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Drag-Reducing Flows in Laminar-
Turbulent Transition Region
This study makes an attempt to investigate Newtonian/non-Newtonian pipe flows in a
laminar-turbulent transition region, which is an extraordinarily complicated process and
is not fully understood. The key characteristic of this region is its intermittent nature, i.e.,
the flow alternates in time between being laminar or turbulent in a certain range of Rey-
nolds numbers. The physical nature of this intermittent flow can be aptly described with
the aid of the intermittency factor c, which is defined as that fraction of time during which
the flow at a given position remains turbulent. Spriggs postulated that a weighting factor
can be used to calculate the friction factor, applying its values in laminar and turbulent
states. Based on these, a model is developed to empirically express the mean velocity and
Reynolds shear stress in the transition region. It is found that the intermittency factor can
be used as a weighting factor for calculating the flow structures in the transition region.
Good agreements can be achieved between the calculations and experimental data avail-
able in the literature, indicating that the present model is acceptable to express the flow
characteristics in the transition region. [DOI: 10.1115/1.4027455]
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1 Introduction

The process of a laminar flow becoming turbulent is known as
laminar-turbulent transition. This is an extraordinarily compli-
cated process that at present is not fully understood. Better under-
standing of this process may reveal the underlying nature of
turbulence, which remains one of the unsolved problems in
physics. As the result of many decades of intensive research,
certain features have gradually become clear.

Osborne Reynolds [1] demonstrated the transition to turbulent
flow in a classical experiment in which he examined an outlet
from a large water tank through a small tube. When the water was
slow, every fluid particle moves in parallel velocity along a
straight path. When the speed increased, this orderly pattern of
flow ceases to exist and strong mixing of all the particles occurs.
This mixing process can be made visible with the aid of a thin
thread of liquid dye into the pipe flow. The numerical value of the
Reynolds number at which transition occurs (critical Reynolds
number Recrit) was established as being approximately at 2300
[2]. Accordingly, flows for which the Reynolds number
Re<Recrit are supposed to be laminar, and the flows for which
Re>Recrit are expected to be turbulent. The numerical value of
the critical Reynolds number depends strongly on the conditions
that prevail in the initial pipe length as well as in the approach to
it [3–9]. Even Reynolds found that the transition occurred
between Re¼ 2000 and 13,000, and he thought that the critical
Reynolds number increases as the disturbances in the flow before
the pipe are decreased. The critical Reynolds number has been
observed in the range 1800<Recrit< 2300 [10], and it can be
delayed to 100,000 in carefully designed experiments [11]. The
upper limit to which the critical Reynolds number can be driven if
extreme care is taken to free the inlet from disturbances is not
known at present. There exists, however, as demonstrated by
numerous experiments, a lower bound for Recrit, which is
approximately at 2000 [2,11]. Normally, the lower bound for
Recrit � 2300 has been widely referred in the literature as “natural

transition” of Newtonian pipe flows [12,13]. For pipe flow with
polymer additives, Draad et al. [6] reported that the large body of
available literature on drag reduction shows no change in critical
Reynolds number and the transition to turbulence for drag-
reducing flows occurs at the same value as for Newtonian fluids,
i.e., Re¼ 2300. Recently, Karami and Mowla [14] confirmed this
value by observing that the turbulent flow occurs when Reynolds
number exceeds 2300 in his experimental pipe lines with polymer
additives. Below this value, the flow remains laminar, even in the
presence of very strong disturbances. The current study makes
attempt to investigate the flow structures in laminar-turbulent tran-
sition based on the assumption that the critical Reynolds number
(the lower bound) is 2300. Since no plausible theoretical proce-
dure exists for calculating the critical Reynolds number and the
flow structures in laminar-turbulent transition, the formulae in this
study are useful for fundamental research and practice. However,
the empirical relationships used imply the presence of a basic
underlying mechanism, the understanding of which might result
in the formulation of a theoretical procedure.

In laminar flow, the longitudinal pressure gradient that drives
the flow is proportional to the first power of the velocity, while in
fully developed turbulent flow, the pressure gradient nearly
becomes proportional to the square of the mean velocity of flow.
Flow structures in both laminar flow and turbulent flow have been
understood very well. However, no equation is available in the lit-
erature to describe the flow structures in the laminar-turbulent
transition region. The key characteristic of this region is of its
intermittent nature, which means that the flow alternates in time
between being laminar or turbulent in a certain range of Reynolds
numbers [2]. The physical nature of this intermittent flow can be
aptly described with the aid of the intermittency factor c, which is
defined as that fraction of time during which the flow at a given
position remains turbulent [15]. Hence, c¼ 1 corresponds to con-
tinuous turbulent flow and c¼ 0 denotes continuous laminar flow.
Although it is obvious that c depends on Reynolds numbers, the
quantitative expression for this relationship is not available yet in
the literature. The current study derives a formula to express the
intermittency factor.

