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Abstract: The interactive effects of environmental stressors and emerging infectious disease pose potential

threats to stream salamander communities and their headwater stream ecosystems. To begin assessing these

threats, we conducted occupancy surveys and pathogen screening of stream salamanders (Family Pletho-

dontidae) in a protected southern Appalachians watershed in Georgia and North Carolina, USA. Of the 101

salamanders screened for both chytrid fungus (Batrachochytrium dendrobatidis) and Ranavirus, only two

exhibited low-level chytrid infections. Prevalence of Ranavirus was much higher (30.4% among five species of

Desmognathus). Despite the ubiquity of ranaviral infections, we found high probabilities of site occupancy

(�0.60) for all stream salamander species.
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INTRODUCTION

Two emerging pathogens of amphibians—Batrachochytri-

um dendrobatidis (Bd) and Ranavirus (Rv)—have been

detected at relatively protected sites in the southern

Appalachian Mountains (Dodd 2004; Rothermel et al.

2008; Gray et al. 2009a), with unknown consequences for

the host species and their headwater ecosystems. Bd is a

specialized, pathogenic fungus in the Phylum Chytridi-

omycota that infects the keratinized tissues of amphibians

(Berger et al. 1998; Longcore et al. 1999). Catastrophic die-

offs of amphibians attributable to Bd have occurred in

montane regions of Central America (Lips et al. 2003) and

western North America (Daszak et al. 1999; Rachowicz

et al. 2006; Vredenburg et al. 2010). In contrast, there have

been very few cases of Bd-associated mortality in the east-

ern United States (e.g., Todd-Thompson et al. 2009; Bak-

kegard and Pessier 2010), despite high prevalence of Bd in

ranids, hylids, and salamandrids (Longcore et al. 2007;

Rothermel et al. 2008). Ranaviral disease has caused many

more mass mortality events of amphibians in the eastern

United States, mostly involving ranid frogs and ambys-

tomatid salamanders (Green et al. 2002; Dodd 2004;
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Petranka et al. 2007; Gray et al. 2009b). Three of the six

described species of Rv (Family Iridoviridae) can infect

amphibians, and some genetically unique isolates may have

enhanced virulence (Gray et al. 2009b). Rv is known to

have a broad host range, but was only recently detected in

plethodontid salamanders at stream sites in Great Smoky

Mountains National Park (Gray et al. 2009a).

Although stream-breeding salamanders are sensitive to

anthropogenic habitat disturbance and climate change

(Willson and Dorcas 2003; Lowe 2012), intensive moni-

toring is required to assess the impacts of environmental

stressors and emerging infectious disease. Toward that end,

we completed an initial assessment of pathogen prevalence

and site occupancy of stream salamanders in the Upper

Tallulah River watershed (UTRW) in northeastern Georgia

and southwestern North Carolina. Although this watershed

was heavily disturbed by logging, mining, and other

activities in the early twentieth century (Wharton 1978),

most of the UTRW has been protected as wilderness area

(managed by the U.S. Forest Service) since 1984. At least

nine species of plethodontids associated with streams and

other aquatic habitats occur in the UTRW.

We employed an occupancy estimation approach to

account for imperfect detection and generate species-spe-

cific estimates of the proportion of area occupied (Mac-

Kenzie et al. 2002). From 1 May to 23 August 2010, we

surveyed 27 sites in the UTRW, including several first-order

(i.e., headwater) streams, as well as larger second- and

third-order streams (Fig. 1). Each site was surveyed one

time, with three replicate plots per site serving as the

repeated sample for estimating detection probabilities

(MacKenzie et al. 2006). Observers completed two tem-

porary removal passes of each 2 9 8-m plot, turning rocks

and other cover objects and capturing salamanders with

Figure 1. Location of the Upper Tallulah River watershed within the Appalachian Highlands region in the southeastern U.S. (black star; left

panel) and approximate locations of 27 sites (right) surveyed for stream salamanders in May–August 2010. The watershed encompasses areas

within Clay County, North Carolina (13 sites), Towns County, Georgia (seven sites), and Rabun County, Georgia (seven sites). Multiple sites on

the same stream were separated by �100 m and all sites were �15 m from trail crossings and �50 m upstream of any roads.

Stream Salamander Occupancy and Pathogen Prevalence 185



dipnets (see online Appendix for details). We used Pro-

gram PRESENCE (version 4.2) to estimate site occupancy

(W) and detection probability (p) over one season for

species captured at more than one site (see online

Appendix for detailed statistical methods).

