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Abstract*
The$eukaryotic$nucleosome$is$the$fundamental$unit$of$chromatin,$comprising$a$

protein$octamer$that$wraps$~147bp$of$DNA$and$has$essential$roles$in$DNA$

compaction,$replication$and$gene$expression.$Nucleosomes$and$chromatin$have$long$

been$considered$to$be$unique$to$eukaryotes,$yet$studies$of$select$archaea$have$

identified$homologs$of$histone$proteins$that$assemble$into$tetrameric$nucleosomes.$

Here$we$report$the$first$archaeal$genomeSwide$nucleosome$occupancy$map,$as$

observed$in$the$halophile$Haloferax)volcanii.$Nucleosome$occupancy$was$compared$
with$gene$expression$by$compiling$a$comprehensive$transcriptome$of$Hfx.)volcanii.$
We$found$that$archaeal$transcripts$possess$hallmarks$of$eukaryotic$chromatin$

structure:$nucleosomeSfree$regions$at$transcriptional$start$sites$and$conserved$−1$

and$+1$promoter$nucleosomes.$Our$observations$demonstrate$that$histones$and$

chromatin$architecture$evolved$before$the$divergence$of$Archaea$and$Eukarya,$

suggesting$that$the$fundamental$role$of$chromatin$in$the$regulation$of$gene$

expression$is$ancient.$
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 3 

Single-celled microorganisms called archaea are one of the three domains of cellular life, along 4 

with bacteria and eukaryotes. Archaea are similar to bacteria in that they do not have nuclei, but 5 

genetically they have more in common with eukaryotes. Archaea are found in a wide range of 6 

habitats including the human colon, marshlands, the ocean and extreme environments such as hot 7 

springs and salt lakes. 8 

 9 

It has been known since the 1990s that the DNA of archaea is wrapped around histones to form 10 

complexes that closely resemble the nucleosomes found in eukaryotes, albeit with four rather 11 

than eight histone subunits. Nucleosomes are the fundamental units of chromatin, the highly-12 

ordered and compact structure that all the DNA in a cell is packed into. Now we know exactly 13 

how many nucleosomes are present in a given cell for some eukaryotes, notably yeast, and to a 14 

good approximation we know the position of each nucleosome during a variety of metabolic 15 

states and physiological conditions. We can also quantify the nucleosome occupancy, which is 16 

measure of the length of time that the nucleosomes spend in contact with the DNA: this is a 17 

critical piece of information because it determines the level of access that other proteins, 18 

including those that regulate gene expression, have to the DNA. These advances have been 19 

driven in large part by advances in technology, notably high-density microarrays for genome 20 

wide-studies of nucleosome occupancy, and massively parallel sequencing for direct nucleosome 21 

sequencing. 22 

 23 

Ammar et al. have used these techniques to explore how the DNA of Haloferax volcanii, a 24 

species of archaea that thrives in the hyper-salty waters of the Dead Sea, is organized on a 25 

genome-wide basis. Despite some clear differences between the genomes of archaea and 26 

eukaryotes – for example, genomic DNA is typically circular in archaea and linear in eukaryotes 27 

– they found that the genome of Hfx. volcanii is organized into chromatin in a way that is 28 

remarkably similar to that seen in all eukaryotic genomes studied to date. This is surprising given 29 

that the chromatin in eukaryotes is confined to the nucleus, whereas there are no such constraints 30 

in archaea. In particular, Ammar et al. found that those regions of the DNA near the ends of 31 
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genes that mark where the transcription of the DNA into RNA should begin and end contain 32 

have lower nucleosome occupancy than other regions. Moreover, the overall level of occupancy 33 

in Hfx. volcanii was twice that of eukaryotes, which is what one would expect given that 34 

nucleosomes in archaea contain half as many histone subunits as nucleosomes in eukaryotes. 35 

