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Abstract

Segmenting a time series or approximating it with piecewise linear function is
often needed when handling data in the time domain to detect outliers, clean data,
detect events and more. The data varies from ECG signals, traffic monitors to stock
prices and sensor networks. Modern data-sets of this type are large and in many
cases are infinite in the sense that the data is a stream rather than a finite sample.
Therefore, in order to segment it, an algorithm has to scale gracefully with the
size of the data. Dynamic Programming (DP) can find the optimal segmentation,
however, the DP approach has a complexity of O

(
T 2

)
thus cannot handle data-

sets with millions of elements, nor can it handle streaming data. Therefore, various
heuristics are used in practice to handle the data.

This study shows that if the approximation measure has an inverse triangle
inequality property (ITIP), the solution of the dynamic program can be computed
in linear time and streaming data can be handled too. The ITIP is shown to hold in
many cases of interest. The speedup due to the new algorithms is evaluated on a
variety of data-sets to be in the range of 8 − 8200x over the DP solution without
sacrificing accuracy. Confidence intervals for segmentations are derived as well.

1 Introduction
The problem studied in this work is the following: given time series data, find an
approximation to the observed data which is made of few simple constructs that are
concatenated together. That is, find simple functions and a breakdown of time to con-
tinuous periods, such that the first simple function describes well the observations dur-
ing the first time period, the second function describes the observations in the second
time period, and so on. This solution is referred to as a segmentation or piece-wise
approximation of the data. Segmentation of data is useful in many ways. For example,
in a sensor network, it may be used to save power by sending the piece-wise approxi-
mation as a compressed version of the observed information [1]. In finance, it is used
to locate transition points (break-points) and study what auxiliary conditions contribute
to these transitions [2]. When analyzing ECG data, it is used to measure the durations
between pulses [3]. More broadly, segmentation can be used for data compression,
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data cleaning, identifying outliers, classification, clustering, timing events and more
[4, 5, 6, 7].

The problem of segmentation is not new and has been studied for almost 50 years
[8]. When properly formulated, it can be solved in polynomial time using dynamic
programming [8, 9]. However, in the era of big data and internet of things, data-sets
have become so large that algorithms need to be extremely efficient to cope with the
demand. Therefore, even though the dynamic programming solution has a complexity
of O

(
T 2
)

where T is the number of observed samples, it cannot handle many tasks as
demonstrated in Section 6. For example, if it is applied to a 2 hour long recording of an
ECG signal, it becomes about 20× slower than real-time. Therefore, different heuris-
tics exist to approximate the optimal segmentation [10, 11, 3]. The main contribution
of this work is a linear time algorithm that finds the exact solution but much faster.
Moreover, it does so with a by only adding two if clauses to the original solution.

The linear time algorithms allows more than just accelerating the process, it allows
handling streaming data too. In the streaming scenario, samples are arriving contin-
uously and the goal is to detect transition points, as close as possible to when they
occur [11]. For example, consider the stream of data defining the quote for a stock in a
market. For a trader, it may be insufficient to know, at the end of the day, when there
were trend transitions in the price of the stock. Instead, the trader would like to know
about these events soon after they had happened. In section 4 this scenario is discussed
and an algorithm is presented for this case. This algorithm cannot always detect the
exact point of the transition. Instead, it is able to mark an interval in which a transition
happen. These intervals can be viewed as a special kind of a confidence interval.

Confidence intervals are used in statistics to reflect uncertainty. Different confi-
dence intervals reflect different kinds of uncertainty to guard against. Bai and Perron
[9] proved confidence intervals for transition points based on the observation that there
is uncertainty about the value of the process in between sample points. However, there
is even greater uncertainty about future values of the process. Therefore, the confi-
dence intervals presented are such that regardless of what happen in the future, there
must be a transition point in the interval and there is no transition which is not in one
of the confidence intervals.

There are many ways to define the segmentation problem. For example, some
define it such that the number of segments is given and only the transition points are to
be found. This may be justified in a scenario in which a signal has to be compressed to a
fixed size which dictates the number of segments. However, in this paper we consider
the scenario in which the number of segments has to be optimized. The problem is
formally defined in the next section.

