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ABSTRACT 

 
This work presents design concepts to synthesize 

composite materials with special dynamic properties, namely, 
materials that soften at high frequencies. Such dynamic 
properties are achieved through the use of a two-phase material 
that has inclusions of a viscoelastic material of negative elastic 
modulus in a typical matrix phase that has a positive elastic 
modulus. A possible realization of the negative stiffness 
inclusion phase is presented. A numerical homogenization 
technique is used to compute the average viscoelastic properties 
of the composite. The method and the properties of a composite 
material designed with it are demonstrated through an example. 

 

1. INTRODUCTION 
 
In  applications where vibration suppression is important it 

is common to use a viscoelastic material such as rubber to 
reduce the forces transmitted from a vibrating device to its 
supporting structure. In such applications, at low frequencies 
small displacements are typically required for good 
performance and therefore a stiff material is better. However, as 
the frequency of the excitation increases, the force transmitted 
to the supporting structure also increases. Since high forces can 
damage the supporting structure, a soft material is better at high 
frequencies. Thus, in the ideal vibration isolation material, the 
material stiffness should be a function of the frequency of 
excitation, stiff at low frequencies but softer at higher 
frequencies. Unfortunately, typical homogeneous materials 
actually harden at high frequencies. This is true also for 
composites. For example, a composite made of layers of two or 
more homogeneous materials will soften only if at least one of 
the constituents softens with frequency. Such softening will not 
occur if the layers are made of a regular, elastic or viscoelastic 
materials.  However, a composite may soften with frequency if 
one of the constituents has a negative elastic modulus. Of 
course, such material does not occur naturally, since materials 
with a negative stiffness will be unstable on their own. 
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However, at least in theory, an engineered material with 
negative stiffness can be made stable if it is properly 
constrained, e.g., by surrounding it by a sufficiently stiff, 
regular material. This is the basis for the concepts explored 
here. The objective of this paper is to generate design concepts 
that can lead to the synthesis of two-phase composites that 
soften monotonically with forcing frequency, based on the use 
of negative stiffness constituents. The goal is to expose novel 
concepts and algorithms that could be used as guidelines by 
material scientists in future work, rather than to provide a 
specific recipe to synthesize the material.  

 
The plan is as follows: we shall focus on 2D composites 

formed by periodic inclusions of one material –material B- into 
a viscoelastic matrix of a second material, material A. This 
composite is introduced in section 2.1. Material A is standard, 
but material B has some elements of negative stiffness. To 
understand the behavior of such materials, we start with a 1-D 
model, discussed in section 2.2. We find that to make B stable, 
its negative stiffness component has to be layered with a 
regular material. Thus B is itself a composite, a layered mixture 
of two materials, one unstable (B1) and the other one stable and 
“standard” (B2). This is discussed in section 2.3, where the 
focus is on the stability of the mixture. Once a possible 
viscoelastic tensor for B1 is found, we then relate it to a 
physical system, a 2D array of springs and dashpots whose 
overall behavior mimics that of (the just proposed) B1. This is 
discussed in section 2.4. Finally, the properties of the mixture 
of A and B are computed in section 2.5. There, and throughout 
the paper, standard methods of periodic homogenization are 
used to compute the viscoelastic tensor associated with periodic 
mixtures of two or more constituents. Such methods and related 
numerics are well established and the interested reader should 
refer to, e.g., Cioranescu and Donato (2000) for background or 
to Diaz and Benard (2002)  for a succinct description of the 
practical aspects of such computations.  The composite mixture 
of A and B is the final result. The performance of the designed 
material is demonstrated through an example in section 3. The 
paper ends with brief final remarks.  
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Do
NOMENCLATURE 
 
ω: The frequency of excitation 
E1, E2: Elastic moduli of a viscoelastic material. Real scalars. 

Here, E2>0 but E1<0.  
η: Damping coefficient of a viscoelastic material. A 

positive, real scalar 
*

1BE : Viscoelastic modulus of a material made up of elastic 
components of moduli E1 and E2 (arranged in series) 
and damping coefficient η (arranged in parallel with 
E2.) A complex scalar, frequency dependent.  

1BC : The viscoelastic material tensor of an isotropic material 
B1 of modulus *

1BE  and fixed Poisson’s ratio ν. Material 
B1 has negative stiffness components. A symmetric, 
complex, 3x3 matrix in 2D elasticity. 

