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The variance and passivity constrained fuzzy control problem for the nonlinear ship steering systems with state multiplicative
noises is investigated. The continuous-time Takagi-Sugeno fuzzy model is used to represent the nonlinear ship steering systems
with state multiplicative noises. In order to simultaneously achieve variance, passivity, and stability performances, some sufficient
conditions are derived based on the Lyapunov theory. Employing the matrix transformation technique, these sufficient conditions
can be expressed in terms of linear matrix inequalities. By solving the corresponding linear matrix inequality conditions, a parallel
distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear ship steering
systems subject to variance and passivity performance constraints. Finally, a numerical simulation example is provided to illustrate
the usefulness and applicability of the proposed multiple performance constrained fuzzy control method.

1. Introduction

In the literature, the problem of controlling surface ships in
maneuvering situations has been receiving more and more
attention from the operational safety and environmental
viewpoints [1–8]. For ship steering, the stochastic distur-
bances are waves, wind gusts, and observation errors, and
the deterministic disturbances are current, mean wind, and
curvature of the prespecified track. In order to deal with
the complex disturbances, the adaptive control approach was
developed to solve the ship steering control problem [1–4].
In [5], an output feedback control problem was studied by
using the vectorial observer backstepping technique. Apply-
ing the sliding mode control, a multivariable performance-
constrained controller was developed in [6] for the dynamic
ship positioning systems. In [1–6], the dynamic ship steering
systemswere approximated by the linearizedmodels thatmay
have sacrificed some nonlinear characteristics. In order to
reserve the characteristics of original nonlinear systems, the
authors of [7, 8] used the Takagi-Sugeno (T-S) fuzzy model
to represent the nonlinear dynamic ship steering systems.
Without loss of generality, the T-S fuzzy model [7, 8] can

approximate a wide class of nonlinear systems by mixing
several linear subsystems with IF-THEN rules.

In control engineering, it is always required to develop
some methodologies for designing controllers to achieve
multiple performance requirements. In addition to the sta-
bility performance constraint, the individual state variance
constraint and passivity constraint are usually considered for
the control problem of linear and nonlinear systems. The
individual state variance performance requirements of engi-
neering systems are usually expressed as upper bounds on
the steady-state variances for the stochastic control systems.
Current control design techniques, such as Linear Quadratic
Gaussian (LQG) and 𝐻

∞
design methods, do not seem to

give a direct solution to this kind of design problem since
they lack a convenient avenue for imposing design objectives
stated in terms of upper bounds on the variance values.
The covariance control theory developed in [9] provided
a more direct methodology for achieving the individual
variance constraints than the LQG control theory.The idea of
covariance control theory has been widely applied in solving
multiobjective control problems as well as filtering problems
see [6, 10–13], for instance. In addition to the individual
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Figure 1: The coordinate of ship steering system.

Rule 1

Rule 2 Rule 3

Rule 41

0
−90
∘

0
∘

90
∘ 𝑥3(𝑡)

Figure 2: The membership function of state 𝑥
3
(𝑡).

variance constraint, the passivity constraint is also considered
in this paper. In the literature, the passivity concept [14–
21] is presented to issue stability analysis and synthesis of
linear or nonlinear systems. It is well known that the passive
theory uses the behaviors of energy dissipative between input
and output of systems. The most important definitions of
the passive theory are storage function [16, 20] and power
supply [16, 21] for decision the property of passivity. As for
a storage function in passive theory, it measures the amount
of energy stored in the internal of the system; hence it is
naturally described by using internal variables of system state
variables. To the authors’ knowledge, so far, the variance
and passivity constrained stabilization problem of nonlinear
stochastic ship steering systemswithmultiplicative noises has
not been investigated. It is also an open problem to discuss
the variance and passivity constrained fuzzy controller design
for the stochastic T-S fuzzymodels withmultiplicative noises.
For this reason, this paper tries to develop an applicable fuzzy
control methodology for achieving the individual variance
constraints and passivity constraints, simultaneously.

The control problem for the systems with multiplicative
noise has recently received a great deal of attention. Such
models are found inmany physical systems, such as aerospace
engineering systems [22], signal processing systems [23],
and biological movement systems [24, 25]. Different from
the traditional additive noise, multiplicative noise is more
practical, since it allows the statistical description of the noise
to be unknown a prior but depend on the control and state
solution. So far, many researchers have been working on
various kinds of investigation of filtering and control for
the control systems with multiplicative noise. Thus, there
have been several approaches for dealing with this problem,
including the linear matrix inequality (LMI) approach [23],
the Riccati difference equation approach [25], the game
theoretic approach [26], and the fuzzy control approach [19,
27–29]. Since this model reflects more realistic properties in
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engineering, a complete theory which includes control and
estimation is worthy to be developed.

