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This paper considers a joint optimal design of admission control and resource allocation for multimedia services delivery in high-
speed railway (HSR) wireless networks. A stochastic network optimization problem is formulated which aims at maximizing the
system utility while stabilizing all transmission queues under the average power constraint. By introducing virtual queues, the
original problem is equivalently transformed into a queue stability problem, which can be naturally decomposed into three separate
subproblems: utility maximization, admission control, and resource allocation. A threshold-based admission control strategy is
proposed for the admission control subproblem. And a distributed resource allocation scheme is developed for the mixed-integer
resource allocation subproblem with guaranteed global optimality. Then a dynamic admission control and resource allocation
algorithm is proposed, which is suitable for distributed implementation. Finally, the performance of the proposed algorithm is

evaluated by theoretical analysis and numerical simulations under realistic conditions of HSR wireless networks.

1. Introduction

With the rapid development of high-speed railway (HSR)
around the world, the wireless communication in HSR
networks plays an important role in the recent years [1]. On
the one hand, more and more data related with the railway
controlling information needs to be transmitted between the
train and the ground such that the safety can be guaran-
teed and the transportation efficiency can be significantly
improved. On the other hand, the passengers in the train
have an increasingly high demand on multimedia services.
However, these requirements on high throughput impose a
great challenge over the HSR communication designs due to
the fast-varying channel, train penetration loss, and so forth.

There have been some recent works to improve the
throughput in HSR wireless networks. A two-hop HSR net-
work architecture was proposed in [2] to provide high data-
rate services. A HSR communication system based on radio
over fiber technology was proposed in [3], which can increase
the system throughput and help to reduce the number of
handofts. Multi-input multi-output (MIMO) antennas were

employed to improve the throughput performance of the
HSR wireless networks [4, 5]. However, these works were
carried out only to improve the throughput performance in
HSR wireless networks. Since the buffering is involved at
network devices, for example, content servers, it is necessary
to consider not only the throughput performance but also the
queue stability in HSR wireless networks.

Admission control and resource allocation, as critical
parts of radio resource management, play important roles
in improving the throughput and ensuring queue stability.
In the literature, the energy constrained control algorithm
was proposed in [6] to stabilize the queue and maximize
the throughput by Lyapunov optimization theory. Paper
[7] studied the joint scheduling and admission control
problem in a single user scenario and an online learning
algorithm was proposed based on the Markov decision
process approach and stochastic control theory. However,
these existing schemes designed for general communication
systems are not easily extended to the scenario considered in
this paper, due to the following reasons: (1) in HSR wireless
networks, the channel condition cannot remain at the same



level because of the fast-varying distance between the base
station and the train, which causes that the power control
along the time has a large influence on system transmission
performance [8]; (2) many types of services with different
quality-of-service (QoS) requirements and priorities should
be supported [9], which makes the admission control and
resource allocation for multiple services more challenging.

In HSR wireless networks, few studies have been con-
ducted on admission control and resource allocation. A
scheduling and resource allocation mechanism was presented
in [10] to maximize the service rate in HSR networks with a
cell array architecture. In [11], a multidimensional resource
allocation strategy was proposed in downlink orthogonal
frequency-division multiplexing (OFDM) system for HSR
communications. The optimal resource allocation problem
in a cellular/infostation integrated HSR network was inves-
tigated in [12], which considered the intermittent network
connectivity and multiservice demands. In a relay-assisted
HSR network, [13] studied delay-aware fair downlink service
scheduling problem with heterogeneous packet arrivals and
delay requirements for the services. Paper [14] proposed
an effective admission control scheme considering different
service priorities for HSR communications with MIMO
antennas. However, to the best of our knowledge, the joint
admission control and resource allocation problem under the
average power constraint in HSR wireless networks is still an
open problem.

The main contribution of this paper is a stochastic
optimization framework for transmitting multimedia ser-
vices in HSR wireless networks, which focuses on the joint
admission control and resource allocation problem under
the average power constraint. Firstly, the joint admission
control and resource allocation problem is formulated as a
stochastic optimization problem, and then the problem is
transformed into a queue stability problem with the help of
virtual queues. By the drift-plus-penalty approach [15], the
transformed problem can be decomposed into three separate
subproblems: utility maximization, admission control, and
resource allocation. The former two subproblems are easy to
handle and the distributed solutions can be obtained directly,
while the mixed-integer resource allocation subproblem is
transformed into a single variable problem and a distributed
packet loading scheme is developed with guaranteed global
optimality. We further propose a dynamic admission con-
trol and resource allocation algorithm, which is suitable
for distributed implementation in HSR wireless networks.
Finally, we present the analysis of algorithm performance
by theoretical derivations and simulations under realistic
conditions for HSR wireless networks.