BC : The viscoelastic material tensor of a composite material 
B formed by layering material B1 with a (standard) 
viscoelastic material B2 in the ‘1’ direction. A 
symmetric, complex, 3x3 matrix in 2D elasticity. 

QC : A viscoelastic material tensor that numerically 

approximates 1BC  and can be achieved by a discrete 
physical arrangement of springs and dampers. A 
symmetric, complex, 3x3 matrix in 2D elasticity. 

*
HC : The viscoelastic tensor of a composite mixture of a 

matrix A (a standard viscoelastic material) with an 
inclusion of material B. A symmetric, complex, 3x3 
matrix in 2D elasticity. 

2. METHODOLOGY 

2.1 Two Phase Composite Material 
 
The strategy relies on the study of composite materials 

with a periodic micro-structure. In particular, we study a two-
phase composite composed of periodic inclusions of a 
viscoelastic phase B in an elastic or viscoelastic matrix A. A 
schematic arrangement of such composites is shown in Fig. 1. 
The dashed square in Fig. 1 shows a fundamental cell of the 
periodic arrangement. The properties of A and B and the shape 
of the inclusion are the variables to be adjusted so that the 
composite softens with increasing forcing frequency. The 
matrix A could be any typical material, e.g., rubber. The 
inclusion B will be made up of two distinct isotropic phases, B1 
and B2. Material B1 will be allowed to have negative stiffness, 
while material B2 is again a standard material, e.g., rubber. The 
reasons for this particular choice for the inclusion material B 
are explained in the following sections.  
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Figure 1. A two-phase periodic composite material. 
Dashed box shows the fundamental cell. 

2.2 Negative Stiffness Phase (B1) 
 
A negative stiffness material has a negative elastic 

modulus. Such materials are not stable and therefore they do 
not remain in a negative stiffness state. However, it is known 
(e.g., see Lakes and Drugan (2002)) that a block of material of 
negative stiffness can be made stable by surrounding it with a 
typical (i.e. stable) material. Negative stiffness materials are 
realizable. A typical way to implement negative stiffness is 
through the use of bistable structures, positioned in their 
unstable configuration and held there by surrounding, stable 
material (see Prasad and Diaz (2005, 2006)). Lakes and Drugan 
(2002) and Wang and Lakes (2004b, 2005) show how lumped 
structures can be used to implement negative stiffness 
inclusions.   

 
A material B1 with negative stiffness is modeled here as a 

standard linear solid. Such model of viscoelasticity is sketched 
in Fig. 2, where E1, E2 and η are the three parameters of the 
standard linear solid. In a typical viscoelastic material these 
parameters are positive. However, in the present case, E1 is 
negative, while E2 and η are positive. 

 
E1

E2

η

σ σ

 
 

Figure 2. Standard linear solid model of viscoelasticity 
 

The complex modulus that corresponds to the viscoelastic 
model shown in Fig. 2 is given by 
 

* 1 2
1

1 2

( )
( )

( )B
E E i

E
E E i

ηωω
ηω

+
=

+ +
    (2.2.1) 

 
where ω is the forcing frequency. When B1 is isotropic, the 
corresponding elastic tensor is given by 

 
1*

1
1 12

1
1

1 0
1 0

1
0 0 (1 ) / 2

B
B

B B
B

B

E
C

ν
ν

ν
ν

 
 =  −
 − 

  (2.2.2) 
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Here 1Bν  is the Poisson’s ratio. In (2.2.1), E1 and E2 are such 
that the corresponding Young’s modulus (i.e., *

1Re( (0))BE ) is 
negative. Thus, we refer to B1 as the ‘negative stiffness’ phase. 

2.3 Stability of the Negative Stiffness Phase B1 
 
A negative stiffness phase B1 will be unstable because the 

corresponding shear modulus will be negative (Lakes and 
Drugan (2002)). For this reason, the negative stiffness phase B1 
cannot be used directly as the inclusion phase B (i.e., if B1 were 
inserted directly as the inclusion in matrix A, in general the 
resulting composite would be unstable). Instead, we must look 
for a material B that has a negative Young’s modulus, to 
achieve frequency softening, but positive shear modulus, to 
maintain stability. This can be accomplished by layering B1 
with a regular material, B2.  