2 Basic definitions
In order to define the problem we first define the cost function which is the function
that measures the deviation between the observations and the approximation on a single
segment. Let cost (t1 → t2] be the “penalty” of a single segment starting after time t1
and ending at time t2. For example, if approximating the observations using a piece-
wise constant approximation, the cost function can be defined as cost (t1 → t2] =
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infc∈R
∑
t∈(t1,t2] (c− yt)2. Therefore, in this case, the cost is the sum of squared

difference between the observations yt and the best constant c ∈ R. This can be
extended to a more generic setting in which there is a set of functions F from the time
domain to the domain of the observations Y , and a loss function l : Y ×Y 7→ R+ such
that the cost function is

cost (t1 → t2] = inf
f∈F

∑
t∈(t1,t2]

l (f (t) , yt) . (1)

These cost functions have a common property that play a key role in the analysis to
follow:

Definition 1. A cost function has the inverse triangle inequality property (ITIP) if it is
non-negative and for every t1 ≤ t2 ≤ t3:

cost (t1 → t2] + cost (t2 → t3] ≤ cost (t1 → t3] .

The following lemma shows that this property holds in many cases.

Lemma 1. Let F be a set of functions from the time domain to the domain of obser-
vations Y and let l : Y × Y 7→ R+be a non negative loss function. The cost function
defined in in (1) has the ITIP.

Proof. Let t1 ≤ t2 ≤ t3 then

cost (t1 → t3] = inf
f∈F

∑
t∈(t1,t3]

l (f (t) , yt)

≥ inf
f∈F

∑
t∈(t1,t2]

l (f (t) , yt) + inf
f∈F

∑
t∈(t2,t3]

l (f (t) , yt)

= cost (t1 → t2] + cost (t2 → t3] .

The ITIP is sufficient for the algorithms proposed in the following to be correct.
However, in order to gain from these algorithms, a strict version of the ITIP is needed.

Definition 2. A cost function is (∆, κ, n) Strictly ITIP (SITIP) if for every t there are
t = t1 ≤ t2 ≤ · · · ≤ tn = t+ ∆ such that

cost (t→ t+ ∆] ≥ κ+
∑
i≤n

cost (ti → ti+1] .

A segmentation should tradeoff between the number of segments and how well
they fit the data [8]. According to this definition, the score of a partition 0 = t1 <
t2 < · · · < tn+1 = T is nC +

∑n
i=1 cost (ti → ti+1] and the optimal partition is the

partition that minimizes this value over all possible choices of n and {ti}i. The value
of the optimal tradeoff is opt (T ). It has already been noted [8] that this can be solved
using Dynamic Programming (DP) due to the following observation: if 0 = t1 ≤ t2 ≤
· · · ≤ tn+1 = T is the optimal partition up-to time T then

opt (T ) = opt (tn) + C + cost (tn → T ] .
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Therefore, if opt (t) is known for every t < T then it can be computed by opt (T ) =
mint<T opt (t) +C + cost (t→ T ]. Hence, the computation at time T has a computa-
tional complexity of O (T )1 and computing the entire opt () function has a complexity
of O

(
T 2
)
.

This celebrated result has two main limitations. First, many data-sets are too large
to allow such complexity. For example, low latency traders [12] look into latencies
of the order of a millisecond. Therefore, if one samples stock quotes ∼ 1000 times a
second, analyzing the data will become slower than real time or completely infeasible
in a matter of hours. To address this issue, the focus of this work is around finding ways
to compute the same optimal value but doing it much faster. Another limitation of the
dynamic programming approach is that it cannot handle streaming data. This issue is
addressed in Section 4.

3 Accelerated DP
This section introduces the modifications to the DP algorithm to accelerate it together
with the proofs for its correctness and performance. The first lemma states that if the
cost function has the ITIP then it is monotone.

Lemma 2. If the cost function has the ITIP them for every t1 ≤ t2 ≤ t3 ≤ t4

cost (t2 → t3] ≤ cost (t1 → t4] .