The addition of a minute amount of long-chain flexible polymer
molecules to flowing fluids can drastically reduce turbulent
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friction, also known as drag reduction (DR), which was initially
observed by Toms [16]. DR has subsequently attracted extensive
research due to its practical applications and fundamental impor-
tance. Experiments [17–27] reveal that the existence of polymer
additives can drastically reduce the turbulent drag and alter turbu-
lent structures, including the turbulent velocity, the mean velocity,
and Reynolds shear stress, etc. A comprehensive review of recent
progress in understanding and predicting polymer drag reduction
in turbulent wall-bounded shear flows can be found in White and
Mungal [28].

For drag-reducing flows with polymer additives, one of the
most important topics is the dynamic interactions between
polymers and turbulence. To understand the interactions, it is
necessary to investigate the drag-reducing flows in the laminar-
turbulent transition region, because the drag reduction phenom-
enon disappears in laminar flow and it seems that the drag
reduction only exists in the environment of turbulent eddies. For
turbulent drag-reducing flows, previous investigations [29–33]
show that the mean polymer shear stress can be expressed in ana-
logy to eddy viscosity, i.e.,

�sp ¼ q�eff �
d�u

dy
¼ qa�u�h �

d�u

dy
(1)

where a* is the apparent viscoelasticity of the solution, q is the
density of the solution, �u is the time-averaged velocity, veff is the
effective viscosity caused by polymers, u* is the wall shear veloc-
ity, h is the flow depth or pipe radius, and y is the distance from
the wall. It should be pointed out that, in the eddy diffusivity
model, it is possible to assume that the distance from the wall y
should be used to express the eddy viscosity that L’vov et al. [34]
have extensively studied, while our research shows that h is a bet-
ter parameter rather than y for describing the drag-reducing flows
in our model.

According to the momentum conservation principle, the stress
balance has the following form:

�sp ¼ �s� l
d�u

dy
� qu0v0

� �
(2)

where �s is the total shear stress, l is the dynamic viscosity of the
solution, and �u0v0 is the Reynolds shear stress.

By inserting Eq. (1) into Eq. (2), Yang and Dou [29,30]
obtained the equation of drag-reducing flows in the fully devel-
oped turbulent state

�D�
d�u

dy
� u0v0 ¼ u2

� 1� y

h

� �
(3)

where

D� ¼ 1þ a�
u�h

�
(4)

where v is the kinetic viscosity of the solution and u*h/v (¼R*) is
the friction Reynolds number.

Yang and Dou [31,32], hence, obtained equations of the veloc-
ity distribution and friction factor in Newtonian and drag-reducing
turbulent flows. However, the structure of drag-reducing flows in
laminar-turbulent transition is still not known.

The objectives of this paper are to: (1) derive the relationship
between Reynolds number Re and the intermittency factor c in the
transition region, (2) analyze the velocity profiles in the laminar-
turbulent transition region by introducing the weighting factor, (3)
confirm the existence of the weighting factor using the data of
friction factor, (4) express the velocity distribution in the

transition region, and (5) investigate turbulence structures in the
transition region by applying the intermittency factor.

2 Intermittent Nature and Intermittency Factor

in the Transition Region

Experiments [2] show that, in the transition region, turbulence
is of intermittent nature, occurring at one moment and disappear-
ing at another. If T denotes the total period of the observation time
and Tt and Tl denotes the duration of turbulent and laminar flow,
respectively, one has

T ¼ Tt þ Tl (5)

If we define

ct ¼
Tt

T
; cl ¼

Tl

T
(6)

then one has

�ct ¼ lim
T!1

Tt

T
; �cl ¼ lim

T!1

Tl

T
(7)

where �ct and �cl represent the probabilities of occurrence of turbu-
lent and laminar flows, respectively. By following the spot theory
proposed by Emmons [35], Rotta [15] measured experimentally �ct

in the pipe inlet area using a hot wire anemometer; he found that
this quantity is dependent upon both the Reynolds number and the
measuring distance from the pipe entrance, and his results suggest
that, for fully developed pipe flow, �ct depends on Reynolds
number only.

Substituting Eq. (7) into Eq. (5), one obtains

�ct þ �cl ¼ 1 (8)

Then, Dou [36] obtained the following modeled equations for
the relationship between the intermittency factor and Reynolds
number (see Appendix):

�cl ¼
1

e

X1
n¼1

n

n!