The contribution of this paper is to develop a method-
ology to design a fuzzy controller such that the stabil-
ity constraint, individual variance constraint, and passivity
constraint are simultaneously achieved for the nonlinear
stochastic ship steering systems with multiplicative noise.
The T-S fuzzy model is used to represent the nonlinear
stochastic ship steering systems with multiplicative noise.
According to the T-S fuzzy model with multiplicative noise,
there are few approaches investigated to simultaneously
achieve multiple performance requirements such as stability
constraint, individual variance constraint, and passivity con-
straint. Therefore, the multiobjective fuzzy control method-
ology presented in this paper is worthy of the attention of
control engineers. According to the T-S fuzzy model [30, 31],
a parallel distributed compensation (PDC) [31] based fuzzy
controller is designed via the Lyapunov theory in this paper.
Subject to the individual variance constraint and passivity
constraint, new sufficient conditions are derived by assigning
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a common upper bound matrix for the state covariance
matrices of all fuzzy rules. By using the LMI technique
[32] to solve the previous sufficient conditions, a PDC-based
fuzzy controller can be obtained to guarantee the individual
variance constraint and passivity constraint, simultaneously.
Finally, a numerical example for controlling a nonlinear
stochastic ship steering system with multiplicative noise is
given to demonstrate the applicability and effectiveness of the
proposed fuzzy controller design approach.

2. System Description and Problem Statement

Consider a nonlinear stochastic system, which is constructed
by a continuous-time T-S fuzzy model with multiplicative
noise as follows.

Rule i:

if 𝑧
1

(𝑡) is 𝑀
𝑖1

⋅ ⋅ ⋅ and 𝑧
𝑞

(𝑡) is 𝑀
𝑖𝑞

then �̇� (𝑡) = [A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖

(𝑡)] 𝑥 (𝑡)

+ B
𝑖
𝑢 (𝑡) + D

𝑖
𝑤 (𝑡)

(1a)

𝑦 (𝑡) = C
𝑖
𝑥 (𝑡) + H

𝑖
𝑤 (𝑡) , (1b)

where 𝑧
1
(𝑡), . . . , 𝑧

𝑞
(𝑡) are the premise variables that may be

functions of the state variables, 𝑀
𝑖𝑞
is the fuzzy set, 𝑞 is the

premise variable number, 𝑟 is the number of fuzzy rules,
𝑥(𝑡) ∈ R𝑛𝑥 is the state vector, 𝑢(𝑡) ∈ R𝑛𝑢 is the input
vector, 𝑦(𝑡) ∈ R𝑛𝑦 is the output vector, and the processes
𝑤(𝑡) ∈ R𝑛𝑤 and V

𝑒𝑖
(𝑡) ∈ R are mutually independent

zero-mean Gaussian white noise with intensities W (W >

0) and 1, respectively. Referring to [33], it is assumed that
𝐸{𝑤(𝑡)} = 0, 𝐸{V

𝑒𝑖
(𝑡)} = 0, 𝐸{𝑥(𝑡)𝑤(𝑡)} = 𝐸{𝑥(𝑡)}𝐸{𝑤(𝑡)} =

0, 𝐸{𝑥(𝑡)V
𝑒𝑖

(𝑡)} = 𝐸{𝑥(𝑡)}𝐸{V
𝑒𝑖

(𝑡)} = 0 and 𝐸{𝑤(𝑡)V
𝑒𝑖

(𝑡)} =

𝐸{𝑤(𝑡)}𝐸{V
𝑒𝑖

(𝑡)} = 0. The matrices A
𝑖
∈ R𝑛𝑥×𝑛𝑥 , B

𝑖
∈ R𝑛𝑥×𝑛𝑢 ,

D
𝑖
∈ R𝑛𝑥×𝑛𝑤 ,C

𝑖
∈ R𝑛𝑦×𝑛𝑥 ,H

𝑖
∈ R𝑛𝑦×𝑛𝑤 , andN

𝑒𝑖
∈ R𝑛𝑥×𝑛𝑥 are

constant.
Without loss of generality, it is assumed that the premise

variables of the previous T-S fuzzy model are measurable.
Given the pair (𝑥(𝑡), 𝑢(𝑡)), the overall fuzzy model can be
described as follows:

�̇� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡))

× {[A
𝑖
+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖

(𝑡)] 𝑥 (𝑡) + B
𝑖
𝑢 (𝑡) + D

𝑖
𝑤 (𝑡)}

(2a)

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡)) {C

𝑖
𝑥 (𝑡) + H

𝑖
𝑤 (𝑡)} , (2b)

where ℎ
𝑖
(𝑧(𝑡)) = 𝜔

𝑖
(𝑧(𝑡))/ ∑

𝑟

𝑖=1
𝜔
𝑖
(𝑧(𝑡)), 𝜔

𝑖
(𝑧(𝑡)) = ∏

𝑞

𝑗=1
𝑀
𝑖𝑗

(𝑧
𝑗
(𝑡)), ℎ

𝑖
(𝑧(𝑡)) ≥ 0, and ∑

𝑟

𝑖=1
ℎ
𝑖
(𝑧(𝑡)) = 1.