Ammar et al. also confirmed that that the degree of nucleosome occupancy is correlated with 36 

gene expression. 37 

 38 

These two findings – the similarities between the chromatin in archaea and eukaryotes, and the 39 

correlation between nucleosome occupancy and gene expression in archaea – raise an interesting 40 

evolutionary possibility: the initial function of nucleosomes and chromatin formation might have 41 

been for the regulation of gene expression rather than the packaging of DNA. This is consistent 42 

with two decades of research that has shown that there is an extraordinarily complex relationship 43 

between the structure of chromatin and the process of gene expression. It is possible, therefore, 44 

that as the early eukaryotes evolved, nucleosomes and chromatin started to package DNA into 45 

compact structures that, among other things, helped to prevent DNA damage, and that this 46 

subsequently enabled the early eukaryotes to flourish. 47 

  48 
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Introduction 49 

Archaeal nucleosome core particles protect ~60 bp of DNA, approximately half that of 50 

eukaryotic nucleosomes, as demonstrated by the landmark work of Reeve and colleagues(Pereira 51 

et al., 1997). Comparing both eukaryotic and archaeal nucleosomes, the former is an octamer 52 

composed of heterodimers of histones H2A, H2B, H3 and H4 whereas the latter histones 53 

assemble from homologs of H3 and H4 proteins(Talbert and Henikoff, 2010, Pereira and Reeve, 54 

1998). Archaeal histones can form both homodimers and heterodimers, as well as 55 

homotetramers, whereas eukaryotic histones contain hydrophobic dimerization surfaces that 56 

restrict assembly of the octamer from H2A-H2B and H3-H4 heterodimers(Sandman and Reeve, 57 

2006, Talbert and Henikoff, 2010). 58 

Using single-nucleotide resolution maps of archaeal nucleosome occupancy and gene 59 

expression, we demonstrate that the architecture of archaeal chromatin and the occupancy of its 60 

nucleosomes along transcription units are conserved. We constructed a nucleosome occupancy 61 

map of the halophilic archaeon Haloferax volcanii, a member of the phylum euryarchaeota, 62 

originally discovered in the highly saline sediment of the Dead Sea(Mullakhanbhai and Larsen, 63 

1975). The genome of Hfx. volcanii has an average GC content of 65% and a total genome 64 

length of 4Mb(Hartman et al., 2010) composed of five circular genetic elements: a 2.8Mb main 65 

chromosome, three smaller chromosomes pHV1, pHV3 and pHV4 and the plasmid pHV2. It is 66 

highly polyploid with ~15 genome copies during exponential growth and ~10 during stationary 67 

phase(Breuert et al., 2006). The histone protein of Hfx. volcanii, hstA (HVO_0520), has a 68 

domain architecture containing two distinct histone fold domains in the same peptide that 69 

heterodimerize resembling that of the Methanopyrus kandleri histone (HMk)(Talbert and 70 

Henikoff, 2010, Marchler-Bauer et al., 2011, Geer et al., 2002). 71 
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 72 

Results 73 

We cultured Hfx. volcanii in rich media containing 2M NaCl(Mullakhanbhai and Larsen, 74 

1975). Genomic DNA was cross-linked and digested with micrococcal nuclease (MNase), with 75 

cell disruption accomplished by bead-beating(Tsui et al., 2012). Nucleosome-bound cross-linked 76 

genomic regions are protected from MNase digestion, in contrast to the linker DNA between 77 

nucleosomes. Mononucleosome-sized (50-60bp) DNA fragments were gel purified and libraries 78 

were sequenced on an Illumina HiSeq2000 (Fig. 1a). Sequence reads were aligned to the 79 

published Hfx. volcanii DS2 genome(Hartman et al., 2010) to generate a genome-wide 80 

nucleosome occupancy map. Controls included crosslinked DNA without MNase digestion as 81 

well as MNase treated nucleosome-free genomic DNA.  The nucleosome occupancy data was 82 

significantly different than the control MNase digest of deproteinized “naked” genomic DNA (r 83 