Rcrit�

R�

� �2n
" #

; for R� � Rcrit�

1 for R� � Rcrit�

8><
>: (9)

�ct ¼
1� 1

e

X1
n¼1

n

n!

Rcrit�

R�

� �2n
" #

; for R� � Rcrit�

0 for R� � Rcrit�

8><
>: (10)

where Rcrit* (¼ ucrit*h/v) is the critical friction Reynolds number
and ucrit* is the critical wall shear velocity at the moment the flow
becomes turbulent.

It should be stressed that the intermittency factor may be de-
pendent on x, the distance from the pipe’s entrance, but it is inde-
pendent of y, the normal distance from a wall as observed by
Rotta [15]. For the fully developed turbulent flow that the entrance
effect is negligible, the intermittency factor should be independent
of x; thus, it is only a function of Reynolds number as shown in
Eq. (10). In other words, one value of intermittency can be used to
scale the entire profile.

For Newtonian fluid flow, the experiments show that, for a
circular pipe, the critical Reynolds number Recrit¼VD/v is
approximately 2300, where V is the overall averaged velocity and
D is the diameter of the pipe. Then, the relation between the criti-
cal Reynolds number and the critical friction Reynolds number is
Rcrit*¼ (2Re)0.5¼ 67.82 [31]. It should be stressed that the Rcrit*

may be different from different researchers, and the value of that
in drag-reducing flow may be different from that in Newtonian
flow.
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3 D* and Reynolds Shear Stress in the Transition

Region

Spriggs [37] was the previous researcher who addressed the sig-
nificance of the intermittency factor as he argued “construction of
a simple model of transition is possible by visualizing this region
as being just a combination of laminar flow and turbulent flow.
The intermittency factor is used as a weighting factor.” By follow-
ing this idea, one can establish the expression of turbulent velocity
in the transition region, i.e.,ffiffiffiffiffiffi

u02
p� �

transition
¼ �ct

ffiffiffiffiffiffi
u02

p� �
turbulence

(11)

where u0 is the fluctuation of axial velocity. In Eq. (11), the lami-
nar term disappears as the velocity fluctuation in this region is
zero. Likewise, Reynolds shear stress can be expressed by

�u0v0
� �

transition
¼ �ðctu

0Þðctv
0Þ ¼ �c2

t �u0v0
� �

turbulence
(12)

where v0 is the fluctuation of the velocity in wall-normal direction.
Equation (12) states that the Reynolds shear stress in the laminar-
turbulent transition region is proportional to the square of the
intermittency factor.

It is widely accepted [28,38] that the effect of polymer mole-
cule stretching in a turbulent flow produces an increase in the
effective viscosity and the large increase in the effective viscosity
will suppress turbulent fluctuations, resulting in the suppression of
the Reynolds shear stress. As D* is the measurement of elastic pa-
rameter that is proportional to the turbulent velocities, one can
postulate that D*> 1 appears only in the period of turbulent flow
in the transition region and it should be proportional to the square
of the intermittency factor as the Reynolds shear stress in this
region. Based on this argument, one can extend Eq. (4) into the
following form:

D� ¼ 1þ �c2
t a�

u�h

�
(13)

It is fairly clear that drag reduction occur only in turbulent sta-
tus from Eq. (13), since �c2

t ¼ 0 in laminar status and D* becomes
1, meaning no drag reduction occurs. This is a direct inference of
the eddy diffusivity model, as Eq. (1) or Eq. (13) indicates that the
eddy viscosity must become 0 or the drag reduction phenomenon
will certainly disappear in laminar status. Equation (1) also dem-
onstrates that the drag reduction is a near wall effect, as the veloc-
ity gradient has the maximum value in the boundary layer and
reduces gradually when far from the wall.

4 The Velocity Profile and Friction Factor

in the Transition Region

It is a well-documented fact that the flow in the transition
region is laminar at one moment and becomes turbulent at
another, and the interval of this alternation is unequal and irregu-
lar. Based on experimental observations, Schlichting [2] inferred
that the velocity profile in the transition region is sometimes cor-
responding to laminar distribution while sometimes to turbulent
one. Therefore, it is fairly reasonable to express the velocity distri-
bution in the transition region as the following form:

�u

u�
¼ �ctb

�ut

u�t
þ �clb1

�ul

u�l
(14)

where the subscripts of “t” and “l” denote turbulent and laminar
states, respectively; b¼ u*t/u*, b1¼ u*l/u*, u*t, and u*l are the
shear velocities during the laminar and turbulent states.