Applying the concept of PDC, the fuzzy controller is
designed to share the same IF part of the T-S fuzzymodel (1a)
and (1b).The proposed fuzzy controller can be represented as
follows.

Rule i:

if 𝑧
1

(𝑡) is 𝑀
𝑖1
and ⋅ ⋅ ⋅ and 𝑧

𝑞
(𝑡) is 𝑀

𝑖𝑞

then 𝑢 (𝑡) = −F
𝑖
𝑥 (𝑡)

(3)

or

𝑢 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡)) {−F

𝑖
𝑥 (𝑡)} . (4)
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Substituting (4) into (2a), the closed-loop T-S fuzzy model
can be obtained as follows:

�̇� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑡)) ℎ

𝑗
(𝑧 (𝑡))

× [(A
𝑖
− B
𝑖
F
𝑗
) 𝑥 (𝑡) + D

𝑖
𝑤 (𝑡) +

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖

(𝑡) 𝑥 (𝑡)] .

(5)

Considering each subsystem of the T-S fuzzy model (5),
the steady-state covariance matrix of the state vector 𝑥(𝑡) has
the following form:

X
𝑖
= XT
𝑖

> 0, (6)

where X
𝑖

= lim
𝑡→∞

𝐸[𝑥(𝑡)𝑥
T
(𝑡)] and X

𝑖
is the unique

solution of the following Lyapunov equation for each rule
[34]:

(A
𝑖
− B
𝑖
F
𝑖
)X
𝑖
+ X
𝑖
(A
𝑖
− B
𝑖
F
𝑖
)
T

+ D
𝑖
WDT
𝑖

+

𝑚

∑

𝑒=1

N
𝑒𝑖
X
𝑖
NT
𝑒𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑟.

(7)

The state variance constraint considered in this paper is
defined as follows:

[X
𝑖
]
𝑘𝑘

≤ 𝜎
2

𝑘
, (8)

where [⋅]
𝑘𝑘

denotes the kth diagonal element of matrix [⋅]

and 𝜎
𝑘
, 𝑘 = 1, 2, . . . , 𝑛

𝑥
denote the root-mean-squared

constraints for the variance of system states. In addition to

the previous individual state variance constraints (8), the
passivity constraint introduced in the following definition is
also considered in this paper.

Definition 1 (see [18]). The system (5) with external distur-
bance 𝑤(𝑡) and output 𝑦(𝑡) is called strictly input passive if
there exists a positive scalar 𝛾 and symmetric positive definite
matrix S = ST > 0 such that

𝐸 {2 ∫

𝑡
𝑝

0

𝑦
T

(𝑥) S𝑤 (𝑡) 𝑑𝑡} > 𝐸 {∫

𝑡
𝑝

0

𝛾𝑤
T

(𝑡) 𝑤 (𝑡) 𝑑𝑡} (9)

for all 𝑡
𝑝

≥ 0 and 𝑤(𝑡) ̸= 0.

The purpose of this paper is to find feedback gains F
𝑖
that

can be used to construct the PDC-based fuzzy controller (3)
or (4) such that the individual state variance constraint (8)
and passivity constraint (9) are all satisfied, simultaneously.

3. Fuzzy Controller Design for T-S Fuzzy
Models with Multiplicative Noises

The sufficient conditions for guaranteeing the stability, indi-
vidual variance constraint, and passivity constraint of closed-
loop T-S fuzzy model with multiplicative noise are derived in
this section. By assigning a common upper bound matrix of
the state covariance matrices for all fuzzy rules, the sufficient
conditions are derived based on the Lyapunov theory and
passivity theory. According to the closed-loop T-S fuzzy
model (5), the sufficient conditions for achieving the stability,
individual variance constraint, and passivity constraint are
derived in the following theorem.

Theorem 2. If there exist positive definite matrices X > 0 and
S > 0 and feedback gains F

𝑖
and dissipative rate 𝛾 satisfying the

following sufficient conditions, then [X
𝑖
]
𝑘𝑘

≤ 𝜎
2

𝑘
and the closed-

loop system (5) is strictly input passive and asymptotically
stable:

[

[

(A
𝑖
− B
𝑖
F
𝑖
)X + X(A

𝑖
− B
𝑖
F
𝑖
)
T

+ D
𝑖
WDT
𝑖

+

𝑚

∑

𝑒=1

N
𝑒𝑖
XNT
𝑒𝑖

−XCT
𝑖
S

−STC
𝑖
X 𝛾I − HT

𝑖
S − STH

𝑖

]

]

< 0 (10)

(

G
𝑖𝑗

+ G
𝑗𝑖

2
)X + X(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

< 0, for 𝑖 < 𝑗 (11)

X − diag (𝜎
2

1
, . . . , 𝜎

2

𝑛
𝑥

) < 0, (12)

whereG
𝑖𝑗

= A
𝑖
−B
𝑖
F
𝑗
and diag(𝜎

2

1
, . . . , 𝜎

2

𝑛
𝑥

) denotes a diagonal
matrix with the diagonal elements 𝜎

2

1
, 𝜎
2

2
, . . . , and 𝜎

2

𝑛
𝑥

.