Proof. Using the fact that the cost function is non-negative and the inverse triangle
inequality, it holds that:

cost (t2 → t3] ≤ cost (t1 → t2] + cost (t2 → t3] + cost (t3 → t4]

≤ cost (t1 → t3] + cost (t3 → t4] ≤ cost (t1 → t4] .

The monotone property of the cost function is sufficient to save unnecessary com-
putation. Algorithm DPskip (Algorithm 1 when setting skip to true and prune to false)
demonstrates that. The key idea is that for every t1 < t2

opt (t1) + cost (t2 → T ] + C ≤ opt (t1) + cost (t1 → T ] + C . (2)

Therefore, if evidence exists that the left-hand-side of (2) is larger then the value of
opt (T ) then clearly the right-hand-side is larger too and computation of these values
can safely be skipped. DPskip does provide speedup over the baseline but theoreti-
cally, its complexity remains O

(
T 2
)
. The next step is to show that the opt function is

monotone too:

Lemma 3. If the cost function has the ITIP then for every t1 < t2

opt (t1) ≤ opt (t2) .

1Computing the cost function is assumed to take O (1) steps. More details can be found in Section 3.
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Proof. It is sufficient to prove the statement when t2 is the next sample time after t1
since the rest can be proven by induction. Let t2 be the next time stamp after t1. There
exists t ≤ t2 such that

opt (t2) = opt (t) + C + cost (t→ t2] ≥ opt (t) + C + cost (t→ t1] ≥ opt (t1) .

Further analysis of the opt function reveals that if there is t1 < t2 such that opt (t2)
is much smaller then the value if t1 was the last segmentation point before t2, then
there must be a segment starting in between these points, and this is independent of the
future. In other words, t1 is a barrier such that when evaluating the value of opt (T ),
for any T ≥ t2, there is no need to consider any past value earlier then t1. This is stated
in the following lemma:

Lemma 4. If the cost function has the ITIP and t1 < t2 are such that

opt (t2) ≤ opt (t1) + cost (t1 → t2]− C

then for every T ≥ t2:

opt (T ) = min
t1≤t<T

opt (t) + cost (t→ T ] + C .

Proof. Let t < t1 < t2 ≤ T . From the definition of ITIP (Definition 1) the following
is true:

opt (t) + C + cost (t→ T ] ≥ opt (t) + C + cost (t→ t1] + cost (t1 → t2] + cost (t2 → T ]

≥ opt (t1) + cost (t1 → t2] + cost (t2 → T ]

≥ opt (t2) + C + cost (t2 → T ] .

Therefore

opt (T ) = min
t<T

opt (t) + C + cost (t→ T ]

= min

(
min
t<t1

opt (t) + C + cost (t→ T ] , min
t1≤t<T

opt (t) + C + cost (t→ T ]

)
= min

(
opt (t2) + C + cost (t2 → T ] , min

t1≤t<T
opt (t) + C + cost (t→ T ]

)
= min

t1≤t<T
opt (t) + C + cost (t→ T ] .

Therefore, the barrier allows pruning the computation, not only for the current iter-
ation but also for future iterations. The algorithm which uses this property, DPprune,
is presented in Algorithm 1 when prune is set to true and skip is set to false.

The number of operations for every iteration in the loop For T = 1, . . . isO (T − barrier).
Therefore, if barrier ≥ T − ∆ for some constant ∆, each iteration requires O (∆)
and the overall complexity of the algorithm is O (T∆), that is, linear in T . How-
ever, this condition need not always hold. For example, assume that cost (t1 → t2] =
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max (0, t2 − t1 − 1) and C = 2. It is easy to verify that in this case opt (T ) = T + 1.
Therefore, if t1 < t2 then

opt (t1) + cost (t1 → t2]− C = t1 + 1 + t2 − t1 − 2

= t2 − 1 < opt (t2) .

Hence, in this example, the condition of Lemma 4 is never satisfied and no barrier will
be found. Therefore, the ITIP is an insufficient condition in this case. However, the
following shows that the strict version of the ITIP (SITIP) is a sufficient condition.

Theorem 1. Assume that the cost function is (∆, κ, n) SITIP then the complexity of
the DPprune algorithm is O (T∆).