L1 Relation to Prior Work. The Lyapunov drift theory has a
long history in the field of discrete stochastic processes and
Markov chains [16]. It can be used to directly analyze the
characteristics of the control policies in the stochastic stability
sense and plays important roles in the dynamic control strate-
gies in queuing networks [17]. Stabilizing queuing networks
by minimizing Lyapunov drift was pioneered by Tassiulas
and Ephremides in [18]. The Lyapunov drift theory was then
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extended to the Lyapunov optimization theory [6], which
enables optimization of time averages of general network
utilities subject to queue stability. A general framework for
solving the stochastic network optimization problem based
on Lyapunov optimization theory was developed in [15]. This
framework has been extended to minimizing a drift-plus-
penalty expression in [6, 7, 17, 19, 20] for joint queue stability
and time average utility optimization. For the engineering
applications of Lyapunov optimization theory, interested
readers are referred to the aforementioned references for the
details.

Our approach in the present paper treats the joint admis-
sion control and resource allocation problem associated with
average power constraint using Lyapunov drift and Lyapunov
optimization theory from [15]. This is the first time, to the
best of our knowledge, that the Lyapunov optimization theory
is extended into the HSR wireless networks. Considering
the features of HSR wireless networks, the Lyapunov opti-
mization theory is successfully applied for solving the joint
admission control and resource allocation problem in HSR
wireless network.

1.2. Outline of Paper. The rest of the paper is organized as
follows. Section 2 describes the system model. The problem
formulation and transformation are provided in Section 3.
A distributed dynamic admission control and resource allo-
cation algorithm is proposed in Section 4. Some numerical
results and discussions are shown in Section 5. Finally,
conclusions are drawn in Section 6.

Notations. In this paper, E[-] denotes expectation. | x| = max
{n € Z | n < x}. max[x, y] and min[x, y] mean the maxi-
mum and minimum between x and y, respectively.

2. System Model

In this paper, a two-hop HSR wireless network architecture
is considered, as shown in Figure 1, which consists of a
backbone network, K content servers (CSs), several base
stations (BSs), arelay station (RS), and some users in the train.
The BSs deployed along the rail line can provide continuous
data packets delivery. The distributed CSs connected to the
BSs via wireline links are deployed in the backbone network
to offload the data traffic [21]. The RS with powerful antennas
installed on the top of the train is used for communicating
with the BSs so that the large train penetration loss can be
well resolved. The RS is further connected to the access points
(APs) which can be accessed by the users inside the train.
Thus, there is a two-hop wireless link, consisting of the BS-RS
link and the AP-Users link. If the users on the train request
multimedia services during a trip, the data packets of the
requested services are then delivered from the corresponding
CS to the RS via a BS. Suppose that the data transmission rate
in the AP-Users link is sufficiently large; hence the data packet
can be successfully received if it has been delivered to the RS.

2.1. Time-Distance Mapping. Consider a train traveling from
an origin station to a destination station within the time
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FIGURE 1: System model.

duration [0, T']. The whole time is divided into slots of equal
duration T,. Without loss of generality, we assume that the
train starts at the centre of the first cell and the train moving
speed during the slot t keeps constant, denoted by v(¢); thus
the traveled distance until slot ¢ is given by s(t) = Y. _ v(1)T.
The train location between two adjacent BSs at slot ¢ is
s;(t) = s(t) mod 2R, where R s the cell radius. Define a time-
distance mapping function d(t) as the distance between BS
and RS at slot t; that is, d(t) : [0,T] — [dy,d ], Where

dmax = \|R? + d3 and d,, is the distance between each BS and

the rail line as shown in Figure 1. The mapping function d(t)
can be expressed by

) = si(t)? + d2, if 0<s, (t) <R,
VER=5, (1) +d2, i R<s, () < 2R,

)

Here we assume that the distance d(t) does not change within
slot ¢ since T is very small.

2.2. Physical Layer Model. For HSR wireless networks, the
channel condition cannot remain at the same level due to
the fast-varying distance between BS and RS. Only the line-
of-sight (LOS) path in the BS-RS link is available at most of
the time, which was confirmed by engineering measurements
[22, 23]. The service provided by the independent identical
distributed (i.i.d.) fading channels is a deterministic time-
linear function, just like the AWGN channel [24]. Therefore,
the wireless channel in the BS-RS link can be assumed to be
an additive white Gaussian noise channel (AWGN) with LOS
path loss [8]. At the same time, the power control along the
travel time in HSR wireless networks is important. Denote by
P(t) the transmit power of the BS at slot ¢, which is limited
by the maximum value P, and average value P,,. With
the help of mapping function d(t) and according to Shannon’s

theorem [25], the transmission rate of the wireless channel
between BS and RS at slot ¢ can be expressed by

P(t)
N (t)

R(t) = Wlog, (1 + ) bits/s, 2)

where N(f) = WN,d*(t), W is the system bandwidth, N,
is the noise power spectral density, and « is the path loss
exponent. Suppose that the packets have equal size of L bits;
hence the link capacity C(¢) at slot t can be denoted as the
maximum number of packets; that is, C(t) = [R(t)T,/L].
Note that the maximum capacity C,,,, can be obtained when
d(t) = dyand P(t) = P, .

max

2.3. Service Model. Assume that there are K types of services
in the HSR wireless networks and the service type set is
denoted by & = {1,...,K}. We further assume that CS;
is equipped with a buffer and can provide service k, for
ke . Let At) = [A(1),... ,AK(t)]T represent the packet
arrival vector, where A (t) denotes the number of new arrival
packets of service k at slot t. The packet arrival process for
each service is assumed to be i.i.d. across slots. Suppose that,
in general, A,(t) follows a truncated Poisson distribution
fi(b) with average arrival rate A, = E[A,(t)] for service k,
and the distribution f;(b) can be written as

Ab
fi (b) = exp (=A;) b—’; b=0,...,B, 3)
where B, denotes the maximum number of arrival packets
per slot for service k and can be found assuming f.(B;) — 0.