Proof. To analyze the stability of the closed-loop T-S fuzzy
system (5), a Lyapunov function is chosen as 𝑉(𝑥(𝑡)) =

𝑥
T
(𝑡)P𝑥(𝑡), where P = PT

> 0. The expected value

of differential of the Lyapunov function 𝑉(𝑥(𝑡)) along the
trajectories of (5) is given as follows:

𝐸 {�̇� (𝑥 (𝑡))}

= 𝐸 {�̇�
T

(𝑡)P𝑥 (𝑡) + 𝑥
T

(𝑡)P�̇� (𝑡)}

= 𝐸 {

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡)) {[G

𝑖𝑖
𝑥 (𝑡) + D

𝑖
𝑤 (𝑡)

+

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖

(𝑡) 𝑥 (𝑡)]

T
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× P𝑥 (𝑡) + 𝑥
T

(𝑡)P

× [G
𝑖𝑖
𝑥 (𝑡) + D

𝑖
𝑤 (𝑡) +

𝑚

∑

𝑒=1

N
𝑒𝑖
V
𝑒𝑖

(𝑡) 𝑥 (𝑡)]}

+ 2

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑡)) ℎ

𝑗
(𝑧 (𝑡)) 𝑥

T
(𝑡)

× {(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

P + P(

G
𝑖𝑗

+ G
𝑗𝑖

2
)} 𝑥 (𝑡)}

= 𝐸 {

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡))

×{𝑥
T

(𝑡) [GT
𝑖𝑖
P + PG

𝑖𝑖

+

𝑚

∑

𝑒=1

(V
T
𝑒𝑖

(𝑡)NT
𝑒𝑖
P + PN

𝑒𝑖
V
𝑒𝑖

(𝑡))]𝑥 (𝑡)

+𝑤
T

(𝑡)DT
𝑖
P𝑥 (𝑡)+𝑥

T
(𝑡)D
𝑖
𝑤 (𝑡) }

+ 2

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑡)) ℎ

𝑗
(𝑧 (𝑡)) 𝑥

T
(𝑡)

× {(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

P + P(

G
𝑖𝑗

+ G
𝑗𝑖

2
)}𝑥 (𝑡)}.

(13)

Due to 𝐸{𝑥(𝑡)𝑤(𝑡)} = 𝐸{𝑥(𝑡)}𝐸{𝑤(𝑡)} = 0 and 𝐸{𝑥(𝑡)V
𝑒𝑖

(𝑡)} =

𝐸{𝑥(𝑡)}𝐸{V
𝑒𝑖

(𝑡)} = 0, one has

𝐸 {�̇� (𝑥 (𝑡))}

= 𝐸 {

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡)) {𝑥

T
(𝑡) [GT

𝑖𝑖
P + PG

𝑖𝑖
] 𝑥 (𝑡)}

+ 2

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑡)) ℎ

𝑗
(𝑧 (𝑡)) 𝑥

T
(𝑡)

× {(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

P + P(

G
𝑖𝑗

+ G
𝑗𝑖

2
)} 𝑥 (𝑡)} .

(14)

It is obvious that if condition (10) is satisfied, then one has

(A
𝑖
− B
𝑖
F
𝑖
)X + X(A

𝑖
− B
𝑖
F
𝑖
)
T

+ D
𝑖
WDT
𝑖

+

𝑚

∑

𝑒=1

N
𝑒𝑖
XNT
𝑒𝑖

< 0,

(15)

(A
𝑖
− B
𝑖
F
𝑖
)X + X(A

𝑖
− B
𝑖
F
𝑖
)
T
. (16)
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Let P=X−1 and multiplying each item of the previous
inequality from left-hand side and right-hand side by P, then
one can obtain the following inequality:

GT
𝑖𝑖
P + PG

𝑖𝑖
< 0. (17)

Besides, multiplying both sides of (11) by P, one has

(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

P + P(

G
𝑖𝑗

+ G
𝑗𝑖

2
) < 0. (18)

It is obvious that if the conditions (17) and (18) are satisfied,
then 𝐸{�̇�(𝑥(𝑡))} < 0 can be obtained from (14).Thus, one can
conclude that if conditions (10) and (11) are satisfied, then the
closed-loop system (5) is asymptotically stable.
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Subtracting (7) from (15), one has

(A
𝑖
− B
𝑖
F
𝑖
) (X − X

𝑖
) + (X − X

𝑖
) (A
𝑖
− B
𝑖
F
𝑖
)
T

+

𝑚

∑

𝑒=1

N
𝑒𝑖

(X − X
𝑖
)NT
𝑒𝑖

< 0.