Proof. Assume that the cost function is (∆, κ, n) SITIP and let t1, . . . , tn be such that
T −∆ = t1 ≤ t2 ≤ · · · ≤ tn = T and

cost (T −∆→ T ] ≥ κ+
∑
i<n

cost (ti → ti+1] .

We have that

opt (T )− opt (T −∆) ≤ nC +
∑
i<n

cost (ti → ti+1] ≤ nC − κ+ cost (T −∆→ T ] .

Therefore, if C ≤ κ
(n+1) thennC − κ ≤ −C and therefore

opt (T )− opt (T −∆) + C ≤ cost (T −∆→ T ] .

This forces the barrier in DPprune to be at least T − ∆. Therefore, each iteration
is O (∆) operations which will result in O (T∆) complexity for the entire algorithm.
Note that the last part of the algorithm, where the ends of each segments are outputted
has O (T )complexity since prev[t] < t for every t > 0.

Note that in theory combining the pruning technique and skipping technique might
lead to negative consequences since the skipping criterion might skip computing the
cost at the barrier point which could lead to excess computation. However, in practice,
as demonstrated in the empirical section, the skipping techniques provides additional
1.5− 2x speedup on top of the pruning technique.

Another point to consider is the true complexity of computing the cost function.
So far this computation was considered to have O (1) complexity. However, this is not
always the case. For example, finding the linear approximation that minimizes the L1

loss requires solving a linear programming problem. However, when the L2 loss is
used, the computation can be done in O (1) complexity. This can be done since in this
case there are statistics which suffice to compute the approximation and its loss of the
form S (t1, t2] =

∑
t1<t≤t2 zt where zt is some function of t and the observed value

at time t. Bai and Perron [9] suggested a preprocessing step in which all the terms
S (0, t] are computed in O (T ) steps. Once all these values are available, it is possible
to compute S (t1, t2] since S (t1, t2] = S (0, t2] − S (0, t1]. The approach of Bai and
Perron [9] creates numerical stability problems when T is large since S (0, t]. will have
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limited accuracy and hence if 0� t1 but t1 is close to t2 the value of S (0, t2]−S (0, t1]
may deviate significantly from

∑
t1<t≤t2 zt. Therefore, our implementation uses a

different approach.
The DP algorithm calls the cost function in the following order: for every T , it

first computes the costs is a sequence cost (T − 1→ T ] , cost (T − 2→ T ] , . . .. To
compute cost (T − 1→ T ] terms of the sort of S (T − 1, T ] = zT are needed. Since
S (t, T ] = S (t+ 1, T ] + zt+1, by caching S (t+ 1, T ], it is possible to compute
S (t, T ] in a single operation. This approach uses O (1) time, O (1) memory and is
more stable. When skipping is used, the complexity is no longer O (1) it requires sum-
ming over all elements that were skipped. Nevertheless, it is used in the experiments
due to its better stability. An implementation of this method is provided in Section 5.

4 Streaming data and confidence intervals
In many cases the goal is to find breakpoints and segments while the data is streaming
in. For example, consider a system that monitors traffic: such a system is expected to
report on changes in traffic patterns as close as possible to when they happen such that
adjustments can be made to traffic lights for example. The original DP solution is not
capable of doing so since every new entry has the potential of changing the entire seg-
mentation of the data and thus it is impossible to commit to any part of it. Moreover,
the amount of computation per entry grows over time and hence it is impossible the
get real-time performance without using heuristics. However, Lemma 4 shows that if
the cost function is SITIP, then barriers will emerge in the data. This will guarantee
that the computation has fixed complexity and that guarantees on breakpoints that hap-
pen before the barrier can be made. This section expands the discussion about these
subjects.

Recall, the Lemma 4 proves that if the cost function has the ITIP and t1 < t2 are
such that

opt (t2) ≤ opt (t1) + cost (t1 → t2]− C (3)

then for every T ≥ t2:

opt (T ) = min
t1≤t<T

opt (t) + cost (t→ T ] + C .