= 0.071), indicating that the nucleosome map is unaffected by any potential MNase sequence 84 

bias (Chung et al., 2010). 85 

To determine nucleosome midpoints, we smoothed the occupancy data using a 86 

symmetrical convolution sum with a Gaussian filter(Smith, 1997). Extrema were detected in the 87 

smoothed signal, and maxima were defined as nucleosome midpoints. In the smoothed signal, 88 

the mean peak-to-peak distance for the main chromosome was 68.5bp in genic regions and 89 

76.1bp in non-genic regions. Genic regions were defined as the transcribed region plus 40bp (the 90 

average promoter length based on Palmer and Daniels (1995)) upstream of the 5’ end(Palmer and 91 

Daniels, 1995). We observed a greater nucleosome density in Hfx. volcanii vs. all eukaryotes 92 

likely due to the shorter length of DNA wrapped around the archaeal histone tetramer(Pereira et 93 

al., 1997). Based on our data, the Hfx. volcanii genome has 14.2 nucleosomes/Kb compared to 94 
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5.2 nucleosomes/Kb in Saccharomyces cerevisiae. The resulting map reveals a periodic pattern 95 

similar to that seen in all eukaryotes examined to date; with protected regions appearing as peaks 96 

and linker regions as troughs. Sequence analysis of the entire nucleosome map showed that 97 

nucleosome midpoints were enriched with G/C nucleotides from 61.4% GC at the edge of the 98 

protected fragment to 74.6% GC at the midpoint (dyad). We found an increase of G/C 99 

nucleotides and a decrease in A/T nucleotides at the midpoint, as described recently for human 100 

cell lines (Fig. 1b,c)(Valouev et al., 2011). In contrast to previous studies in eukaryotes, we did 101 

not observe a periodicity in dinucleotide frequency relative to the nucleosome midpoint(Bailey et 102 

al., 2000, Satchwell et al., 1986, Albert et al., 2007). 103 

We next investigated the relationship between nucleosome occupancy and gene 104 

expression. The existing genome annotation for Haloferax is derived almost exclusively from 105 

ORF predictions(Hartman et al., 2010). To augment these predictions, we used deep sequencing 106 

to create a high confidence transcriptome of the main chromosome of Hfx. volcanii. This map 107 

allowed us to define both 5’UTR lengths and transcriptional start sites (TSSs). Total RNA was 108 

extracted from Hfx. volcanii cells, repetitive RNA was partially depleted via duplex-specific 109 

nuclease (DSN) normalization followed by RNA-seq (see Methods)(Zhulidov et al., 2004). 110 

Transcript sequences were aligned, assembled and quantified using TopHat and the Genome 111 

Analysis Toolkit(Trapnell et al., 2009, McKenna et al., 2010) and transcript boundaries were 112 

further trimmed based on RNA-seq coverage information, as described previously(Wurtzel et al., 113 

2010). The final set of transcripts were manually curated yielding 3059 transcriptional units in 114 

Hfx. volcanii, a number that is greater than observed previously in the comparable transcriptome 115 

of the sulfur-metabolizing archaeon Sulfolobus solfataricus(Wurtzel et al., 2010) but fewer than 116 

the 4073 predicted Hfx. volcanii genes. It is likely that under the rich media conditions used in 117 
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this study, not all genes are expressed. Specifically 75% of the predicted transcripts were 118 

detectably expressed, and this fraction is consistent with observations obtained for yeast gene 119 

expression in rich media(David et al., 2006). 32 novel transcripts (absent from the predicted 120 

sequence annotation) were identified in the RNA-seq data. Most of these 32 transcripts lack 121 

significant sequence homologs, and several were classified as transposases with paralogs in Hfx. 122 

volcanii (Supplementary File 1). Notably, the gene that was most highly expressed in the 123 

transcriptome (NTRANS_0004) was not previously annotated and contains a putative N-124 