(19)

Due to the fact that conditions (10) and (11) are satisfied, one
can obtain that the closed-loop system (5) is stable and the
closed-loop system matrix (A

𝑖
− B
𝑖
F
𝑖
) is stable. In this case,

it can be concluded that X − X
𝑖
≥ 0 via inequality (19). From

the condition (12) and X ≥ X
𝑖
, one has

[X
𝑖
]
𝑘𝑘

≤ [X]
𝑘𝑘

≤ 𝜎
2

𝑘
. (20)

For achieving the attenuating performance, the passivity
theory provides a useful and effective tool to design the
controller to achieve the energy constraints for the closed-
loop systems. Considering the passivity constraint defined in
Definition 1, one can define a performance function such as

𝐸 {∫

𝑡
𝑝

0

(𝛾𝑤
T

(𝑡) 𝑤 (𝑡) − 2𝑦
T

(𝑥) S𝑤 (𝑡)) 𝑑𝑡}

= 𝐸 {∫

𝑡
𝑝

0

(𝛾𝑤
T

(𝑡) 𝑤 (𝑡)

−2𝑦
T

(𝑥) S𝑤 (𝑡) + �̇� (𝑥 (𝑡)))𝑑𝑡 − 𝑉 (𝑥 (𝑡)) }

≤ 𝐸 {∫

𝑡
𝑝

0

(𝛾𝑤
T

(𝑡) 𝑤 (𝑡)

−2𝑦
T

(𝑥) S𝑤 (𝑡) + �̇� (𝑥 (𝑡)))𝑑𝑡}

≜ 𝐸 {𝐾 (𝑥, 𝑤, 𝑡)} ,

(21)

where

𝐾 (𝑥, 𝑤, 𝑡)

≜ ∫

𝑡
𝑝

0

(𝛾𝑤
T

(𝑡) 𝑤 (𝑡) − 2𝑦
T

(𝑥) S𝑤 (𝑡) + �̇� (𝑥 (𝑡))) 𝑑𝑡.

(22)

Using inequality (14) and Schur complement [32], one has

𝐸 {𝐾 (𝑥, 𝑤, 𝑡)}

= 𝐸 {

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑡)) [

𝑥 (𝑡)

𝑤 (𝑡)
]

T

× [

GT
𝑖𝑖
P + PG

𝑖𝑖
−CT
𝑖
S

−STC
𝑖

𝛾I − HT
𝑖
S − STH

𝑖

] [

𝑥 (𝑡)

𝑤 (𝑡)
]

+ 2

𝑟

∑

𝑖<𝑗

ℎ
𝑖
(𝑧 (𝑡)) ℎ

𝑗
(𝑧 (𝑡)) 𝑥

T
(𝑡)

× {(

G
𝑖𝑗

+ G
𝑗𝑖

2
)

T

P + P(

G
𝑖𝑗

+ G
𝑗𝑖

2
)} 𝑥 (𝑡)} .

(23)

Due to the fact D
𝑖
WDT
𝑖

≥ 0 and ∑
𝑚

𝑒=1
N
𝑒𝑖
XNT
𝑒𝑖

> 0, it is
obvious that condition (10) implies

[
(A
𝑖
− B
𝑖
F
𝑖
)X + X(A

𝑖
− B
𝑖
F
𝑖
)
T

−XCT
𝑖
S

−STC
𝑖
X 𝛾I − HT

𝑖
S − STH

𝑖

] < 0.

(24)

Multiplying inequality (24) on the left-hand and right-
hand sides by diag{P, I}, then one can obtain the following
inequality via P=X−1:

[

GT
𝑖𝑖
P + PG

𝑖𝑖
−CT
𝑖
S

−STC
𝑖

𝛾I − HT
𝑖
S − STH

𝑖

] < 0. (25)

If conditions (18) and (25) hold, then one can obtain
𝐸{𝐾(𝑥, 𝑤, 𝑡)} < 0. From (22), the inequality 𝐸{𝐾(𝑥, 𝑤, 𝑡)} < 0

implies

𝐸 {2 ∫

𝑡
𝑝

0

𝑦
T

(𝑥) S𝑤 (𝑡) 𝑑𝑡} > 𝐸 {∫

𝑡
𝑝

0

𝛾𝑤
T

(𝑡) 𝑤 (𝑡) 𝑑𝑡} (26)

for all nonzero external disturbance. FromDefinition 1, it can
be thus concluded that if conditions (10) and (11) are satisfied,
then the closed-loop system (5) is strictly input passive.