Every captured salamander was visually examined to

confirm species identification and detect gross signs of

disease. To determine prevalence of Bd and Rv, we collected

samples from 92 postmetamorphic Desmognathus spp. (15–

20 haphazardly chosen individuals of each species, from 20

sites), eight larval Carolina spring salamanders (Gyrino-

philus porphyriticus dunni; 5 sites) and one adult Blue Ridge

two-lined salamander (Eurycea wilderae). A skin swab (of

ventral surfaces and hind feet), toe-clip (one toe from the

right hind foot), and tail-clip from each individual were

preserved in separate vials containing 70% ethanol. Skin-

swab samples were tested for Bd using polymerase chain

reaction (PCR)-based assays (Annis et al. 2004). Because we

expected low levels of Bd infection in desmognathine sal-

amanders, we tested toe-clips from the same individuals

using real-time PCR (Boyle et al. 2004). The tail-clip

samples were screened for Rv using conventional PCR

(Mao et al. 1996, 1997; see online Appendix for details).

The two most common species detected were black-

bellied salamanders (Desmognathus quadramaculatus) and

seal salamanders (D. monticola; Table 1). Most captures of

Blue Ridge two-lined salamanders and all but one capture

of Carolina spring salamanders were larvae. Because black-

bellied salamanders were captured at every site, there was

logically no way to improve the occupancy estimate by

accounting for detection. Occupancy estimates (W) for the

remaining stream-associated species were high, ranging

from 0.5987 to 0.9767 (Table 1). Additional species

encountered at fewer than three sites included two adult

seepage salamanders (D. aeneus; sites 3 and 19), three larval

three-lined salamanders (Eurycea guttolineata; site 7), one

juvenile red-spotted newt (Notophthalmus viridescens viri-

descens; site 3), and several postmetamorphic American

bullfrogs (Lithobates catesbeianus; sites 15, 19, and 21).

We tested 101 salamanders from 20 sites in 11 major

stream drainages for both Bd and Rv (Table A2). Although

Bd was not detected in any swab samples using conven-

tional PCR, an adult Ocoee salamander (site 17) and a

juvenile black-bellied salamander (site 23) were positive by

qPCR on the hind toe; average Ct values were 34 and 37,

respectively, suggesting low infection intensity. Thus, Bd

prevalence was 2.2% among Desmognathus spp. (n = 92;

95% CI: 0.3–7.6%). Rv was detected in five species of

Desmognathus, with an overall prevalence of 30.4%

(n = 92; 95% CI: 21.3–40.9%; Fig. 2).

None of the 1,288 salamanders captured during our

surveys exhibited morbidity or gross lesions, but on a re-

turn visit to site 14 in September 2010, we found an adult

black-bellied salamander that was lethargic and sitting in an

exposed position. It subsequently died after two days in

captivity. Tissues were PCR-positive for Rv and histopa-

thological examination of the liver revealed vacuolar

degeneration of cells, increased numbers of melanomac-

rophage centers, and rare intracellular structures consistent

with viral inclusion bodies.

Most previous surveys in the southern Appalachians

have failed to detect Bd in stream salamanders (e.g.,

Chinnadurai et al. 2009; Hossack et al. 2010; Conor Keitzer

et al. 2011). The prevalence of Bd infection among Des-

mognathus spp. in the UTRW was only 2.2%, similar to the

low prevalence reported for Ocoee salamanders in south-

Table 1. Naı̈ve Occupancy (i.e., Proportion of Sites) and Estimated Site Occupancy (W) and Detection Probability (p) for Stream

Salamanders in the Upper Tallulah River Watershed in Georgia and North Carolina.

Species Prop. of sites occupied W ± SE p ± SE

Black-bellied salamander (Desmognathus quadramaculatus) 1.00 – –

Seal salamander (D. monticola) 0.96 0.9767 ± 0.0379 0.7584 ± 0.0517

Ocoee salamander (D. ocoee) 0.89 0.9611 ± 0.1194a 0.5780 ± 0.0686

Dwarf black-bellied salamander (D. folkertsi) 0.70 0.7478 ± 0.0972 0.6109 ± 0.0746

Shovel-nosed salamander (D. marmoratus) 0.59 0.5987 ± 0.1245a 0.7836 ± 0.0627

Carolina spring salamander (Gyrinophilus porphyriticus dunni) 0.70 0.9007 ± 0.1557 0.3975 ± 0.0858

Blue Ridge two-lined salamander (Eurycea wilderae) 0.85 0.8958 ± 0.0761 0.6340 ± 0.0661

Estimates shown here are from the model with constant occupancy and constant detection, which was the highest ranked model for every species; see Table A1

of the online Appendix for a comparison of results from all candidate models, including their associated Akaike’s information criteria and Akaike weights.
aStandard error was corrected for overdispersion because ĉ > 1.0 (Donovan and Hines 2007).
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western North Carolina (5.6%; Kiemnec-Tyburczy et al.

2012) and seal salamanders and northern dusky salaman-

ders (D. fuscus) in northern Virginia (3.4%; Gratwicke et al.

2011) and in Virginia and Maryland (4.8%; Hossack et al.