In laminar flow, the Reynolds shear stress is 0. Hence, the inte-
gration of Eq. (3) with respect to y yields

�ul

u�l

¼ u�ly

�D�
1� y

2h

� �
(15)

For a channel flow [39,40] and a pipe flow, Yang and Dou [30]
obtained the following equation for the velocity distribution in the
fully developed turbulent flows:

ut

u�t
¼ 2:5 ln 1þ u�ty

5�D�

� �

þ 5:8D2
� þ 1:25

� � u�ty

5�D�

1þ u�ty

5�D�

0
B@

1
CA

2

þ2:5

u�ty

5�D�

1þ u�ty

5�D�

(16)

As the first approximation, we assume u*t � u*l � u* or
b¼ b1¼ 1. Inserting Eqs. (15) and (16) into Eq. (14), one can
obtain the velocity distribution in the laminar-turbulent transition
region

u

u�
¼ �ct 2:5 ln 1þ u�y

5�D�

� �
þ 5:8D2

� þ 1:25
� � u�y

5�D�

1þ u�y

5�D�

0
B@

1
CA

22
64

þ 2:5

u�y

5�D�

1þ u�y

5�D�

3
75þ �cl

u�y

�D�
1� y

2h

� �	 

(17)

If D*¼ 1, it gives the velocity distribution in Newtonian fluid
flows; otherwise, it represents the velocity profiles in drag-
reducing flows.

The overall averaged velocity V can be obtained by integrating
Eq. (17) and has the following form:

V

u�
¼ ct 2:5� 23:2D2

� þ 5

R�=ð5D�Þ
� 34:8D2

� þ 10

R�=5=D�ð Þ2

 !
ln 1þ R�

5D�

� �"

þ 5:8D2
� þ

34:8D2
� þ 10

R�=ð5D�Þ



þ cl

R�
4D�

(18)

The friction factor is defined by

f ¼ 2

V

u�

� �2
(19)

Inserting Eq. (18) into Eq. (19), one can obtain the formula of
the friction factor of Newtonian/drag-reducing flows from laminar
flow to turbulent flow, as well as the laminar-turbulent transition
flow. If �ct¼ 0 or �cl¼ 1, Eq. (19) gives the friction factor of lami-
nar flow; else if �ct¼ 1 or �cl¼ 0, it gives the friction factor of fully
developed turbulent flow. Otherwise, it could give the friction
factor of laminar-turbulent transition flow.

It should be stressed that, different from Eq. (19), Spriggs [37]
proposed that the friction factor in the transition region can be
expressed as

f ¼ ð1� ctÞflaminar þ ct fturbulent (20)

Equation (19) is more physically reasonable, since the friction
factor is proportional to the square of the velocity, and the current
study starts from Eq. (14), in which the velocities in the same
direction are linearly summable.

For Newtonian fluid flow (D*¼ 1), given friction Reynolds
number R*, one can estimate �ct by using Eq. (10), and then the
friction factor can be calculated by applying Eqs. (18) and (19).
For drag-reducing flows, once a* is determined, one can calculate
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the value of D* and then determine the friction factor similar to
Newtonian fluid flows. However, the apparent viscoelasticity a*

of the solution is unknown at first; one needs to adjust it to yield
the best agreement between the measured data and predictions of
the velocity distribution or friction factor. The values of a* listed
in Figs. 4 and 5 are determined by using the later method.

5 Verification of the Velocity Distribution

and Friction Factor

This study established the model for calculating the velocity
distribution and friction factor of drag-reducing flows in the
laminar-turbulent transition region. It is important to test the
model by comparing the predictions with experimental data avail-
able in the literature. The current model is based on two assump-
tions: (1) Eq. (14) that the velocity in the transition region is a
combination of laminar and turbulent velocities by adjusting the
weighting factor and (2) Eq. (10) that the calculation of the inter-
mittency factor is made by applying the friction Reynolds number
and the critical friction Reynolds number.

Firstly, the authors test assumption 1. Presti [41] in Escudier
et al. [42] measured the velocity profiles in a 50 mm diameter
UPVC pipe system. Laser-Doppler anemometry was used to mea-
sure the point velocity in the pipe. Different polymers were used,
such as carboxymethylcellulose (CMC), xanthan gum (XG), and
polyacrylamide (Separant AP 273 or PAA). Figure 1 shows the
comparison of measured and calculated velocity profiles in the
pipe flow; the symbols are the experimental data collected by
Presti [41], and Reynolds number, polymer type, and concentra-
tion are listed in the caption. Equation (13) is used to calculate
D*, in which a* is obtained from the measured friction factor. It
can be seen that, from laminar flow to turbulent flow, the velocity
profiles gradually change from the parabolic curve to the logarith-
mic type. By adjusting the weighting factor, Eq. (14) can capture
the majority of the measured velocity profiles. Good agreement
supports the validity of the assumption in Eq. (14).

