified. On the other hand,
there is a drop in precision. The explanation is that some useless information
sometimes occur in the html documents in a structural context very similar
to that of significant information and the xcrfs can not make the difference
between them. This drop is slightly more important with the html2 dataset.
This is not a surprise since this dataset contains more useless information than
html1. This drop could be avoided by using feature functions which uses longer
distance dependencies on the observation.

Evaluation of the html to xml transformation Now, we evaluate the overall
quality of the complete transformation from the html documents to their xml

counterpart. This transformation is performed in two steps: first, the html doc-
uments are labeled with xcrfs; then a simple transformation using the output
dtd and the labeled html documents produces the predicted xml documents.
The evaluation is therefore a comparison between the predicted xml documents
and the correct ones. To compare them, we compute the F1-measure according
to two different criteria:

– Paths: for each text node in the predicted xml document, we build a couple
made of the text content and the path to the text node. These couples are
compared to those in the correct xml document.

– Subtrees: for each node in the xml document, we consider its subtrees, and
the subtrees are compared to those in the correct xml document.

The main difference between these two criteria is that the first one does not
take into account the order in which the text leaves appear. Overall, the second
criteria is more precise and gives a better idea of the accuracy of the predicted
xml documents.

Table 4 shows the average F1-measure over all the documents in the test
dataset for the four criteria. First, we notice that, as when we evaluated the
labeling, results show that our system performs very well on the html1 dataset.
The results are very similar with both criteria. This is partly due to the text
nodes appearing in the same order in both the html and the xml documents.
Moreover, since the construction of the xml documents is guided by the output

Dataset F1 on paths F1 on subtrees

html1 91.81 89.76

html2 79.60 71.79
Table 4. Evaluation of the transformation on the Structure Mapping Task



dtd, our system always predicts xml documents conform to the dtd. Therefore,
it is very unlikely that an undesired node is inserted. This explains the stability
between the two measures.

With the html2 dataset, results are a bit lower, which is consistent with the
results we observed when evaluating the labeling. Still, the F1-measure on the
paths of the xml documents is good and close to 80. The drop of the F1-measure
on the subtrees can be explained by the nature of the html2 dataset. Indeed,
with this dataset, the xcrf sometimes failed to identify useless information.
Therefore, these information are in the predicted xml documents. This results
in several subtrees being incorrect, and a drop of the F1-measure, although the
correct information are present in the predicted xml documents.

4 Conclusion and Future Work

We have introduced xcrf that are conditional models for labeling xml trees.
We tackle the problem of structure mapping presented in this inex challenge as
a labeling problem for xml data. Experimental results show that xcrfs perform
very well and confirm that xcrfs are well suited for such applications.

Our main line of future research involves extending our system to handle
more sophisticated applications. Datasets we used in the challenge assume that
document order is preserved during the transformation. To overcome this limita-
tion, it can be necessary to extend the set of allowed editions operations. Another
point is to integrate the transformation step in the xcrf training phase for a bet-
ter parameter estimation. Other improvements include the combination of linear
chain crfs and xcrfs, and the introduction of ontologies, NLP outcomes, and
domain knowledge to take advantage of both the structure and content of xml

documents.