Let Q) = [Q;(®),... ,QK(t)]T represent the vector of
current queue backlogs, where Q,(f) denotes the number
of packets at the beginning of slot ¢ in the buffer of CS,.
The dynamics of each buffer are controlled by admission



control (AC) and resource allocation (RA) actions. Specifi-
cally, at each slot, the AC action determines the number of
packets from the newly arriving packets to be stored into
the buffer. And the RA action determines the number of
packets removed from the buffer for transmission. Let r,(f) €
[0, A, (t)] and py () € [0,Q(t)] denote the AC action and
RA action for service k at slot t, respectively. Thus, the queue
dynamics can be characterized by

Qt+1)=Qu() = () +1. (1), VkeH. (4)

Notice that for any slot ¢, without AC actions, 7;.(t) = A (t).
Here we assume that the arrival packets at slot ¢ can only be
transmitted at slot t + 1.

3. Problem Formulation and Transformation

3.1. Problem Formulation. In this paper, the objective of the
joint AC and RA problem is to maximize a sum of utility
functions under time average constraints by designing a
dynamic algorithm over a trip of the train. We define that
¢y (1) is a utility function to present throughput benefit for
service k, which is nondecreasing concave continuous with
1. Throughout this work, the following notation for the long-
term time average expectation of any quantity z is defined:

t—1
z:= lim %;)E (z(1)]. (5)

In particular, Q; represents the average queue backlog in
the buffer of CS, and P represents the average power
consumption along the travel time. Here we introduce the
definitions of queue stability as follows [15].

Definition 1. A single queue Q(t) is mean rate stable if
lim, _, oo (E[Q()]/1) = 0.

Definition 2. A single queue Q(?) is strongly stable if Q< oo.

From Definition 2, a queue is strongly stable if it has a
bounded time average backlog. Strong stability implies mean
rate stability according to [15]. Throughout this paper, we use
the term “stability” to refer to strong stability. Define Q(t) =
(A(t), C(t)) as the observed network event at slot t. For each
slot ¢, observing the event Q(¢) and the queue state Q(¢), the
AC actions r,(t) and RA actions y(t) should be made for
k € #.The joint AC and RA problem is formulated as

(P1) maximize Z & (7) (6a)
kex
subject to P <P, P(t)<P,, Vte[0,T],
(6b)
ék <00, VkeH, (6¢)
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0< Y u@®<C), Vtelo.T], (49
kex

py (1) € [0,Q (V)]
e () € [0, A (1],

variables 7y, (t), gy (1), P (t),

vt € [0,T],  (6e)
Vvt € [0,T], (6f)

Vke &, tel0,T],

(6g)

where (6b) corresponds to the power constraint and (6¢)
corresponds to the queue stability constraints for all queues.
Problem (P1) is a stochastic optimization problem [15], but
it cannot be solved efficiently owing to the difficulty from
the objective function (6a) and the average power constraint
in (6b). In order to better characterize the problem (P1)
and develop an eflicient algorithm, we consider the problem
transformation, which consists of two steps, that is, objective
function transformation and average power constraint trans-
formation as presented in the following subsections.

3.2. Objective Function Transformation. Since problem (P1)
involves maximizing a function of time averages, it is hard
to handle. Based on the dynamic stochastic optimization
theory [15], it can be transformed into an equivalent problem
that involves maximizing a single time average of a function.
This transformation is achieved through the use of auxiliary
variables y,(¢) and corresponding virtual queues Z(t) with
queue evolutions:

Zk(t‘l'1):maX[Zk(t)—rk(t),O]+Yk(t), Vke%,

7)

where the initial condition is assumed that Z,(0) = 0, Vk €
. Intuitively, the auxiliary variables y,(t) can be viewed
as the “arrivals” of virtual queues Z,(t), while 7 (t) can be
viewed as the service rate of such virtual queues.

Then, we consider the following transformed problem:

(P2) maximize Z (V) (8a)
ke
subject to y, <7, VkeXH, (8b)
OSYk(t)SBk, VkE%, tE[O,T],
(8¢c)
(6b)-(6f), (8d)
variables yy (t), 7, (£), py (£), P (t),
(8e)

Vke #, te[0,T].