Acyltransferase (NAT) superfamily domain. Homology searches revealed that this transcript 125 

appears to be restricted to the genomes of other halophilic archaea (Altschul et al., 1990). The 126 

architecture of this domain is homologous to chain A of the well-characterized histone 127 

acetyltransferases Gcn5, Gna1, Hpa2 in S. cerevisiae, suggesting a possible role for this 128 

transcript in regulating transcription via histone acetylation(Marchler-Bauer et al., 2011). 129 

Additional acyltransferases with a similar architecture have been implicated in bacteriophage-130 

encoded DNA modifiers as well as cold and ethanol tolerance in yeast(Kaminska and Bujnicki, 131 

2008, Du and Takagi, 2007). Thus, while post-translational modifications have not been 132 

observed in archaeal histones (Forbes et al., 2004), our observation suggests that some 133 

rudimentary control over chromatin accessibility may occur via the action of ancient NAT family 134 

members. Furthermore acetyltransferase and deacetylase orthologs, which appear to have 135 

enzymatic activity based on their sensitivity to the histone deacetylase (HDAC) inhibitor 136 

trichostatin A have been identified in Hfx. volcanii (Altman-Price and Mevarech, 2009). In our 137 

subsequent analysis, we focused on all genes we empirically determined to be expressed. 138 

In eukaryotes, the TSS of the majority of expressed genes is characterized by a 139 

nucleosome-depleted region (NDR)(Jiang and Pugh, 2009). This NDR is flanked by the well-140 
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positioned í1 and the +1 nucleosomes. These regions direct RNA polymerase II to initiate 141 

transcription and influence the binding of promoter regulatory elements(Jiang and Pugh, 2009). 142 

This stereotypical pattern of nucleosome depletion at promoters and well-ordered nucleosomes 143 

in gene bodies is found in all eukaryotes, including yeast, Drosophila, A. thaliana and humans. 144 

Using the RNA-seq-derived transcripts for Hfx. volcanii, we computed the degree of aggregate 145 

nucleosome occupancy for the 2343 transcripts on the main chromosome, and found that the 146 

NDR and í1 and +1 nucleosomes are conserved in Hfx. volcanii (Fig. 2) suggesting that the 147 

interplay between chromatin and transcription is conserved in archaeal promoters. We generated 148 

nucleosome occupancy profiles for each transcript and clustered them hierarchically. Differential 149 

nucleosome density was observed with profiles encompassing four to six nucleosomes in a 150 

400bp DNA segment spanning 200bp on each side of the TSS (Fig. 2c). NDRs at transcription 151 

termination sites (TTSs) are also observed, and similar to those found in eucaryotes (Lee et al., 152 

2007) they are less prominent than promoter NDRs in Hfx. volcanii. 153 

 154 

Discussion 155 

Our study establishes that nucleosome occupancy is conserved between archaea and 156 

eukaryotes (Fig. 4). We further show that the nucleosomal protected fragments and NDRs are 157 

shorter in archaea than in eukaryotes. Our findings are particularly noteworthy because Hfx. 158 

volcanii likely resembles a deeply rooted ancestor that possessed eukaryotic genome architecture 159 

hallmarks such as histones, as well as bacterial hallmarks such as the Shine-Dalgarno 160 

sequence(Sartorius-Neef and Pfeifer, 2004). Archaeal histone tetramers likely resemble an 161 

ancestral state of chromatin, as it has been observed that functional (H3-H4)2 tetramers can be 162 

formed in vitro from eukaryotic histones, and these tetramers are functional; they facilitate more 163 
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rapid transcription in vitro compared to native histone octamers(Puerta et al., 1993). The 164 

observation that archaea contain (H3-H4)2 tetramers is consistent with the proposal that 165 

formation of the canonical eukaryotic nucleosome octamer begins with (H3-H4)2 tetramer 166 