Theorem 2 provides the sufficient conditions for solving
the state feedback gains such that the closed-loop system (5)
is asymptotically stable subject to individual state variance
constraints and passivity constraint. The conditions derived
in Theorem 2 cannot be solved by the LMI technique [32]
because they are of the bilinear matrix inequality forms.
In order to apply the LMI technique to solve the present
problem, the conditions ofTheorem 2 can be rewritten in the
following corollary by using the matrix transform technique.
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Corollary 3. If there exist positive definite matrices X > 0

and S > 0 and dissipative rate 𝛾 and matrices K
𝑖
satisfying

condition (12) and the following sufficient conditions, then
[X
𝑖
]
𝑘𝑘

≤ 𝜎
2

𝑘
and the closed-loop system (5) is strictly input

passive and asymptotically stable:

[
[

[

A
𝑖
X − B

𝑖
K
𝑖
+ XA
𝑖
− KT
𝑖
BT
𝑖

+ D
𝑖
WDT
𝑖

+

𝑚

∑

𝑒=1

N
𝑒𝑖
XNT
𝑒𝑖

−XCT
𝑖
S

−STC
𝑖
X 𝛾I − HT

𝑖
S − STH

𝑖

]
]

]

< 0 (27)

(

A
𝑖
X − B

𝑖
K
𝑗

+ A
𝑗
X − B

𝑗
K
𝑖

2
) + (

A
𝑖
X − B

𝑖
K
𝑗

+ A
𝑗
X − B

𝑗
K
𝑖

2
)

T

< 0, for 𝑖 < 𝑗, (28)

where K
𝑖
= F
𝑖
X.

Proof. Consider conditions (10) and (11) of Theorem 2. By
setting new variables K

𝑖
= F
𝑖
X, conditions (10) and (11) can

be rewritten as (27) and (28), respectively. It is obvious that
conditions (12) and (27)-(28) are of LMI forms for the desired
parameters X and K

𝑖
.

Based on the conditions of Corollary 3, the fuzzy control
gains can be solved via LMI technique [32] by using MAT-
LAB LMI-Toolbox. In order to demonstrate the applicability
and effectiveness of the proposed fuzzy controller design
approach, a numerical example for the controller design
problem of a nonlinear ship steering system is considered in
the next section.

4. Constrained Fuzzy Controller Design for
Nonlinear Ship Steering Systems

Consider a nonlinear ship steering system with state mul-
tiplicative noises. It is customary to write the dynamic
equations using a coordinate frame fixed to the ship such as
Figure 1. Its dynamic equation can be written as follows [7]:

�̇�
1

(𝑡) = cos (𝑥
3

(𝑡)) 𝑥
4

(𝑡) − sin (𝑥
3

(𝑡)) 𝑥
5

(𝑡) (29a)

�̇�
2

(𝑡) = sin (𝑥
3

(𝑡)) 𝑥
4

(𝑡) + cos (𝑥
3

(𝑡)) 𝑥
5

(𝑡) (29b)

�̇�
3

(𝑡) = 𝑥
6

(𝑡) + 0.3𝑤 (𝑡) (29c)

�̇�
4

(𝑡) = − 0.0358𝑥
1

(𝑡) − 0.0797𝑥
4

(𝑡) + 0.9215𝑢
1

(𝑡)

+ 0.01V
1

(𝑡) 𝑥
4

(𝑡) + 0.005V
2

(𝑡) 𝑥
4

(𝑡)

(29d)

�̇�
5

(𝑡) = − 0.0208𝑥
2

(𝑡) − 0.0818𝑥
5

(𝑡) − 0.1224𝑥
6

(𝑡)

+ 0.7802𝑢
2

(𝑡) + 1.4811𝑢
3

(𝑡)

+ 0.01V
1

(𝑡) 𝑥
5

(𝑡) + 0.007V
1

(𝑡) 𝑥
6

(𝑡)

+ 0.01V
2

(𝑡) 𝑥
5

(𝑡) + 0.005V
2

(𝑡) 𝑥
6

(𝑡)

(29e)

�̇�
6

(𝑡) = − 0.0394𝑥
2

(𝑡) − 0.2254𝑥
5

(𝑡) − 0.2468𝑥
6

(𝑡)

+ 1.4811𝑢
2

(𝑡) + 7.4562𝑢
3

(𝑡)

+ 0.008V
1

(𝑡) 𝑥
5

(𝑡) + 0.005V
1

(𝑡) 𝑥
6

(𝑡)

+ 0.006V
2

(𝑡) 𝑥
5

(𝑡) + 0.01V
2

(𝑡) 𝑥
6

(𝑡) ,

(29f)

where 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are the earth-fixed positions

(𝑥, 𝑦), 𝑥
3
(𝑡) is yaw angle of the ships, 𝑥

4
(𝑡) is surge, 𝑥

5
(𝑡) is

sway, 𝑥
6
(𝑡) is yaw modes, and 𝑢(𝑡) = [𝑢

1
(𝑡) 𝑢
2
(𝑡) 𝑢
3
(𝑡)]

T is
the control and moment by the thruster system. Besides, the
processes V

1
(𝑡), V
2
(𝑡), and 𝑤(𝑡) are all mutually independent

zero-mean Gaussian white noise with intensity 1.
In this paper, the previous nonlinear ship steering system

is modeled by a T-S fuzzy model [31] by assuming that
the yaw angle changes between 𝑥

3
(𝑡) ∈ (−𝜋/2, +𝜋/2). The

membership function of state 𝑥
3
(𝑡) is given in Figure 2. The

T-S fuzzy model for nonlinear ship steering systems contains
the following rules.