Constraint (8b) corresponds to the stability of the virtual
queue Z,(t), since y, and 7 are regarded as the time-averaged
arrival rate and the time-averaged service rate for the virtual
queue Z,(t), respectively. Specifically, from (7) we can obtain
that Z,(t + 1) > Z(t) — r(t) + y(t). By summing this
inequality over time slots 7 € {0,1,...,t — 1} and then
dividing the result by t, we have that (Z.(t) — Z,(0))/t +

(1/8) Yiime(x) = (1/8) Yo, yi(8). With Z,(0) = 0, taking
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expectations of both sides yields that lim, _, . (E[Z,(£)]/t) +
7 = Y. If the virtual queues Z(t) are mean rate stable,
then lim, _, . (E[Z,(£)]/t) = 0, so that constraint (8b) can be
satisfied. Notice that we will prove the strong stability of the
virtual queues Z,(¢) in Lemma 7 later.

Lemma 3. Problem (P1) and problem (P2) are equivalent.

Proof. The proof of Lemma 3 follows [26] and a sketch of the
proof is provided in Appendix A. O

3.3. Average Power Constraint Transformation. To handle the
average power constraint in (6b), we define a virtual queue
X, (t) for each k € %, which has the following dynamic
update equation:

Xy (t+1) = max [ X, (t) = P, 0] + P(t), 9)

where P(t) and P,, can be viewed as the “arrivals” and “offered
service” at slot ¢, respectively.

Based on [15, Chapter 4], if the virtual queue X, (t) is
mean rate stable for k € %, that is, lim, _, . (E[X(£)]/t) = 0,
then the average power constraint P < P,, can be satisfied.
This holds because if the backlog in the virtual queue is
stabilized, it must be the case that the time average arrival
rate (corresponding to P) is not larger than the service
rate (corresponding to P,,). Therefore, the average power
constraint in (6b) can be transformed into a single queue
stability problem.

4. The Distributed Dynamic AC and
RA Algorithm

In this section, the dynamic stochastic optimization approach
is applied to solve problem (P2), which seeks to maximize
the sum of time-averaged utility functions subject to queue
stability constraints. Firstly, the problem (P2) is decomposed
into three separate subproblems by the drift-plus-penalty
approach. Then a distributed dynamic AC and RA algorithm
is proposed. Finally, the performance of the proposed algo-
rithm is analyzed by theoretical derivations.

4.1. Lyapunov Drift. Define X(t) and Z(t) as a vector of all
virtual queues X () and Z,(t) for k € F#, respectively. We
denote by O(t) the combined vector of all virtual queues and
all actual queues; namely,

® 1 2 [Q (1. X"1),2" ()] . (10)
The quadratic Lyapunov function is defined as [15]
LO®) 2 Y QW+ X0+ Z,07). )
kex

Then the one-slot conditional Lyapunov drift A(®(t)) at slot
t is given by

AG@)=E[L@OFC+1)-LO®W)[OW®)], 12)

which admits the following lemma.

Lemma 4. Under any AC actions and RA actions at slot t, and
for any value of O(t), we have

A@O@)<D+E[G() | O], (13)

where D is a finite constant defined by

a1l 2 2 2 2
D= > z [Pmax + P, +3B; + Cmax] R (14)
ke

and G(t) is defined by

Gt)2 Y Q) [r(®) - )]

kex

+ Z Zi () (y () = 7 (1)) (15)
kex

+ ) X0 [P®)-P,).
kex

Proof. The proof of Lemma 4 is provided in Appendix B. [

4.2. The Drift-Plus-Penalty Expression. Instead of directly
minimizing the upper bound E[G()] by taking AC actions
and RA actions, we desire to jointly stabilize all queues and
maximize the sum of utility ) .o ¢ (y,(¢)). The drift-plus-
penalty theory in [6] approaches this by greedily minimizing
the following “drift-plus-penalty” expression:

E|GOH-VY ¢ (ye®) | (16)

keH

where V' > 01is a parameter that represents the weight on how
much we emphasize the sum utility maximization.

We observe that the objective function in (16) is of
separable structure, which motivates us to determine the
auxiliary variables y,(t) and AC actions () as well as
RA actions y(t) in an alternative optimization fashion.
The overall minimization problem (16) is decomposed into
three separate subproblems. Specifically, isolating the y,(¢)
variables from (16) gives the following utility maximization
subproblem:

max 2 Ve ®) - Ze @ ne 0] (172)
st. 0<y(t)<B, VkeXH, tel0,T]. (17b)

Similarly, isolating the AC actions 7, (¢) from (16) leads to the
following admission control subproblem:

{Irrkl(zgi pa [(Z (1) = Qi (1) i (1)] (18a)
st 0<r () <A(D), VkeI, te[0,T]. (18b)



Also, isolating the RA actions p () from (16) gives the
following resource allocation subproblem:

(1) k;% QO ) = X, () P )] (19a)
(19b)
w@t)eN, VkeZH, tel0,T],
Y <C@), telo,T], (190)
ke
P(t)<P .. tel[0T], (19d)

where P(t) is related to g (t) since a larger u(t) requires
more power consumption. These separate subproblems can
be computed in a decentralized fashion, as stated below.