assembly(Talbert and Henikoff, 2010). 167 

Our study demonstrates that both histones and chromatin architecture evolved before the 168 

divergence of Archaea and Eukarya, suggesting that the fundamental role of chromatin in the 169 

regulation of gene expression is ancient. As well, owing to the small bacterial-sized archaeal 170 

genome, we suggest that archaeal chromatin is not required for genome compaction. This leads 171 

us to postulate that higher-order chromatin(Sajan and Hawkins, 2012) is a eukaryotic invention 172 

and that archaeal chromatin is necessary but not sufficient for genome compaction. Furthermore 173 

our observations provide a rich dataset that addresses the evolution of chromatin and its 174 

fundamental role in the regulation of gene expression. 175 

 176 

Materials and Methods  177 

Sample preparation. Haloferax volcanii DS2 cells (obtained from the ATCC) were grown to 178 

mid-log phase at 42°C in ATCC 974 Halobacterium medium supplemented with 2M NaCl. Cells 179 

were fixed with 2% formaldehyde for 30 min then quenched with 125mM of glycine for 5 min. 180 

An unfixed control sample was also prepared to serve as as a deproteinized, “naked” DNA 181 

control, as described previously (Chung et al., 2010). Cells were pelleted and snap frozen prior to 182 

MNase digestion and DNA extraction. Frozen cells were processed according to a modified 183 

protocol from Rizzo et al.(Rizzo et al., 2011, Tsui et al., 2012). Samples were digested with 184 

increasing concentrations of MNase and a no MNase control. After digestion, fragments 50-60bp 185 

in length were size-selected using an Agilent Bioanalyzer High Sensitivity chip (Agilent, part# 186 
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5067-4626) and further processed for Illumina deep sequencing. This size-selection was critical, 187 

as the formaldehyde crosslinking causes both histones as well as other DNA-binding proteins to 188 

crosslink with bound DNA. Nucleosomal and genomic libraries were pooled equally according 189 

to qPCR quantitation, and sequenced using v3 chemistry on one single-read HiSeq2000 lane 190 

(50x8). Samples were demultiplexed using an 8bp index read at the end of read 1. 191 

 192 

Sequence read filtering and alignment. Illumina sequencers require the ligation of an adapter 193 

oligonucleotide to facilitate cluster formation on the flow cell. Because the library inserts were 194 

short (~60bp), many sequence reads extended into the Illumina adapter sequences. The adapter 195 

subsequences were computationally trimmed to ensure maximal read mapping. Then, using a 196 

sequence quality cutoff of Phred20, reads were trimmed from both 5’ and 3’ ends to ensure 197 

accurate mapping. These trimmed reads from control and MNase-treated genomic DNA were 198 

aligned to the Hfx. volcanii DS2 genome using the Bowtie 2 gapped short read 199 

aligner(Langmead and Salzberg, 2012). Sequence coverage was computed using the Genome 200 

Analysis Toolkit (GATK) depth of coverage walker, which revealed the periodicity in the 201 

occupancy data(DePristo et al., 2011). 202 

 203 

Nucleosome identification. To detect nucleosome midpoint positions, sequence data were 204 

Gaussian-smoothed as described previously by Shivaswamy et al. (2008) and Kaplan et al. 205 

(2009)(Shivaswamy et al., 2008, Kaplan et al., 2009). This is appropriate because signals 206 

generated by processes that are random, such as sequence coverage noise, usually have a 207 

probability density function defined by a Gaussian distribution(Smith, 1997). 208 

The Gaussian filter was defined as: 209 
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 210 

where ȝ is the mean of the distribution and ı is the standard deviation. 211 

A symmetrical convolution sum was applied with the following format:  212 

 213 

where M is an integer bandwidth, y[j] is the output, x[j] is the input and h[j] is an M-point 214 

function. 215 

So, to smooth the coverage data, we applied the following convolution sum: 216 

 217 

where . The interval length M is constrained to 6ı because this encompasses 99.75% of the 218 