Assume that when computing opt (t2) a t1 < t2 is found such that (3) holds. There-
fore, regardless of any future information, all the segments that begin before t1 must
end before t2. Using the notation of Algorithm 1 it holds that ∀T > t2, prev [T ] ≥ t1.
This leads to the following conclusions that are summarized in the following lemma:

Lemma 5. If the cost function has ITIP and (3) holds for t1 < t2 then,

1. If t < t1 is such that ∀t′ ≤ t2, prev [t′] 6= t then regardless of any future
information, there is no break-point at time t.

2. If t < t1 is such that ∀t < t′ ≤ t2, prev [t′] ≥ t then regardless of any future
information, there is a break-point at time t and the optimal segmentation up-to
time t can be determined.
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Table 1: Description of the data used in the experiments
Name Source Description # Samples

DJA [13]
Daily Closing Value of the Dow Jones Average

1960-2013. The data was converted to log-scale. 13583

ECG [14, 15]
This is file e0103 from the data-set which contains
a 2 hour recording of an ECG signal recorded at

250Hz
1800000

Dodgers [16]
Loop sensor data collected for the Glendale on
ramp for the 101 North freeway in Los Angeles 50400

3. If t < t1 is such that ∀t < t′ ≤ t2, prev [t′] ≥ t − τ then regardless of any
future information, there is a break-point between time t− τ and time t.

According to this lemma, it is possible to determine properties of the optimal seg-
mentation before the entire sequence has been revealed.

Proof. 1) Assume that there is a break-point at time t. Therefore, there is t′ > t
such that prev [t′] = t. However, from the assumption of the lemma, this requires that
t′ > t2 but for t′ > t2 Lemma 4 shows that prev [t′] ≥ t1 > t and therefore, there
could not be a break-point at time t.

2) Assume that there is no break-point at time t. Therefore, there is t′ > t such
that prev [t′] < t. If such t′ exists, it has to be greater than t2 and Lemma 4 shows that
t′ > t2 could not have this property either. Therefore, a break-point must occur at t.
The property of the optimal segmentations that was used to show that it can be found
using dynamic programming is that if there is a break-point at time t then the optimal
segmentation must contain, as a subset, the optimal segmentation up-to time t.

3) Repeating the same argument as above, for every t′ > t, it is true that prev [t′] ≥
t − τ . Let T > t2 and consider the optimal segmentation to time T . Assuming that
t − τ > 0 then there exists n such that prevn [T ] ≥ t − τ but prevn+1 [T ] < t − τ .
Therefore, it must be that t ≥ prevn [T ] ≥ t− τ .

Lemma 5 suggests that by modifying the DPprune algorithm, it is possible to de-
termine for each point before the current barrier whether there is a potential of having
a break-point at this point and how far is it from the last break-point. If the SITIP
exists, and C is not too large, the barrier is within ∆ time steps from the current time
and therefore, it is possible to determine these properties for every point that is at least
∆ time steps from the current time. This calculation can be made with O (1) opera-
tions for every data point by holding a simple data structure. The details are omitted
due to space limitations. The analysis here may explain the success of the SWAB al-
gorithm [11]. However, the algorithm presented here has significant advantages: its
performance is provable and it does not require any tuning (beside the parameter C).

These results can be interpreted also in terms of confidence intervals. Bai and
Perron [9] developed confidence intervals for segmentation. The assumption is that
the data is generated from a piecewise linear model and the question is how would
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the location of the breakpoints change if the data is generated with finer resolution.
The assumption is that the duration of the process being inspected is fixed but there
is uncertainty regarding the values of the process in-between sample points. While
this is true, there is even greater uncertainty about the future. Lemma 5 shows how to
build such confidence intervals and proves their correctness. In Section 5 an example
of possible way of using these confidence intervals in streaming mode is demonstrated.