 
In order to avoid loss of stability, a model for B is 

proposed, whereby B is itself a mixture of two isotropic 
constituents, B1 and B2. In this model, the constituent with 
negative stiffness (B1) is always surrounded by a second phase 
of stable material (B2). One such arrangement is shown in Fig. 
3. The resulting effective properties of B correspond to a “rank 
1” layering of B1 and B2 along the horizontal direction 
(direction 1). The effective elastic tensor for phase B is 
computed using well known layering formulas: 
 

11 11
11

11 11

( )
(1 )

q r
b

g r gq
ω =

− +
    (2.3.1) 

 

12 12
12 11

11 11

( ) (1 ) ( )
r q

b g g b
r q

ω ω
 

= + − 
 

   (2.3.2) 

 

( ) ( )22 2
1212 12

22 22 22
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( )
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( )
br q

b gr g q g g
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ω
ω

ω
 

= + − − + − + 
 

 

      (2.3.3) 
33 33

33
33 33

( )
(1 )

q r
b

g r gq
ω =

− +
    (2.3.4) 

 
where ijq  and ijr  are the ij-components of the elastic tensors 
(CB1 and CB2) for phases B1 and B2, respectively. g is the 
volume fraction of B2 in B. The effective elastic tensor is given 
by 
 

11 12

12 22

33

( ) ( ) 0
( ) ( ) 0
0 0 ( )

B

b b
C b b

b

ω ω
ω ω

ω

 
 =  
  

   (2.3.5) 

 

Stable B2 Unstable B1 Stable B2 Unstable B1
 

 
Figure 3. A potential arrangement of constituents B1 

and B2 to form material B 
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With suitable values for the free parameters g, CB1 and CB2, 
the layered set up can result in an elastic tensor for B where the 
2-2 entry (C2222) is negative, to produce frequency induced 
softening, while the 3-3 entry (C1212) is positive, to make 
stability possible when B is inserted in A. The choice of B2 is 
somewhat arbitrary (as long as it is a standard material). We 
choose both A and B2 to be the same material.  

2.4 A Lumped System Realization of Material B 
 
One way to visualize the behavior and inner-workings of 

B1 is to use an arrangement of springs and dampers where some 
of the springs have negative stiffness. Negative stiffness may 
be realized using e.g., bistable structures, as shown in Prasad 
and Diaz (2005, 2006). Figure 4 shows a potential 
configuration. As shown in the figure, the structure is a four-
noded square, with two degrees of freedom at each node. The 
nonlinear springs in the figure (shown as springs with an arrow 
across) correspond to bistable structures that can be used to 
provide the desired negative stiffness. Material B1 is obtained 
by tiling a plane with the two dimensional lattice shown in Fig. 
4. 

 

 
Figure 4. Two-dimensional lattice of phase B1 

 
The 2D lattice in Fig. 4 is basically made up of 6 standard 

linear solid (SLS) elements interconnecting the 4 nodes. kij and 
cij in the figure denote spring stiffness and damper coefficient, 
respectively. The complex stiffness of each of the four identical 
SLS elements forming the four sides of the lattice is given by 

 
31 21 21

1
31 21 21

( )k k i c
s

k k i c
ω
ω

+
=

+ +
    (2.4.1) 

 
Similarly, the complex stiffness of either of the two identical 
SLS elements forming the two diagonals of the lattice is given 
by 
 

32 22 22
2

32 22 22

( )k k i c
s

k k i c
ω
ω

+
=

+ +
    (2.4.2) 
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The complex stiffness matrix ( *
QK ) for the 2D element in Fig. 4 

is given by 
 

2 2 2 2
1 1

2 2 2 2
1 1

2 2 2 2
1 1

2 2 2 2
1 1

*

2 2 2 2
1 1

2 2 2 2
1 1

2 2 2 2
1 1

2 2 2 2
1 1

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

0 0 0
2 2 2 2

Q

s s s ss s

s s s ss s

s s s ss s

s s s ss s
K

s s s ss s

s s s ss s

s s s ss s

s s s ss s

 + − − −

 + − − −

 − + − −


 − + − −
=

− + − −

− − − +

− − − +

− − − +














 
 
 
 
 
 
 
 
 
 
 

 

      (2.4.3) 
 