Rule 1:

if 𝑥
3

(𝑡) is about −
𝜋

2
(−

𝜋

2
< 𝑥
3

< 0)

then �̇� (𝑡) = [A
1

+

2

∑

𝑒=1

N
𝑒1
V
𝑒1

(𝑡)]

× 𝑥 (𝑡) + B
1
𝑢 (𝑡) + D

1
𝑤 (𝑡)

𝑦 (𝑡) = C
1
𝑥 (𝑡) + H

1
𝑤 (𝑡) ,

(30a)

Rule 2:

if 𝑥
3

(𝑡) is about 0 (−
𝜋

2
< 𝑥
3

< 0)

then �̇� (𝑡) = [A
2

+

2

∑

𝑒=1

N
𝑒2
V
𝑒2

(𝑡)]

× 𝑥 (𝑡) + B
2
𝑢 (𝑡) + D

2
𝑤 (𝑡)

𝑦 (𝑡) = C
2
𝑥 (𝑡) + H

2
𝑤 (𝑡) ,

(30b)
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Rule 3:

if 𝑥
3

(𝑡) is about 0 (0 < 𝑥
3

<
𝜋

2
)

then �̇� (𝑡) = [A
3

+

2

∑

𝑒=1

N
𝑒3
V
𝑒3

(𝑡)]

× 𝑥 (𝑡) + B
3
𝑢 (𝑡) + D

3
𝑤 (𝑡)

𝑦 (𝑡) = C
3
𝑥 (𝑡) + H

3
𝑤 (𝑡) .

(30c)

Rule 4:

if 𝑥
3

(𝑡) is about +
𝜋

2
(0 < 𝑥

3
<

𝜋

2
)

then �̇� (𝑡) = [A
4

+

2

∑

𝑒=1

N
𝑒4
V
𝑒4

(𝑡)]

× 𝑥 (𝑡) + B
4
𝑢 (𝑡) + D

4
𝑤 (𝑡)

𝑦 (𝑡) = C
4
𝑥 (𝑡) + H

4
𝑤 (𝑡) ,

(30d)

where

A
1

=

[
[
[
[
[
[
[

[

0 0 0 𝛽 1 0

0 0 0 −1 𝛽 0

0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468

]
]
]
]
]
]
]

]

,

A
2

=

[
[
[
[
[
[
[

[

0 0 0 1 𝛼 0

0 0 0 −𝛼 1 0

0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468

]
]
]
]
]
]
]

]

,

A
3

=

[
[
[
[
[
[
[

[

0 0 0 1 −𝛼 0

0 0 0 𝛼 1 0

0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468

]
]
]
]
]
]
]

]

,

A
4

=

[
[
[
[
[
[
[

[

0 0 0 𝛽 −1 0

0 0 0 1 𝛽 0

0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468

]
]
]
]
]
]
]

]

,

B
1

= B
2

= B
3

= B
4

= [

[

0 0 0 0.9215 0 0

0 0 0 0 0.7802 1.4811

0 0 0 0 1.4811 7.4562

]

]

T

D
1

= D
2

= D
3

= D
4

=

[
[
[
[
[
[
[

[

0

0

0.3

0

0

0

]
]
]
]
]
]
]

]

,

C
1

= C
2

= C
3

= C
4

= [0 0 1 0 0 0] ,

H
1

= H
2

= H
3

= H
4

= 1.

N
11

= N
12

= N
13

= N
14

=

[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.01 0 0

0 0 0 0 0.01 0.007

0 0 0 0 0.008 0.005

]
]
]
]
]
]
]

]

,

N
21

= N
22

= N
23

= N
24

=

[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.005 0 0

0 0 0 0 0.01 0.005

0 0 0 0 0.006 0.01

]
]
]
]
]
]
]

]

,

(30e)

and 𝛼 = sin(2
∘

) and 𝛽 = cos(88
∘

).

In general, the PDC approach is a popular T-S fuzzy
controller design method. In the PDC concept, one needs
to first design a linear controller for each rule, after which
the controller of the entire nonlinear system can be made
by blending the linear controllers of all rules. The fuzzy
controller produced using PDC is represented as follows.