5 Implementation
In this section we present a complete implemntation of the algorithms presented in this
work. We use F# for this code since it allows for a concise code that is high performing
and available on many platforms. The code presented here implements the following:

• Computing the segment costs for piecewise linear segmentation with the squared
loss

• Computing the segments (Algorithm 1)

• Computing the confidence intervals

//
================================================================

/// A circular array that allows us to add new
elements by reusing

/// unused past elements
type Buffer<'a>(capacity) =

let data = Array.zeroCreate<'a> capacity
member m.Reset i = m.[i] <- Unchecked.defaultof<'a

>
member m.Item with get i = data.[i%capacity]

and set i value = data.[i%capacity]
<- value

member m.Range(a, b) = [ for i = a to b do yield
m.[i] ]

member m.Remove(a, b) = [a..b] |> Seq.iter(m.Reset
)

//
================================================================

// Optimized mean error calculation that remembers the
state of

// previous calls. This is very efficient when the
requested
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// interval is one greater than the previously
requested interval

type IncrementalMeanError() =
let mutable sum, sumSquared = 0.0,0.0
let mutable lastI, lastJ = 0,0
member x.Cost getData i j =

while not(i = lastI && j = lastJ) do
if (i < lastI && j = lastJ) then

lastI <- lastI - 1
let v = getData lastI
sum <- sum + v
sumSquared <- sumSquared + v*v

else
sum <- 0.0; sumSquared <- 0.0
lastI <- j; lastJ <- j

let range = j - i;
max 0.0 (sumSquared - sum * sum / float(range)

)
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/// Calculate the optimal segmentation for a data
sequence

/// C - the segmentation penalty
/// cost - a function that gives the loss between two

datapoints
/// dataSize - the size of the data if fixed, or the

buffer size
/// for streamed data
type Segmenter(C, cost, dataSize) =

let opt = Buffer<float>(dataSize)
let prev = Buffer<int>(dataSize)

// A chain of indexes to previous optimal segment
breaks

member m.Prev = prev

// Update the optimal breakpoints for latest data
point

member m.Update barrier T =
opt.[T] <- if T = barrier then 0.0 else Double

.MaxValue
let rec sweep t = function
| lastCost when t < barrier -> barrier
| lastCost when skip(t, lastCost) ->

sweep(t-1) lastCost
| lastCost ->

let computedCost = cost t T
if (prune(t, computedCost)) then t
else

let candidate = opt.[t] + computedCost
+ C

if candidate < opt.[T] then
opt.[T] <- candidate
prev.[T] <- t

sweep (t-1) computedCost
and skip(t,lastCost) = lastCost + opt.[t] + C

> opt.[T]
and prune(t,lastCost) = lastCost >= opt.[T] -

opt.[t] + C
sweep (T-1) 0.0

/// Find the optimal break points for a fixed
dataset

static member OptimalBreaks C cost data =
let dataSize = Array.length data
let s = Segmenter(C, cost, dataSize)
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// Update the optimal breakpoints for all data
elements

[0..dataSize-1] |> Seq.fold (s.Update) 0 |>
ignore

// Walk the prev buffer backwards to obtain
the optimal

// segmentation
let rec endpoints index = seq {

if index > 0 then
yield index
yield! endpoints(s.Prev.[index]) }

endpoints (dataSize-1)
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/// Transform a stream of datapoints to a new stream
that

/// indicates at which index there could possibly be a
segment

/// break and the maximum distance to the begining of
the

/// segment each point belongs to.
/// C - the segmentation penalty
/// cost - a function that gives the loss between two

datapoints
/// bufferSize - the buffer size for the streamed data
type StreamSegmenter(C, cost, bufferSize) =

let data = Buffer<float>(
bufferSize)

let possibleBreak = Buffer<bool>(
bufferSize)

let maxDistanceToBeginning = Buffer<int>(
bufferSize)

let getData i = data.[i]
let segmenter = Segmenter(C, cost getData,

bufferSize)
let prev = segmenter.Prev

// Update the maximum distance to a breakpoints
let updateConfidenceInterval t =

let p = prev.[t]
for i = t downto p do

maxDistanceToBeginning.[i] <-
max maxDistanceToBeginning.[i] (i - p)

possibleBreak.[p] <- true

// This function takes the previous state and a
new

// datapoint, updates the internal buffers and
returns

// a new state to start from for the next
datapoint

// arrives
let segmentStream state datapoint =

let ((T,barrier), _) = state
data.[T] <- datapoint
let newBarrier = segmenter.Update barrier T
updateConfidenceInterval T

// When we reach a new barrier we can emit
endpoints

13



// behind it since they can no longer be
affected

if (newBarrier <> barrier) then
// It is only safe to emit data points

between the
// last barrier and the new barrier.
let range = barrier, (newBarrier-1)
let breakpoints = maxDistanceToBeginning.