4.3. Utility Maximization. The utility maximization subprob-
lem ((17a) and (17b)) can be decoupled into K separate maxi-
mization problems. Specifically, CS, keeps track of Z(t)
and determines the optimum y,(t) by solving the following
problem:

max V@ (ye (1) — Z; (t) y ()

e (20a)

st. 0<yp()<B, teloT]. (20b)

Notice that the key point to solve (20a) and (20b) is the
choice of the utility function, which is contingent on the
purpose of the networking application or the prerogative of
HSR network designer. For example, in order to represent
the maximum desired delivery ratio for each service, the
piecewise linear utility function can be considered for service
k as follows:

b (Vi) = v min [y, x4, ] (21

where v, > 0 and x;, > 0 represent the priority and the
maximum desired delivery ratio of service k, respectively. In
general, 0 < x; < 1and x A, < By for k € K. Thus the
optimal solution to problem (20a) and (20b) is given by

xk)tk, lf Zk (t) < V'Vk,

22
0, otherwise. @2

Ve () = {

Alternatively, the following strictly concave function can
serve as the utility function for service k:

¢ (v) = In (1 + %y, (23)

which can be regarded as an accurate approximation of the
proportionally fair utility function if the same v is selected
with a large value for all k € F. In this case, the optimal
solution to problem (20a) and (20b) can be obtained by

(24)

1 1 ]Bk
Zi(t) v

Vi (t)Z[

0

where the operation [y]; is equal to y if 0 < y < a,0if y <0,
andaif y > a.
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4.4. Admission Control. The admission control subproblem
((18a) and (18b)) can be also decoupled into K separate maxi-
mization problems. Specifically, CS; chooses the AC action
1(t) by solving the following optimization problem:

max (Zi (1) = Qe (1) 7 (1)
"k (25)

st. 0<r (<A, teloT].

It is immediate to see that the optimal solution depends on
the queue backlog of Z, (t) and Q,(t), which is given by

_ Ak (t) > if Zk (t) 2 Qk (t) >
() = 10, otherwise. (26)

We note that (26) is a simple threshold-based admission
control strategy. On the one hand, when the queue backlog
Qq(t) is not larger than the threshold Z,(¢), then all the
newly arriving packets are admitted into the buffer in CS,.
Essentially, this not only reduces the value of Z(t + 1) so
as to push y, closer to 7, but also increases the average
throughput 7, so as to improve the utility. On the other hand,
when the queue backlog Q,(¢) is larger than the threshold
Z,(t), then all the newly arriving packets will be dropped to
ensure the network stability. Finally, we emphasize that the
AC actions for all services are made in a distributed manner
with only local queue backlog information and packet arrival
information.

4.5. Resource Allocation. The resource allocation subproblem
((192)-(19d)) at slot t can be explicitly expressed as

M®2 Y Q) -XOPO] (375

max
(1P =,

s.t. 0<u () <Qu (1), w(t)eN, VkeH,
(27b)
N ) <Ct) = {TsWIng (1 +L P@O/N®) |
kex
(27¢)
PO = P (27d)

The problem (27a)-(27d) is a mixed-integer programming
(MIP) problem, including a continuous variable P(t) and
K integer variables y (), which cannot be solved efficiently
[27]. The main difficulty of problem (27a)-(27d) comes
from the integer nature of y(t). However, we will show
that problem (27a)-(27d) can be transformed into a single
variable problem, which is easy to handle. In the sequel of
this subsection, we will omit the time index for brevity.

Firstly, as for constraint (27c), when the optimal RA
actions are achieved, it can be shown that

1 P
S =C =1 <1 —),

where n = L/T,W > 0. Otherwise we can reduce the value
of C and P such that the objective function can be further



Mathematical Problems in Engineering

maximized without any violation of the constraints in (27b)-
(27d). From (28), we have the following power consumption
of C:

P=N(2"°-1), (29)
and constraints (27b) and (27d) further imply that
0<Cc< min< > Qk,C'max> , (30)
ke
where (~Zmax = (1/n)log,(1 + P, /N).
Secondly, the resource allocation subproblem (27a)-

(27d) can be equivalently transformed into a single variable
problem as follows:

max M(C)2g,(0)~9,(C) (3la)
st. (30), (31b)

where g, (C) is given by
91(C) # max kEZ%Qk!"k (32a)
st 0<u <Qp, peN, VkeIH, (32b)
k;%[/‘k =C (32¢)

and g,(C) is given by

K K

9,02 YXP=YX,(2°-1)N=p(2"°-1), (33)

k=1 k=1

with p £ N ¥, X;.