Secondly, one needs to examine whether Eq. (10) is valid or
not. On one hand, using experimental data of the friction factor in
the transition region, one can calculate the intermittency factor by
using Eq. (18). On the other hand, the intermittency factor can be
calculated directly by applying Eq. (10). Through comparing the
intermittency factor obtained from two ways, one can verify easily
whether Eq. (10) is valid or not. Virk [17] systematically meas-
ured the flow resistance in a smooth pipe with Newtonian and
non-Newtonian fluids, which are available for the current study.
Virk measured the friction factor in a smooth pipe by increasing
the flow rate, and he used polyethyleneoxide N750 as the additive
with its concentrations of 43.6 ppm and 98.6 ppm. The elastic

factors a* are found to be 0.000158 and 0.000326 [32], respec-
tively. He also used polyethyleneoxide W301 with a concentration
of 18.7 ppm, which yields a*¼ 0.0033. All obtained intermittency
factor are presented in Fig. 2. For comparison, Eq. (10), which
was developed by Dou, is also included, in which R*crit¼ 67.82 is
used in the calculation. It is surprising to see that all data points
from different sources are consistent and Eq. (10) can express the
tendency, and a simpler and better form is given in Eq. (21) as

ct ¼ 1� ln R�k
ln R�

� �11
" #0:5

(21a)

The intermittency in the boundary layer flows and, in the early
stages of pipe transition, has been investigated by many research-
ers [43–45]. Their results show that the intermittency factor
depends on both streamwise distance and pipe Reynolds number,
and it is often assumed that, if the pipe is sufficiently long, the
intermittent pattern may be replaced by nearly periodic oscilla-
tions. Figure 2 shows that the assumption may not be correct, as
in a very long pipe, the intermittency factor depends on the
Reynolds number only (independent of streamwise distance). The
universal distribution proposed by Narasimha [45] has the follow-
ing form:

ct ¼ 1� expð�4:12n2Þ (21b)

where n¼ (x� xt)/k, k¼ x(c¼ 0.75)� x(c¼ 0.25), x is the stream-
wise distance, and xt is the distance where spots are born. Equa-
tion (21b) indicates that, for a pipe flow, if x or n approaches
infinity, one obtains ct ¼ 1. In other words, it indicates that the
laminar state will eventually disappear no matter how small the
Reynolds number is. This seems unreasonable. If we define
n¼ (R*�R*k)/R*k, the result is shown in Fig. 2 and the function
cannot match the data well no matter how we define k. This indi-
cates that the knowledge developed from the boundary layer flows
and pipe entrance flow cannot be extended to the fully developed
pipe flow directly.

Figure 2 shows that the intermittency factor obtained from
Eq. (18) is identical to its value from Eq. (10), which indicates
that Eq. (10) is valid and the formula Eq. (21) can be used to esti-
mate the intermittency factor by applying the critical friction
Reynolds number and the friction Reynolds number. It can be
seen from Fig. 2 that Eq. (10) underestimates slightly the intermit-
tency factor in the region of ln(u*r/�)< 4.9; this may be caused
by imperfect facilities, as only nine data points exists, or the
imperfect theory that considers only the pure statistical properties

Fig. 1 Measured (symbols) and calculated (lines) velocity pro-
files in laminar, transition, and turbulent flow regions. For
Re 5 640, glucose syrup, ct 5 0 and D* 5 1; for Re 5 2700, 0.4%
CMC, ct 5 0:75 and D* 5 1.03; for Re 5 3840, 0.2% PAA, ct 5 0:85
and D* 5 1.09; for Re 5 6600, 0.14% Carbopol 934, ct 5 0:99 and
D* 5 1.29; and for Re 5 45,300, 0.09% CMC/0.09%XG, ct 5 1 and
D* 5 1.56.

Fig. 2 Comparison of weighting factor determined from the
measured friction factor with the intermittency factor, i.e.,
Eq. (10) and its modified form Eq. (21)
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without consideration of dynamic properties. It can be inferred
that the effect of polymer additives has no influence on the inter-
mittency factor. This is consistent with Virk’s observation [19]
that “the onset of drag reduction occurs at the same wall shear
stress which is essentially independent of polymer concentration.”
Therefore, one can conclude that the existence of polymer would
not change the critical Reynolds number and the intermittency
factor in the transition region.