Gaussian(Smith, 1997). 219 

We also optimized nucleosome midpoint detection by convoluting a 2-pass simple moving 220 

average (SMA) filter, but the Gaussian filter detected midpoints with greater resolution. Optimal 221 

interval size for the Gaussian convolution sum, as determined by Pearson’s correlation 222 

coefficient with the raw data, was 27bp. For the 2-pass SMA it was 40bp for first-pass and 15bp 223 

for second-pass.  224 

Nucleosome occupancy was normalized genome-wide by transforming sequence coverage data 225 

into binary-like data that existed in states of “occupied”, “depleted” or transitioning between 226 

those two states. This final occupancy map was used to define nucleosome positions. 227 

Nucleosome occupancy profiles were clustered hierarchically by average linkage using Pearson’s 228 
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correlation coefficient as the similarity metric in the Cluster 3.0 software package. Clusters were 229 

visualized with Java Treeview (Fig. 2b,c). 230 

 231 

Transcript identification and genome annotation. RNA was extracted with Trizol reagent 232 

(Invitrogen, 15596-026), and DNase treated (Invitrogen, AM1907) according to manufacturer 233 

specifications. A cDNA library was generated using 100ng of total RNA according to Illumina 234 

TruSeq RNA Sample Prep protocol (Illumina, RS-122-2001) prior to duplex-specific nuclease 235 

(DSN) treatment. 100ng of cDNA library was incubated in hybridization buffer (50mM HEPES, 236 

500mM NaCl) for 2 minutes at 98°C, followed by 1 hour at 68°C. Ribosomal RNA (rRNA) was 237 

not specifically depleted(He et al., 2010). Instead, we used duplex-specific nuclease (DSN) 238 

normalization to remove recurrent RNA (rRNA, tRNA) from the total RNA sample, thereby 239 

enriching mRNA(Zhulidov et al., 2004). Samples were immediately treated with 4 units of DSN 240 

enzyme (Evrogen, EA001) in 1X DSN buffer and incubated for an additional 25 minutes at 241 

68°C, prior to addition of stop solution, and purification with Ampure XP beads (Beckman 242 

Coulter, A63881). RNA libraries were pooled equally according to qPCR quantitation, and 243 

sequenced using v3 chemistry on a paired-end single HiSeq2000 lane (100x8x100). Samples 244 

were demultiplexed using an 8bp index read at the end of read 1. Total RNA was sequenced at 245 

extremely high coverage (2587× mean coverage) so that rRNA sequences (~77% of all sequence 246 

reads) could be computationally excluded, as described by Wurtzel et al.(Wurtzel et al., 2010). 247 

After quality score trimming (described earlier), sequence reads were aligned using 248 

TopHat(Trapnell et al., 2009). The RNA-seq data displayed a great deal of overlap with the 249 

predicted annotations(Hartman et al., 2010), with 92.1% of the existing annotations being 250 

confirmed. Of the 4073 predicted annotations, 3751 were confirmed, and, of these, 744 were 251 
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merged with other transcripts to form longer transcripts. A heuristic approach was applied to 252 

adjust the transcript 5’ and 3’ positions of the Hartman et al. predicted annotations based on the 253 

boundaries of high RNA-seq coverage regions. This was vital as TSS accuracy is of great 254 

importance for NDR identification (Fig. 5). 255 

Because 85% of the Haloferax genome is predicted to be coding(Hartman et al., 2010), transcript 256 

detection is complicated by transcript overlap. To overcome this, computationally identified 257 

transcripts were manually curated yielding a total of 3059 expressed transcripts in Hfx. volcanii. 258 

Of these, 32 transcripts are novel (Supplementary File 1). Of these transcripts, NTRANS_0004 259 

was the most abundant transcript in the transcriptome, after the 6 rRNA genes. Homology data 260 

was obtained using BLASTX with a BLOSUM45 matrix against the non-redundant protein 261 

sequence database(Altschul et al., 1990). Conserved domains were identified using the 262 