Now let us focus on the problem (32a)-(32¢) with any
given C. Clearly, the maximum objective value of (32a)-(32c)
can always be achieved by allocating link capacity C to the
services in the descending order of their backlogs, which is
similar to the max-weight algorithm in [15]. Hence, we sort
all the services in descending order of Q, and denote the
ordered set by {k;,k,,...,kx}. For convenience, we define
flm) = YLy Q (1) for m = 0,1,..., K, where Q (t) = 0.
One can see that f(m) is an increasing function of m, and
0 < C < f(K) from (30). Therefore the optimal solutions to
the problem (32a)-(32c) are given by

Qx> ifl<n<m,
e, =1C-f(n-1), iftn=m, (34)
0, ifm<n<K,

wherem € {1,...,K} such that C € (f(m—1), f(m)]if C > 0;
otherwise . = 0 for all n.

Next, let us focus on problem (31a)-(31b). Indeed, we have
the following lemma.

Lemma5. M(C)isa unimodal function of C over [0, f(K)].

Proof. On the one hand, since Ag,(C) = g,(C+1) - g,(C) =
Qk, for f(m -1) < C(t) < f(m), Vm € [1,K], Ag,(C) is
a monotonically nonincreasing function of C. On the other
hand, since Ag,(C) = p(27-1)2"°, Ag,(C) is a monotonically
increasing function of C. Therefore AM(C) = Ag,(C) - Ag,
(C), which is a monotonically decreasing function of C. For
any C € [1, f(K) - 1] , AM(C - 1) > AM(C), which implies
M(C) > (1/2)(M(C - 1) + M(C + 1)), so M(C) is concave
on [0, f(K)]. Based on [28], if M(C) is concave, then M(C) is
unimodal. O

Based on Lemma 5, since M(C) is a unimodal function
of C over [0,min{C,,,, f(K)}], the golden section search
method [29] can be used to obtaln the global optimal solution
to the problem (31a)-(31b). However, this method requires
the knowledge of all queue backlog information. When
the center controller is not available, a distributed resource
allocation scheme is highly desirable. Relying on the insights
from Lemma 5, we propose a distributed resource allocation
scheme, where each CS can communicate with all other CSs,
and the network resources are allocated packet by packet.

The proposed packet loading resource allocation scheme
is detailed in Algorithm 1. For each slot, each CS exchanges
the backlog information with all other CSs and the order of
the backlogs is obtained by all CSs (step 2). Then the packets
of the services are fetched from the corresponding CS in
descending order of their backlogs. When one CS fetches a
new packet (step 5), M(C) is calculated (step 6). This will
be repeated until the optimal condition in step 7 is satisfied,
which implies that M(C - 1) is the maximum or constraint
(30) is violated, and thus step 8 should be performed since the
last packet cannot be transmitted. When one CS empties its
buffer, it should send the value information of C to the next
CS (step 12), and the next CS should continue the resource
allocation. Here we remark that the optimal solutions can
be achieved by the proposed scheme, which can be readily
proved by Lemma 5.

4.6. Distributed Dynamic AC and RA Algorithm. Based on
the above three separate subproblems, we propose a distribut-
ed dynamic AC and RA algorithm as shown in Algorithm 2.
All system parameters should be initialized before the trip
begins. At each slot, each CS solves three subproblems in steps
4,5, and 6. At the end of each slot, the queue vector @(f + 1)
is updated according to (4), (7), and (9). This algorithm will
be repeated when the train travels from the origin station to
the destination station.

Remark 6 (utility-backlog tradeoff). Based on [15], the
achieved utility differs from optimality by O(1/V), in the
sense that

1
[ —lim inf ) <O0( =),
¢; - lim in kezszk (7) (V> (35)

where ¢; is the maximal utility for the problem (P1). It implies
that the proposed algorithm can achieve a utility which is
arbitrarily close to ¢; by increasing V. In addition, the actual
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(1) Initialize y, = 0 for k € H; M(0) = 0; C = 0;

(2) Sort services in descending of Q, and obtain the ordered set {k,, k,, ..., kx};
(3)for n=1to K do

(4) for P, = 110 Q. do

(5) C=C+1;

(6) Calculate M(C);

7) if M(C) < M(C-1)orC >C,(t) then
(8) Y, =, — L, C=C—1;

9) go to Step 14;

(10) end if

(11)  end for

(12)  Send C to the next CS;

(13) end for

(14) return P by (29), and y; Vk € %.

ALGORITHM I: Packet loading resource allocation scheme for problem (27a) - (27d).

(1) Initialize V, C,,, ©(0) = 0;

(2) while ¢ € [0,T] do

(3) for k=1toK do

(4) Obtain y,(t) by solving (20a) and (20b);

(5) Obtain AC actions ry(t) by solving (25);

(6) Obtain RA actions y, (t) by solving problem (27a) - (27d);
(7) Update O(t + 1) according to (4), (7) and (9);

(8) end for
(9) end while.

AvrGoriTHM 2: Distributed dynamic AC and RA algorithm for (P2).

queue backlog of each service grows linearly with V, which is
given by

lim sup Q; < Do v, (36)
€

t— 00

where € > 01isa parameter and D is defined in (14). Therefore,
the above expressions (35) and (36) present a utility-backlog
tradeoff of [O(1/V), O(V)].