It can be seen from any measured f � Re diagram that the
appearance of the first turbulent patch in a fluid corresponds
closely to deviation from laminar flow relation, and the Reynolds
number at this point is referred as the critical Reynolds number in
the current study. As mentioned, the critical Reynolds number
may be different from 2300; thus, it is worthwhile to investigate
the influence of the critical Reynolds number on the predictability
of friction factor. For this purpose, W�ojs [46] measured the fric-
tion factor in a smooth pipe from laminar, the transition to fully
developed turbulent regions. Polyacrylamide Rokrysol was used
in his experiments, and polymer concentrations were 0.001% and
0.002%. Figure 3 shows that the critical Reynolds number is about
2800. The apparent viscoelasticity of the solutions a*¼ 0.00048
and 0.0016 are obtained for the concentrations of 0.001% and
0.002%, respectively. The calculated friction factors using the
critical Reynolds number (2800) are included in Fig. 3, and it can
be seen that good agreement is achieved.

Peixinho et al. [47] carefully observed the critical Reynolds
number and its impact on friction factor, and their results are
shown in Fig. 4, in which the solid lines are calculated results
using Eq. (18). It can be seen that the critical Reynolds number
varies from 2300 to 3200, and the corresponding Rcrit*¼ 67.82,
75.5, and 80, respectively. The apparent viscoelasticity a* is
obtained by fitting the data points. It can be seen that the model

proposed in this study can express well the friction factor at
various critical Reynolds numbers.

To show the current model is also valid for channel flows, Dou
and Wang’s [48] experimental data is used, in which they meas-
ured friction factor in a smooth open channel, and the results are
shown in Fig. 5. In Fig. 5, C is the polymer concentration and
lines are the calculated results using Eq. (18). It can be seen that
the predictions provide satisfactory agreement, indicating that the
current model is acceptable for prediction of friction factor in
channel flows for both Newtonian and non-Newtonian fluids.

6 Turbulence Structures

As the intermittency factor is one of the convenient and also the
most important characteristics of the transition region, it would be
interesting to investigate how the intermittency factor affects the
turbulence structures in the transition region. For fully developed
turbulent flows, Yang and Dou [30] expressed the turbulent veloc-
ity fluctuations as follows:

u0v0 ¼ �U2T1

2

du

dy
þ mL2

4
� m2L2

8

� �
du

dy

� �2

(22)

and the mean square of the velocity fluctuations in streamwise and
wall-normal directions can be expressed as

u02 ¼ U2

2
þ 9

4
m2L2 du

dy

� �2

(23)

v02 ¼ U2

2
þ 1

4
m2L2 du

dy

� �2

(24)

where U, T, and L represent the eddy’s characteristic velocity,
time, and length, respectively; m is introduced to consider the
damping effect of wall on the eddy size. The eddy’s characteris-
tics are determined by its location, i.e., vertical distance y, thick-
ness of viscous sublayer d, local shear stress s, and boundary
shear stress s*; the following criteria of similarity were used:

m ¼ y

d
; U ¼ u�

ffiffiffiffiffiffiffiffiffiffiffi
y

dþ y

r
; L ¼ jd

ffiffiffiffiffiffiffiffiffiffiffi
1� y

h

r
;

T1 ¼ j 1� y

h

� � dþ y

u�
(25)

in which j is the Karman constant 0.4, d is the thickness of vis-
cous sublayer, and u*d/�¼ 11.6D*

3.
By substituting the expression of Reynolds shear stress in tur-

bulence into Eq. (12), one obtains the following equation:

Fig. 3 Friction factor versus Reynolds number in laminar-
turbulent transition region based on W�ojs’s experimental data
[46]

Fig. 4 Friction factor versus Reynolds number based on Peix-
inho et al.’s [47] measurements

Fig. 5 Friction factor versus Reynolds number in laminar-
turbulent transition region based on Dou and Wang’s [48]
measurements
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(26)

where the subscript “tr” denotes transition regime. Similar to Eq.
(24), the intensities of turbulent velocity in the laminar-turbulent
transition region can be expressed as follows:

ffiffiffiffiffiffi
v02

p
u�

 !
tr

¼ ct

u�y

�D�

23:2D2
� þ 2

u�y

�D�

þ 0:04 1� y

h

� � y

u�

du

dy

� �2

2
64

3
75

1=2

(27)
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¼ ct
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(28)

where

y

u�

du

dy
¼

u�y

�D�

1þ u�y

5�D�

þ 0:02

23:2D2
�

u�y

�D�

� �2

� u�y

�D�

� �3

1þ u�y

5�D�

� �3
(29)

where mo is included to express the large drag reduction (LDR)
effect [30]. For Newtonian and small drag reduction (SDR),
mo¼ 1, i.e., no correction is needed.