The complex modulus tensor ( QC ) corresponding to the 
arrangement in Fig. 4 is of the form: 
 

11 12

12 11

33

0
0

0 0
Q

f f
C f f

f

 
 =  
  

    (2.4.4) 

 
Three numerical tests are conducted to find QC : 
 

(i) Tension test 1: Degrees of freedom 1, 2, 3, 4, 5 and 7 
are constrained (zero prescribed displacement) and degrees of 
freedom 6 and 8 are given unit displacements. 11f  is the total 
reaction force along the degrees of freedom 6 and 8. 11f  is 
given by 
 

11 1 22f s s= +      (2.4.5) 
 

(ii) Tension test 2: Degrees of freedom 1, 2, 3, 4, 5 and 7 
are constrained (zero prescribed displacement) and degrees of 
freedom 6 and 8 are given unit displacements. 12f  is the total 
reaction force along the degrees of freedom 1 and 5. 12f  is 
given by 
 

12 2f s=       (2.4.6) 
 

(iii) Shear test: Degrees of freedom 1, 2, 3, 4, 6 and 8 are 
constrained (zero prescribed displacement) and degrees of 
freedom 5 and 7 are given unit displacements. 33f  is the total 
reaction force along the degrees of freedom 5 and 7. 33f  is 
given by 
 

33 2f s=       (2.4.7) 
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Our aim is to construct an isotropic material using the 
structure in Fig. 4. In other words, we want to express QC  in 
the form of (2.2.2). This is possible if  

 
1 2s s=       (2.4.8) 

 
* 1 2

1
8 8
3 3B
s s

E = =      (2.4.9) 

 
and 
 

1
1
3Bν =        (2.4.10) 

 
As an example (to be used in section 3), we choose the 
following parameters: 
 

21 18.45 Ak E=  

31 210.304k k= −  

21 21/ 0.0002c k =  

22 21k k=  

32 31k k=  

22 21c c=  
 
The corresponding elastic tensor is CB1 in (2.2.2) with  
 

*
1 1

6.8501(1 0.0002 )
0.696 0.0002B A

iE E
i

ω
ω

+= −
+

  

 
and 1 1/ 3Bν = . 

 
Note that while it may be possible to synthesize a lumped 

model for phase B directly (by-passing the construction of B1 
followed by layering), finding a lumped model with the desired 
properties may be difficult. 

2.5 Homogenization of Viscoelastic Properties 
 
With phases A and B in hand, the final step is to compute 

the effective properties of the mixture of A and B, e.g., 
characterized by a simple arrangement such as that in Fig. 5. 
This can be accomplished by numerical homogenization (notice 
that this suggests that the mixture of constituents B1 and B2 
takes place at a smaller scale than the mixture of A and B). The 
representative cell is discretized using standard, 2D 
quadrilateral finite elements and the effective properties of the 
mixture are obtained by exposing the cell to three states of 
(unit) pre-strain, as is standard in numerical homogenization 
methods (details can be found in Yi et. al. (2000)). The 
computed homogenized elastic tensor of the composite material 
has the information of whether the composite material softens 
with frequency. In particular, a monotonic decrease in the 
absolute value of the second diagonal entry of the effective 
tensor indicates softening of the composite material in direction 
2. 
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Downlo
Material A:
standard, elastic material

Material B:
viscoelastic material with

“negative stiffness”  
 
Figure 5. Representative cell characterizing the (periodic) 

mixture of materials A and B 

3. EXAMPLE 
 

Here we will illustrate the properties of a material 
constructed as described above using a numerical example. We 
first select a typical rubber-like viscoelastic material for phases 
A and B2. The (complex) elastic tensor of phase A is 

 

0 (1 )A A AC C iδ= +  with 0
2

1 0
1 0

1
0 0 (1 ) / 2

A
A

A A
A

A

E
C

ν
ν

ν
ν

 
 =  −
 − 

 

 
where Young’s modulus AE  is arbitrary but real and positive 
and Poisson’s ratio 0.45Aν = . The structural damping 
coefficient δA is 0.07. As indicated, we use this material also in 
phase B2 of B, i.e., CB2 = CA. 
 

Phase B is a layered material. Here phase B is constructed 
by alternating layers of B2 and a negative-stiffness material B1. 
The volume fraction of B2 in B is 0.8.  
 