Conserved Domain Database(Marchler-Bauer et al., 2011).  “Sequence data, nucleosome and 263 

transcriptome maps and supplemental tables have been deposited to the Short Read Archive and 264 

Dryad, as indicated in the datasets statement. Additionally this data is available at 265 

http://chemogenomics.med.utoronto.ca/supplemental/chromatin/” 266 
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 373 
Figure Titles and Legends 374 
 375 
Fig. 1.  376 

Micrococcal nuclease digestion produces nucleosomal fragments from crosslinked Hfx. 377 

volcanii chromatin. (A) Formaldehyde cross-linked chromatin was subjected to MNase 378 

digestion with increasing amounts on microccocal nuclease (from 1 unit to 5 units). De-379 

crosslinked DNAs were separated on a 3% agarose gel and ~60bp and ~120bp mono- and di-380 

nucleosomes were observed. Markers (M) indicate * 50bp and ** 150bp. (B) The counts of AA, 381 

AT, TA, TT or CC, CG, GC, GG dinucleotides are reported at each position showing an 382 

enrichment of G/C nucleotides and a depletion of A/T nucleotides at the dyad relative to the end 383 

points of the protected fragment. This differs from the observation of Bailey et al. (2000), where 384 

GC, AA and TA dinucleotides were repeated at ~10bp intervals in recombinant archaeal histone 385 

B from Methanothermus fervidus (rHMfB)(Bailey et al., 2000). (C) The sequence logo of a 386 

nucleosome-binding site in Hfx. volcanii centered at the nucleosome midpoint. There is a 387 

significant GC enrichment towards the nucleosome midpoint. This is exhibited using both bit 388 

score and probability measures. 389 

 390 

Fig. 2. Nucleosome occupancy in Haloferax volcanii. (A) Degree of normalized nucleosome 391 

occupancy in aggregate for the main chromosome. As observed in eukaryotes, there is a 392 

prominent nucleosome-depleted region (NDR) at the transcriptional start site (TSS) preceded by 393 

a í1 nucleosome and followed by a +1 nucleosome, demonstrating that promoter genome 394 

architecture is conserved between archaea and eukaryotes. (B) Hierarchical clustergram for the 395 

2343 expressed transcripts on the main Haloferax chromosome. Green represents nucleosome-396 

depleted regions and red represents occupied regions. (C) The clustered heatmap was subdivided 397 
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into the largest 6 subclades, and differential density of nucleosomes can be observed with 398 

occupancy profile clusters containing between 4 to 6 nucleosomes. 399 

 400 

Fig. 3. Nucleosome-depleted regions at the 3’ end of transcripts. As observed in eukaryotes, 401 

NDRs are also found at the transcriptional termination sites in Hfx. volcanii. Both 5’ and 3’ end 402 

profiles are overlaid in this figure for comparison. The 5’ NDR is, on average, more depleted and 403 

longer.  404 

 405 

Fig. 4. Chromatin architecture is conserved at the 5’ end of transcripts across eukaryotes 406 

and archaea. Due to the smaller size of archaeal nucleosome DNA, the occupancy has a shorter 407 

periodicity. Figure adapted with permission from Chang et al.(Chang et al., 2012). 408 

 409 

Fig. 5. Sample screenshot of all data tracks loaded into the Savant genome browser (Fiume 410 

et al., 2010). The nucleosome sequence data is displayed, and the periodicity reflects protected 411 

and unprotected fragments after MNase digestion (magnitude of peak is not considered). Peaks 412 

represent nucleosome midpoints, which were detected and marked. Below are the corresponding 413 

RNA-seq and curated gene tracks. In this screenshot, one can observe seven entire ORFs in line 414 

with their NDRs and –1 and +1 nucleosomes. 415 
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