In the literature, no measured Reynolds shear stress in the tran-
sition region is available; thus, Eq. (26) cannot be verified by ex-
perimental data. Peixinho et al. [47] measured the turbulent
intensity profiles of drag-reducing flows, and their experimental
results are shown in Fig. 6, in which Eq. (28) is also included for
comparison. The calculated results are presented by solid lines.
The intermittency factor is calculated basing on Reynolds number;
�ct and a* shown in Fig. 4 were used to determine D*. The correc-
tion parameter mo for glucose syrup, CMC, and Carbopol are 1,
0.45, and 0.3, respectively. Although the data points and the lines
are scattered, careful look shows that, for SDR, i.e., glucose syrup,
the agreement between measured and calculated turbulent inten-
sity profiles is acceptable relative to other methods, like numerical
models [49].

Figures 7 and 8 show the rms of streamwise velocity fluctua-
tions in Newtonian fluid flow and drag-reducing flow in open
channels measured by Dou and Wang [48], in which �ct and D* are
determined using Eqs. (21) and (13), respectively. The turbulent
velocity fluctuations calculated from Eq. (28) are also included.

It can be seen from Figs. 6–8 that Eq. (28) is valid to express
the turbulent intensity in the transition region. It is valid for both
Newtonian fluid flow and LDR flows mo¼ 1, but for LDR,
Eq. (28) needs a modification as in the fully turbulent region.

7 Conclusion

This study investigates the flow characteristics of Newtonian/
non-Newtonian fluid flows in the laminar-turbulent transition
region. The study confirms Spriggs’ [37] intuition that
“construction of a simple model of transition is possible by visual-
izing this regime as being just a combination of laminar flow and
turbulent flow. The intermittency factor can be empirically used
as a weighting factor.” However, this is achievable only when the
velocities in the two regions are combined, rather than friction
factor, as proposed by Spriggs [37]. The equations of time-
averaged velocity, friction factor, Reynolds shear stress, and tur-
bulent velocity fluctuations developed by the authors have been

Fig. 6 Turbulent intensity profiles measured by Peixinho et al.
[47] and its comparison with Eq. (28)

Fig. 7 Distribution of measured rms of streamwise velocity
fluctuations in the laminar-turbulent transition region of Newto-
nian fluid flow

Fig. 8 Distribution of measured rms of streamwise velocity
fluctuations in the laminar-turbulent transition region of drag-
reducing flow
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extended to the transition region. These equations are fairly con-
sistent with the available data over a range of conditions, and the
following conclusions can be drawn:

(1) The weighting factor has been obtained from the measured
friction factors, and it is confirmed that the weighting factor
can be quantitatively predicted by Eq. (10) or simplified
Eq. (21), which are developed to express the intermittency
factor. This agreement implies that the weighting factor is
identical to the intermittency factor. More experiments are
needed in the future to check this conclusion by measuring
the velocity in the transition region.

(2) Under natural conditions, for Newtonian/drag-reducing
fluid flow, 2300 can be roughly used as the critical Rey-
nolds number in pipes. However, this model is still valid to
express the flow characteristics in the transition region
when the critical Reynolds number is various.

(3) From laminar state to fully developed turbulent state with
the increase of Reynolds number, the velocity profile in a
pipe flow gradually deforms from parabolic to logarithmic
curves. By adjusting the weighting factor, the combination
model can capture well this characteristic.

(4) The present model can express the turbulent intensity well
in Newtonian fluid flow and SDR flow, but it needs to be
modified for predicting the turbulent intensity in LDR flow.
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Nomenclature

D ¼ diameter of the pipe
D* ¼ 1þ a�ðu�h=�Þ

f ¼ friction factor
h ¼ flow depth or pipe radius
L ¼ eddy’s characteristic length
m ¼ a number to consider the damping effect of wall

mo ¼ coefficient to express the effect of large drag reduction
R* ¼ u*h/v, friction Reynolds number
Re ¼ Reynolds number

Recrit ¼ critical Reynolds number
T ¼ total period of the observation time

T1 ¼ eddy’s characteristic velocity, time
Tl ¼ duration of laminar flow
Tt ¼ duration of turbulent status

ucrit* ¼ critical wall shear velocity
u* ¼ wall shear velocity
u0 ¼ fluctuation of axial velocity