Recalling the utility functions (21) and (23), we observe
that they have the maximum right derivatives v, > 0 over the
interval 0 < y,(t) < By. Based on this observation, we obtain
the boundedness property on the virtual queue Z,(t) in the
following lemma.

Lemma 7. If the utility function ¢ (y,) has maximum right

derivatives v, > 0, then the backlog of virtual queue Z,(t)
satisfies

0<Z (t)<Vy . +B,, Vtel0,T], (37)

provided that this inequality holds for Z,.(0).

Proof. The proof of Lemma 7 is provided in Appendix C. [

TABLE 1: Parameters in simulation.

Parameter Description Value
P, Average power constraint 35W
B System bandwidth 5MHz
L Packet size 240 bits
T, Slot duration 1ms
o Pathloss exponent 4
P, Maximum transmit power 45W
v Constant moving speed 100 m/s
R Cell radius 1.5km
d, Distance between BS and rail 50 m
K Number of services 6

5. Numerical Results and Discussions

In this section, we implement the proposed distributed
dynamic AC and RA algorithm using MATLAB and present
simulation results to illustrate the performance of it. We use
the piecewise linear utility functions (21) for all services and
summarize the simulation parameters in Table 1. The packet
size L is set to 240 bits according to [12, 30], and the slot
duration T is set to l ms according to [31]. A single simulation
runs the proposed algorithm when the train moves through
a cell (30,000 slots).
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FIGURE 2: Average throughput with different V.
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FIGURE 3: Average queue backlog with different V.

Figures 2 and 3 explore the throughput-backlog tradeoff
with different V. In the simulations, we use the same param-
eters A, = 25 and x;, = 1 and different priorities for all
services. As shown in Figure 2, the average throughput for
each service increases as V is increased and the service
with high priority gets the large average throughput. Figure 3
presents that the average queue backlogs of all services are
linearly increasing with V, which demonstrates the O(V)
behavior in (36). Furthermore, the proposed algorithm can
ensure that the average queue backlogs of the services with
different priorities are almost the same.

1 T
Service 1
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0.7 + | Service 6 1

Delivery ratio
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0.5 1

0.4 : : : :

—— Service 1, x; = 1.00
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FIGURE 4: Delivery ratio with different V.

Power consumption

5k ]
0 1 1 1 1 1 1 1 1 1
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\4
- - A=25
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— A=45

FIGURE 5: Power consumption with different V.

Figure 4 illustrates the achieved delivery ratios for the
services with different maximum desired delivery ratios and
same arrival rate A, = 25 as well as priority ¥, = 10. It can be
observed that the large V will result in the improvement of the
delivery ratio performance. This can be explained as follows:
since a larger V' gives a higher priority on throughput, more
packets will be admitted into the buffers, which causes the
higher delivery ratio performance. In addition, the delivery
ratio for each service is close to its maximum desired delivery
ratio when V is larger than 40, which implies that the
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proposed algorithm can archive different maximum desired
delivery ratios when a large V is chosen.

Figure 5 compares the average power consumption under
different arrival rate conditions. In this simulation, we set
the same parameters v, = 10, x, = 1, and A, = A for all
services.From this figure, we can see that the average power
consumption increases as V' is increased. This is exactly what
happens. A larger V results in more packets admitted into
buffers, while transmitting these packets will cost more
power. As for the same V, a larger A will cause more
power consumption, since more packets will be admitted into
buffers based on (26). In addition, the average power con-
sumption can satisfy the average power constraint when the
arrival rateis A;, = 25, which is reasonably set in the previ-ous
simulations.

Figure 6 describes the backlog update processes of virtual
queues Z, () for three types of services. In the simulation, we
set the same parameters v, = 10, x;, = 1, and A, = 35 for all
servicesand V' = 100. From the figure, we can see 0 < Z, (f) <
Vv, + By for all services at all slots, which illustrates the
boundedness property on queue backlogs in Lemma 7.

6. Conclusion

In this paper, we formulate the joint admission control and
resource allocation problem under average power constraint
for multimedia services delivery in HSR wireless networks.
With the help of virtual queues, the original stochastic opti-
mization problem is transformed into a queue stability prob-
lem, which is decomposed into three separate subproblems
by the drift-plus-penalty approach. It is worth noting that the
optimal solution to the resource allocation subproblem can
be obtained by the packet loading resource allocation scheme.
Based on the stochastic optimization technique, the dynamic
admission control and resource allocation algorithm is pro-
posed, which is suitable for distributed implementation in
HSR wireless networks. Furthermore, the performance of the
proposed algorithm is analyzed theoretically and validated
by numerical simulations under realistic conditions for HSR
wireless networks. For future work, we will further investigate
the effects of the nonmentioned parts in the communication
system, such as frame error check blocks and adaptive
channel equalizers.

Appendices

A. Proof of Lemma 3

Let ¢, and ¢, be the optimal utility of problems (P1) and (P2),
respectively.