Range range
|> Seq.zip(possibleBreak.

Range range)
maxDistanceToBeginning.Remove range
possibleBreak.Remove range
((T+1, newBarrier), breakpoints)

else
((T+1, barrier), Seq.empty)

// Transform an observable sequence of data points
to an

// delayed observable sequence of (possible,
distance) pairs.

member private m.SegmentStream =
let gather (obs:IObservable<_*_ seq>) = obs.

SelectMany snd
let T,barrier = 0,0
let initialState = ((T,barrier),Seq.empty)
Observable.scan segmentStream initialState
>> gather

/// Collect possible breakpoints and distances to
those points

static member PossibleBreaks(C, cost, bufferSize)
=
StreamSegmenter(C, cost, bufferSize).

SegmentStream
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//
---------------------------------------------------------------

/// Usage examples:
//

---------------------------------------------------------------

let boxWave next =
Seq.init 100 (fun i -> i + next*100)
|> Seq.map(fun x -> if (x/100)%2 = 0 then 3.0 else

-3.0)

//
---------------------------------------------------------------

let finding_exact_breakpoints_in_fixed_data =
let data = [0..9] |> Seq.collect boxWave |> Seq.

toArray
let meanError = IncrementalMeanError().Cost(fun i

-> data.[i])
Segmenter.OptimalBreaks 0.01 meanError data
|> Seq.iter(printfn "Line segment starts at %d")

//
---------------------------------------------------------------

// Usage examples:
//

---------------------------------------------------------------

let numberOfElements = 1000
let addIndex i x = (i,x)
let meanError = IncrementalMeanError().Cost

//
---------------------------------------------------------------

let finding_exact_breakpoints_in_a_stream =
let data = [0..9] |> Seq.collect boxWave
let isDistanceZero(index, (possible, dist)) = dist

= 0
let exactBreakpoints =

data.ToObservable()
|> StreamSegmenter.PossibleBreaks(0.5,

meanError, 1000)
|> Observable.mapi addIndex
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|> Observable.filter isDistanceZero
|> Observable.map fst

exactBreakpoints.ForEachAsync(
fun x -> printfn "Line segment starts at %d" x

)

//
---------------------------------------------------------------

let
finding_possible_breakpoints_in_a_stream_with_confidence
=
let sine i = sin(0.02*Math.PI*float(i))
let smoothData = Array.init numberOfElements sine
let fuzzyBreakpoints =

smoothData.ToObservable()
|> StreamSegmenter.PossibleBreaks (0.5,

meanError, 1000)
|> Observable.mapi addIndex

fuzzyBreakpoints.ForEachAsync(fun (i, (possible,
distance)) ->
let may = if (possible) then "may" else "doesn

't"
printfn "A segment %s start at index %A,\n\

the begining of the current segment\n
\
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Table 2: Time to segment entire data-set. Duration of execution are measured in
seconds.

Data-set Cost # segments DP DPskip DPprune DPcombine
DJA Mean 20 8± 0.5 1.8± 0.1 1.5± 0.2 0.7± 0.1
DJA L2 13 12 + 0.6 3.4± 2.1 3± 1.6 1.5± 0.7
ECG Mean 17450 138195.8 27028.8 25.1 18.5
ECG L2 16588 200525 47471.7 36.5 24.2

Dodgers Mean 9194 114± 3.5 18± 1 0.2± 0.02 0.13± 0.025
Dodgers L2 8645 170± 3.3 26± 1.8 0.3± 0.2 0.2± 0.05

6 Empirical evaluation
Keogh and Kasetty [17] argued that when evaluating algorithms for analyzing time se-
ries it is important to use data-sets from different domains since they may represent
different characteristics. Therefore, the data-sets used are from 3 different domains:
medical, financial and engineering data. The data is described in Table 1. The differ-
ent algorithms were applied to each data-set with two cost functions. The Mean cost
function finds the best constant approximation for a segment and evaluates the sum
of squared distances between the approximation and the measurement. The L2 cost
functions finds the best linear approximation for a segment and evaluates the sum of
squared distances between the approximation and the measurement. Note that both
cost function have the ITIP. Reference implementation is provided in Section 5.