2010). The low prevalence of Bd in these field studies and

the low infection intensity found in this study are consis-

tent with laboratory experiments showing resistance to

infection in Desmognathus spp. (Chinnadurai et al. 2009;

Vazquez et al. 2009). Cutaneous bacteria prevent morbidity

associated with Bd infection in red-backed salamanders

(Plethodon cinereus; Becker and Harris, 2010), but it is

unknown whether desmognathine salamanders possess

similar skin defenses. It should be noted that higher Bd

prevalence has been observed in desmognathine salaman-

ders at sites in Maryland (13.4%; Grant et al. 2008) and

southwestern Virginia (17.9%; Davidson and Chambers

2011). Our sampling was conducted in May–June, when Bd

prevalence tends to be high in pond-breeding species in our

study area (Rothermel et al. 2008), so the low prevalence in

stream salamanders is not attributable to timing of sam-

pling.

Detection of Rv in five species and 10 of 11 stream

drainages with only minimal sampling suggests this path-

ogen is ubiquitous even within this relatively protected

watershed. Furthermore, our study may have underestimated

prevalence, given false-negative rates of *20% for PCR

testing of tail-clips (Gray et al. 2012). The only other

studies of Rv in aquatic salamanders have found higher

prevalence at some sites in eastern Tennessee (Gray et al.

2009a; Souza et al. 2012). We do not know if Rv was re-

cently introduced or is endemic to our study area, though

our observations are more consistent with pathogen and

host species having co-existed long enough to allow for

evolution of reduced virulence, enhanced immunity, or

both. All but one of the Rv-positive salamanders had sub-

clinical infections. In contrast, during 2008–2010, we de-

tected Rv in red-spotted newts and observed recurring

morbidity and mortality consistent with ranaviral disease in

larval ranids inhabiting ponds in the Tallulah River valley

(unpubl. data). As noted earlier, we observed postmeta-

morphic American bullfrogs and red-spotted newts using

streamside habitats in our study area; both species likely

serve as reservoirs for Rv and Bd (Daszak et al. 2004; Garner

et al. 2006; Hoverman et al. 2012) and could potentially

facilitate spread of pathogens from pond to stream habitats

(Grant et al. 2008).

Streams in the UTRW still appear to support robust

populations of all species of salamanders known to occur in

this area historically, based on specimens deposited in the

Georgia Museum of Natural History, Athens, Georgia, in

1961–1968. Despite high prevalence of Rv (Fig. 2), naı̈ve

occupancy was �0.59 for all seven stream-associated spe-

cies (Table 1). Three-lined salamanders and seepage sala-

manders typically do not breed in or inhabit fast-flowing

streams (Petranka 1998), which explains why they were

rarely detected at our sites.

Genetic sequencing of Rv from our study area is nee-

ded to determine if it is similar to Frog virus 3 (FV3) or a

novel isolate. Infection with an FV3-like strain (rather than

Ambystoma tigrinum virus) would be consistent with

sequencing results for isolates from salamanders in Great

Smoky Mountains National Park, including plethodontids

(Gray et al. 2009a) and ambystomatid larvae collected

during a localized die-off in 2009 (Waltzek, University of

Florida, pers. comm.; Todd-Thompson 2010). Available

data suggest a high rate of sublethal Rv infections in stream

salamander communities, but controlled experimental

studies are needed to clarify fundamental questions about

routes of transmission and other aspects of host-pathogen

dynamics. Once the UTRW strain has been isolated and

sequenced, there are many avenues for future research,

including reciprocal exposure studies (e.g., Schock et al.

2009; Hoverman et al. 2011) to explore localized adaptation

Figure 2. Ranavirus prevalence (± 95% CI) in six species of stream

salamanders (and in the five species of Desmognathus combined) in

the Upper Tallulah River watershed, based on PCR assays of tail-clips

collected in May–June 2010. Given limited resources for PCR testing,

we prioritized screening of postmetamorphic Desmognathus spp.;

additional sampling would be needed to obtain reliable estimates of

prevalence in Carolina spring salamanders and Blue Ridge two-lined

salamanders (not shown; the one individual we tested was Rv-

negative).
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of hosts and pathogen and the susceptibility of different

species to this presumably endemic strain versus novel

strains.

Because the UTRW is largely protected from habitat

destruction, any future declines of stream salamanders

could signal broad environmental changes. Based on their

modeling of future suitable climatic habitat for 41 species

of plethodontid salamanders, Milanovich et al. (2010)

predicted imminent declines of salamander species richness

along the southeastern edge of the Appalachians. Such

declines could be precipitous if rising temperatures or other

environmental stressors were to alter salamander immune

responses, making them more susceptible to Ranaviruses or

other pathogens (Raffel et al. 2006). Thus, we see a great

need for development of a broader salamander monitoring

program in the southern Appalachians and for integrating

disease surveillance into population monitoring.
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