Rule 1:

if 𝑥
3

(𝑡) is about −
𝜋

2
(−

𝜋

2
< 𝑥
3

< 0)

then 𝑢 (𝑡) = −F
1
𝑥 (𝑡)

(31a)

Rule 2:

if 𝑥
3

(𝑡) is about 0 (−
𝜋

2
< 𝑥
3

< 0)

then 𝑢 (𝑡) = −F
2
𝑥 (𝑡)

(31b)

Rule 3:

if 𝑥
3

(𝑡) is about 0 (0 < 𝑥
3

<
𝜋

2
)

then 𝑢 (𝑡) = −F
3
𝑥 (𝑡)

(31c)

Rule 4:

if 𝑥
3

(𝑡) is about 𝜋

2
(0 < 𝑥

3
<

𝜋

2
)

then 𝑢 (𝑡) = −F
4
𝑥 (𝑡) ,

(31d)
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where F
𝑖
, 𝑖 = 1, . . . , 4, are the desired feedback gains for the

fuzzy controller design.
For starting the fuzzy controller design, we select the

supply rate 𝛾 = 1, S = I with compatible dimension and

assign the individual state variance constraints as 𝜎
2

1
= 3,

𝜎
2

2
= 3, 𝜎

2

3
= 0.02, 𝜎

2

4
= 2, 𝜎

2

5
= 1, and 𝜎

2

6
= 0.8. Solving the

sufficient conditions of Corollary 3 via LMI technique [32],
the matrix X and F

𝑖
can be obtained as follows:

X =

[
[
[
[
[
[
[

[

1.5365 −1.6718 × 10
−11

1.5083 × 10
−10

−0.7323

−1.6718 × 10
−11

1.5056 1.4886 × 10
−8

−1.7648 × 10
−6

1.5083 × 10
−10

1.4886 × 10
−8

0.0080 1.063 × 10
−12

−0.7323 −1.7648 × 10
−6

1.063 × 10
−12

1.2898

1.7508 × 10
−6

−0.7292 −1.4698 × 10
−9

−1.016 × 10
−11

−2.2125 × 10
−12

1.4989 × 10
−9

−0.0551 −2.7184 × 10
−10

1.7508 × 10
−6

−2.2125 × 10
−12

−0.7292 1.4989 × 10
−9

−1.4698 × 10
−9

−0.0551

−1.016 × 10
−11

−2.7184 × 10
−10

0.7404 8.5979 × 10
−9

8.5979 × 10
−9

0.5004

]
]
]
]
]
]
]

]

,

F
1

= [

[

111.3 −2.3 −0.7 228 −3.3 −0.1

1 958 −529.3 0.6 1970.8 −93.2

−0.2 −200.2 1126.1 −0.1 −411.9 202.8

]

]

, F
2

= [

[

112.4 0.021 −10.5 228.8 0.1 −1.9

−0.1 914.6 −4446.3 −0.2 1880 −804

0.0301 −176.6 1904.2 0.1 −362.9 344

]

]

,

F
3

= [

[

112.4 0.9 −25.7 228.8 1.9 −4.7

−0.5 940 −2271.7 −1.1 1932.2 −409.4

0.2 −189.9 1472.2 0.3 −390.5 265.6

]

]

, F
4

= [

[

111.3 2.6 −6.2 228 3.8 −1.1

−1.1 916.8 −4058.7 −0.9 1886 733.7

0.2 −178.5 1827.2 0.2 −367.2 330

]

]

.

(32)

The simulation responses of states are shown in Figures
3, 4, 5, 6, 7, 8 with initial condition 𝑥(0) = [10 10 0 0 0 0]

T.
Besides, the external disturbances V

1
(𝑡), V
2
(𝑡), and 𝑤(𝑡) are

chosen as zero-mean white noises with variance one. From
the simulation results, the effect of the external disturbance
𝑤(𝑡) on the proposed system can be criticized as follows:

𝐸 {2 ∫
𝑡
𝑝

0

𝑦
T

(𝑥) S𝑤 (𝑡) 𝑑𝑡}

𝐸 {∫
𝑡
𝑝

0

𝛾𝑤T
(𝑡) 𝑤 (𝑡) 𝑑𝑡}

= 2.0004. (33)

The ratio value of (33) is bigger than determined dissipation
rate 𝛾 = 1; one can find that condition (9) of Definition 1 is
satisfied. Besides, the variances of states 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡),

𝑥
4
(𝑡), 𝑥

5
(𝑡), and 𝑥

6
(𝑡) are 2.4692, 2.4849, 8.8252 × 10

−6,
0.5876, 0.5825, and 2.771 × 10

−4, respectively. It is obvious
that the individual state variance constraints are all satisfied.
Therefore, the nonlinear ship steering system (29a), (29b),
(29c), (29d), (29e), and (29f) controlled by the proposed fuzzy
controller (31a), (31b), (31c), and (31d) is asymptotically stable
subject to individual state variance constraints and strictly
input passivity constraint.

5. Conclusions

The performance-constrained fuzzy controller design prob-
lem for the nonlinear ship steering system has been studied
in this paper.Thenonlinear ship steering systemwasmodeled
by a stochastic T-S fuzzy model with state multiplicative
noises. This paper also considered the individual state vari-
ance constraint and passivity constraint. Based on the PDC
concept, the proposed fuzzy controller design approach
was carried out by solving the LMI stability conditions.
On the other hand, these LMI stability conditions can be
solved by the convex optimal programming algorithm. In the
numerical example, a nonlinear ship steering systemhas been

introduced to illustrate the usefulness and effectiveness of the
proposed fuzzy control methodology.
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