For each file, the algorithms have been applied to prefixes of different lengths. For
the DJA and Dodgers data-set the experiment was repeated 10 times.2 The value for
C was chosen to be half of the range between the minimal value and the maximal
value of the DJA and Dodgers data-sets and 0.1 for the ECG data-set after the data was
converted to the range [0, 1].3

Table 2 presents the time it takes the different algorithms to process the different
data-sets. When applied to these data-sets the order of the algorithms from fastest to
slowest is always DPcombine than DPprune, followed by DPskip and DP. All these
differences are statistically significant with p < 0.01. Overall, the DP algorithm is
8− 8200 times slower than DPcombine.

DPcombine and DPprune take a longer time to process the DJA data-set than the
Dodgers data-set, despite the fact that the later data-set is 4 times larger. This is ex-
plained by the length of the segments in each data-set. In DJA, the average length of a
segment is 680 − 1045 samples while in the Dodgers data-set, the average length of a
segment is about 6 samples only. Therefore, the pruning has a much larger impact in
this case.

Figure 1 presents the time to segment the different data-sets given different sizes
of prefixes of the data. In all data-sets, the contribution of the new method becomes

2The non-accelerated versions of the DP algorithm take about a week to complete and therefore repeating
this experiment was prohibitive.

3The values of C were chosen arbitrarily. For the ECG data-set we eye-balled a small prefix of the data
to set C such that it will capture the R wave and sometimes the T wave as well.
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barrier← 0;
opt[0]← 0;
for T ← 1 to . . . do

lastComputedCost← 0 ;
opt[T ]←∞ ;
for t← T − 1 to barrier do

if skip & lastComputedCost + opt[t] + C > opt[T ] then continue;
lastComputedCost← cost (t→ T ];
if prune & lastComputedCost ≥ opt[T ] − opt[t] + C then

barrier← t;
break;

end
candidate← opt[t] + lastComputedCost + C;
if candidate < opt[T ] then

opt[T ]← candidate;
prev[T]← t;

end
end

end
/* Output the ends of all segments */
t← T ;
while t > 0 do

output "a segment ends at time " t;
t← prev[t];

end
Algorithm 1: Time series segmentation algorithm. When the skip parameter is
true, it will use the monotonicity described in Lemma 2 to skip cost computations.
When the prune parameter is set it will use the barriers described in Lemma 4 to
early prune the computation. The baseline DP algorithm has both skip and prune
set to false. A reference implemetation of the DPprune algorithm is provided in the
supporting material.
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Figure 1: Time to segment different data-sets. The top row presents the time to
segment using the mean cost function while the bottom row uses the L2 loss function.
The different datatsets DJA, Dodgers are presented left to right. The X axis represents
the size of the problem and the Y axis is the time to complete measured in milliseconds
in logarithmic scale. The blue, orange, gray and yellow lines represent DP, DPprune,
DPskip and DPcombine respectively. It is clear from these graphs that the DPcombine
algorithm is orders of magnitude faster than the DP algorithm.
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larger as the data-set size increases. When comparing the contribution of skipping cal-
culations to the contribution of pruning, it seems as if on smaller data-sets skipping
sometimes has a larger impact. However, as the data-set grows in size, pruning domi-
nates skipping significantly.

7 Conclusions
The theoretical study resulted in an accelerated segmentation algorithm which has lin-
ear complexity and, as expected, creates big speed-ups when applied to data (8 −
8200×). Moreover, the accelerated algorithms opened the door for segmentation in
the streaming scenario. However, several challenges remain for future research such
as, creating a parallel version of the algorithm an even greater challenge is to apply
the technique presented here or techniques similar to it, to accelerate other dynamic
programming tasks. It is also interesting to see if the method can be extended to cases
in which the ITIP may not hold [18].
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