Phase B1 is made of a material such as the spring-damper 
structure shown in  Fig. 4. Its elastic tensor is as in (2.2.2) with 

1 1/ 3Bν =  and  
 

*
1

6.8501(1 0.0002 )
0.696 0.0002B A

iE E
i

ω
ω

+= −
+

  

 
The values of *

1BE  and 1Bν  used here correspond to the 
example material B1 computed in section 2.4. 

 
The final mixture corresponds to the periodic mixture of 

phases A and B characterized by the periodic repetition of the 
cell in Fig. 5. The volume fraction of phase B is 16%. The unit 
cell is discretized into 50x50 square plane stress elements for 
numerical analysis. The resulting homogenized complex 
modulus tensor of the two-dimensional composite is given by 

 
11 12

*
12 22

33

( ) ( ) 0
( ) ( ) 0
0 0 ( )

H

c c
C c c

c

ω ω
ω ω

ω

 
 =  
  
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Figure 6. Components of the effective elastic tensor after 

mixing A and B 
 
The absolute values, real and imaginary parts of ( )ijc ω are 

plotted versus the forcing frequency in Fig. 6. ( )ijc ω  values are 
normalized by AE . 

 
As can be seen in Fig. 6, 22 ( )c ω  decreases with forcing 

frequency ω, while 11( )c ω , 12 ( )c ω  and 33 ( )c ω  are almost 
constant. This implies that frequency-induced softening is 
achieved if the composite material is loaded in direction 2 
while the material is constrained in direction 1. Direction 1 is 
along the thickness of the layers (of phase B1 or B2) inside 
phase B, as shown in Fig. 7. Frequency-induced softening of 
the dynamic modulus is achieved under unidirectional loading 
– when the composite material is loaded in direction 2.  

1

2 Material A:
standard, elastic material

Material B:
rank-1 layered material  

 
Figure 7. Phase B as layered material 
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3.1 Transmissibility Analysis 
 

Now we will demonstrate the vibration isolation 
performance of the material designed in this example. We use a 
cylindrical block of the composite material synthesized here as 
a vibration-isolation device, and carry out a transmissibility 
analysis. Figure 8 shows the vibration-isolation device. The 
cross-sectional area of the cylinder is a (i.e. the radius of the 
cylinder is /a π ). The device supports a mass m and the 
unbalanced disturbance force acting on the mass is F. Fs is the 
force transmitted to the structure. The transmissibility of the 
system is T = ||Fs|| / ||F||. An effective vibration isolation 
performance corresponds to low transmissibility. 

 

m

l

F

Fs

2

1

 
Figure 8. Vibration-isolation system 

 
The components of the elastic tensor of the composite 

material used to build the vibration-isolation device are those 
plotted in Fig. 6. In Fig. 8, the vibration-isolation device is 
unidirectionally loaded in direction 2 and it is not constrained 
in direction 1. As indicated earlier in this section, direction 2 is 
perpendicular to the layering direction, as shown in Fig. 7. 
Under the given boundary condition the strain (ε22) and the 
stress (σ22) in direction 2 are related as  
 

22 22( )CEσ ω ε=   
 
where 
 

22 12( ) ( ) ( ) ( )CE c cω ω ν ω ω= −   
 
and 
 

12

11

( )
( )

( )
c
c

ων ω
ω

=      

 
( )CE ω  and the effective stiffness of the vibration-isolation 

device ( )Ck ω  are related by 
 

( )
( ) C

C
E a

k
l
ωω =   

 
The absolute value, real and imaginary parts of ( )CE ω  are 

plotted in Fig. 9, where values are normalized by EA (i.e., the 
Young’s modulus of phase A). It can be seen in the figure that 
 

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
( )Re (0)CE  is approximately 3EA. In other words, the effective 
Young’s modulus of the composite material is 3EA. Typically, 
the static stiffness (i.e., (0)Ck ) of the vibration-isolation device 
is prescribed. In this case, suppose (0)Ck  is set to 170 N/mm. 
This stiffness is achieved with, for example, EA = 4 N/mm2, l = 
30 mm and a = 425 mm2.  
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0
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4
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0

2

4

Frequency (Hz)   
( ) /C AE Eω     Re( ( ) / )C AE Eω   Im( ( ) / )C AE Eω  

Figure 9. The effective complex modulus ( )CE ω  
 

m

δ(ω)k(ω)