First, to prove ¢; > ¢, let a; (t) be an optimal solution
achieving ¢, in problem (P2), which includes y; (), r; (£),
and p; (t) at slot t. Since ¢(-) is concave, based on Jensen’s
inequality, we have

Yo(v)= Yo =6

kex kex

(A1)
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FIGURE 6: The backlog update processes of virtual queues Z(t).

In addition, since the solution a (¢) satisfies constraint (8b)
and ¢(-) is nondecreasing, we further have

Y o)z Y o)

ke kex

(A.2)

Since the constraints in problem (P2) include all of the desired
constraints of the original problem (P1), a; (t) is a feasible
solution for problem (P1) which gives a utility that is not
larger than ¢ . Thus we conclude that

DN IR

kex

(A3)

Next, to prove ¢; < ¢J, let o (t) be an optimal solution
achieving ¢, for problem (P1), which includes r; (¢) and p; ()
at slot t. Since o) (t) satisfies constraints (6b)-(6f), it also
satisfies constraints (8d) of the problem (P2). Further, for all
k € H,wesety(t) = E at all time ¢ which can satisfy con-
straints (8b) and (8c). Thus, such choice of y, (¢) together with
the solution «; (t) forms a feasible solution for the problem

(P2). By definition, ¢(y,) = lim,_, o(1/t) Yiop d(ye(r) =
lim, _, . (1/¢t) Ztr;lo (/)(E) = (/)(E). Therefore, we get

¢5> Y o) = Do) =9

ke kex

(A.4)

From the above analysis, we can conclude that ¢; = ¢,
based on (A.3) and (A.4) and that an optimal solution for the
problem (P2) can be directly turned into an optimal solution
for the problem (P1).
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B. Proof of Lemma 4

Recall the evolution equation (9) for the queue X, (¢) and by
squaring this equation, we obtain

Xt + 1) = X (1) (B.la)
= (max [X, (t) - P,,,0] + P (1))’ - X, (t)*  (B.Ib)
< [P®) + P3| +2X, (1) [P (t) - P,,], (B.1c)

where in the final inequality we have used the following facts:
(max[X,(t) — P, 0])> < (X(t) — P,,)* and max[X,(t) —
P,,0] < X (t).

av?

Similarly, it can be shown for k € % that

Z(t+ 1) - Z,(t)°

< [1®? + 1] + 224 ) [y (1) = 7 )]
Qut+ 1) - Qe()*

< [ + ] +2Q () [1e () — i (1)] -

(B.2)

Based on (12) and (B.1a)-(B.2), we have

1
A@O(t) = E [Ek;[ [Xi(t + 1) - X, (1)’

+ Qut+1)" — Q1)

+Z(t+ 1) - Z(0’] 1 @ (1)

(B.3a)

<E [1 > [P+ B+ y(0)?
2k€7f

+1e(0 + 1 () + ()] 1 © (8)

+E [ Y [Xe®[P)-P,]

keH

+ Zp (8) [y (8) = 7 ()]

+Qu () [re (1) = D]] 1 © (1)
(B.3b)

<D+E[G®)|O©®1)], (B.3¢)

where G(t) is defined by (15) and the last inequality can be
obtained as follows. For any slot t, any possible packet arrival

1

vector A(t), and any possible P(t) as well as RA actions that
can be taken, we have

E [% Y [P@? + PL+ p(0) + 2,8 + (0] 1 © ()
ke

1 2 2 2 2
<E [Ek;g [Pl + P2 +3Br+Co] 1O (1)

1 2 2 2 2
=3 Z [Pmax + P2 +3B; + cmax] =D,
kex
(B.4)

where the inequality holds based on P(t) < P, 1(t) < By,
and y (t) < C, .« as well as (8c), and the equality holds since
the constant in the square bracket is independent of queue
vector O(t) at slot ¢.

C. Proof of Lemma 7

We prove this lemma by induction. Assume that Z(t) <
Vv, + By for slot ¢ (it holds by assumption at slot t = 0); then
we prove it also holds for slot t + 1. Firstly, we consider the
case Z,(t) < Vv,. From the queue update equation (7), we
can see that this queue can increase by at most By at each slot,
and thus we have Z(t + 1) < Vv, + By, proving the result for
this case.

Secondly, we consider the case Vv, < Z,(t) < Vv, + By.
For each slot t, CS;. decides y,(¢) to maximize the following
expression:

Ve (1 () = Zi () i (1) (C1)

Based on the property of the maximum derivative, for any
Y(t) = 0, we obtain

Ve (i (1) = Zi () yi (2)

(C.2a)
SV (0) + Vvyy (8) = Zy (8) i (£)
=V (0) +y, (t) [Vve = Zi (1)] (C.2b)
<V (0), (C.20)

where the equality holds if and only if y,(f) = 0. Then the
algorithm will choose y,.(¢) = 0 to maximize expression (C.1),
and we can obtain

Z(t+1)=max[Z, (t) -1 (t),0] < Z; (t) < Vv + By
(C.3)

Thus, Z,(t + 1) < Vv, + By is satisfied for these two cases,
which completes the proof.
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