F

Fs  
Figure 10. Vibration-isolation device as spring-damper system 

 
The vibration-isolation device in Fig. 8 may be represented 

as a system of a spring and a damper connected in parallel, as 
shown in Fig. 10. The corresponding spring stiffness ( ( )k ω ) 
and the structural damping coefficient ( ( )δ ω ) are  
 

( ) Re( ( ))Ck kω ω=  
 

Im( ( ))
( )

Re( ( ))
C

C

k
k

ωδ ω
ω

=  

 
( )k ω  and ( )δ ω  are plotted in Fig. 11.  

 
Note that the complex stiffness of the vibration-isolation 

device is ( )Ck ω , which is directly proportional to the complex 
modulus ( )CE ω . As can be seen in Fig. 9, the absolute value, 
real and imaginary parts of ( )CE ω  decrease monotonically 
with frequency. This implies that the dynamic stiffness of the 
vibration-isolation device, ( )Ck ω , and the real and imaginary 
parts of the complex stiffness ( ( )k ω  and ( ) ( )kδ ω ω , 
respectively) also decrease monotonically with frequency. 
However, the effective structural damping coefficient 

( )δ ω increases with frequency, as shown in Fig. 11. The 
dashed lines in Fig. 11 correspond to ( )k ω  and ( )δ ω of the 
vibration-isolation device if the device were made of phase A 
alone. 
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Figure 11. Spring stiffness ( ( )k ω ) and damping coefficient 

( ( )δ ω ) of the vibration-isolation device  
 
 

With ( )k ω  and ( )δ ω  in hand, the next step is to compute 
the transmissibility of the device, defined here as 
 

2
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Note that the above expression for T(ω) may not be ideal for a 
nonlinear system where ( )k ω  and ( )δ ω are functions of 
frequency; however, we use this expression for simplicity as is 
standard in engineering practice. 
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Figure 12. Transmissibility as a function of frequency 

 
The transmissibility ( )T ω  is plotted in Fig. 12 (measured 

in decibels). The solid line corresponds to the composite 
material, while the dashed line corresponds to phase A alone.  
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The reduction in transmissibility at low frequencies –near 
the resonance peak at about 10Hz – is associated with the 
increased damping of the composite C, when compared to 
material A alone (as seen in Fig. 11). The reduction in 
transmissibility at high frequencies, in the 1000 Hz regime, is 
of several orders of magnitude, suggesting that significant 
improvements can be achieved by using C, even if unavoidable 
imperfections and uncertainties in material properties affect the 
final answer. 

FINAL REMARKS 
 

A model of a material that exhibits frequency-induced 
softening has been proposed. The model is 2-D and based on a 
periodic mixture of two phases: A (matrix phase) and B 
(inclusion phase). Simultaneous softening and stability are 
achievable if phase B itself is a small scale mixture of two 
constituents, one elastic and the other one with negative 
stiffness. While the performance of the A-B mixture in terms of 
frequency-induced softening is better than the performance of 
A alone, there is still room for improvement through 
optimization by adjusting the constituent material properties (as 
well as the shape of the inclusion, as indicated below).  
 

Construction of B by layering will result in a phase B that 
is not isotropic and therefore mixing A and B may result in a 
material that is not isotropic either. In practice one may be 
interested only in isotropic materials and therefore the micro-
geometry of the mixture of A and B must be designed so that 
the mixture is isotropic. While there was no attempt to do this 
in this work, this can be done by casting the problem as an 
inverse homogenization problem (as discussed e.g. in Sigmund 
(1995)). This methodology can be used to tailor the material 
tensor to desired specifications, by re-adjusting the shape of the 
inclusion of B inside A.  

 
While the stability of the mixture was verified against 

certain modes of instability, one cannot say for sure that the 
material is stable with regard to all possible modes of 
instability. Further analysis may determine that additional 
conditions may be required. A full answer can be obtained only 
through experimentation.  

 
The concept presented here is attractive and may provide 

indications on what avenues to pursue in the future. An 
attractive direction involves the realization of the negative 
stiffness inclusion by means of a bistable structure inside the 
composite. This could be accomplished perhaps by pre-
stressing one of the constituents to a post-buckled state.   
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