�u0v0 ¼ Reynolds shear stress
�u ¼ the time-averaged velocity

U ¼ eddy’s characteristic velocity
v0 ¼ fluctuation of the velocity in wall-normal direction
V ¼ overall averaged velocity
x ¼ streamwise distance
xt ¼ the distance where spots are born
y ¼ distance from the wall

a* ¼ apparent viscoelasticity of the solution
�cl ¼ probabilities of laminar flows, respectively
�ct ¼ probabilities of occurrence of turbulent flow
d ¼ thickness of viscous sublayer
j ¼ Karman constant, 0.4
k ¼ a characteristic distance in x-direction
l ¼ dynamic viscosity of the solution
v ¼ kinetic viscosity of the solution

veff ¼ the effective viscosity caused by polymers
n ¼ (x� xt)/k
q ¼ density of the solution
s ¼ shear stress

s* ¼ boundary shear stress
�s ¼ total shear stress

Subscripts

l ¼ laminar state
t ¼ turbulent state

tr ¼ transition regime

Appendix: Determination of the Intermittency Factor

Experiments [2] show that, in the transitional region, turbulence
is of an intermittent nature, occurring at one moment and disap-
pearing at another. Rotta [15] observed the transition flow in pipes
with hot-wire anemometer, and it was found that the flow is lami-
nar at one moment and turbulent at another. Experiments also
show that the interval of alternation between the laminar and the
turbulent is unequal and irregular and the duration of the turbu-
lence is sometimes long and sometimes short. The frequency of
the interchange between the laminar and the turbulent also is
undeterminable. So the phenomena observed in the transition state
are of a pronounced stochastic character. If we let T denote the
total period of observation, Tt the duration of turbulent flow, and
Tl the duration of laminar flow, one can write

T ¼ Tt þ Tl (A1)

we define

ct ¼
Tt

T
; cl ¼

Tl

T
(A2)

and then we have

ct ¼ lim
T!1

Tt

T
; cl ¼ lim

T!1

Tl

T
(A3)

where ct and cl are the probabilities of occurrence of turbulent and
laminar flows, respectively. And we have

ct þ cl ¼ 1 (A4)

If we divide the period of observation into m small intervals of Dt,
one has

T ¼ mDt (A5)

As mentioned above, in the period of observation, the turbulent
and the laminar would be interchanged and the duration of their
appearance would be sometimes long and sometimes short. If K1

is the times of turbulence occurrence with the duration equal to
1Dt, K2 is the times of turbulence occurrence with the duration
equal to 2Dt, and Kn is the times of turbulence occurrence with
the duration equal to nDt, one can write

Tt ¼ K1Dtþ K2ð2DtÞ þ � � � þ KnðnDtÞ ¼ Dt
X

nKn (A6)

If there is a turbulence, the duration of which is equal to nDt,
and its permutation number relative to the duration of 1Dt and to
the observation time with 1Dt is denoted by kn, then the total per-
mutation number of this turbulence in the period of observation
T¼mDt would be mnkn. On the other hand, if the turbulence hav-
ing the duration equal to nDt consists of n unit intervals and there
are n! different permutations, the total number of permutations of
this turbulence occurring in the period of observation should be
Knn!. Therefore, one obtains

Kn ¼
mn

n!
kn (A7)
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Substituting Eq. (A6) into Eq. (A7) and dividing it by T, one
obtains

ct ¼
Xm

n¼1

n2

n!
kn (A8)

ct ¼ lim
m!1

Xm

n¼1

n2

n!
kn ¼

X1
n¼1

n2

n!
kn (A9)

where kn is the statistic mean value of kn. Under given flow condi-
tions, it would be a stable value; in a general case, this value
should be the function of the ratio of the Reynolds number R*

(¼u*h/�) to its critical value, at which the turbulent flow transits
to laminar one. With the increase of the Reynolds number, the
value of kn would be increased, but the increasing rate is generally
decreased to make kn approach to its maximum value. Therefore,
the derivative of Kn, with respect to R* (¼u*h/�), could be taken
as the function of R*k/R*, i.e.,

dkn

dR�
¼ f

R�k
R�

� �
(A10)

Assuming that this function can be expressed as a series in
uneven powers, one can write

dkn

dR�
¼ a

R�k
R�

� �2nþ1

(A11)

where a is a coefficient of proportionality. The integration of Eq.
(A11) gives

kn ¼ �
aR�k
2n

R�k
R�

� �2n

þC1 (A12)

where C1 is the constant of integration. When the Reynolds num-
ber is smaller than or equal to its critical value, the flow would be
in a completely laminar state; consequently, no turbulence would
occur. This boundary condition gives

C1 ¼
aR�k
2n

(A13)

Inserting Eqs. (A12) and (A13) into Eq. (A9), we have

ct ¼
1

2
aR�k

Xm

n¼1

n

n!

 !
� 1

2
aR�k

Xm

n¼1

n

n!

R�k
R�

� �2n
" #

(A14)

When the Reynolds number is large enough, the flow would be
in the turbulent state. Therefore, when R*!1, ct ¼ 1. Then, we
have

1

2
aR�k

X1
n¼1

n

n!

 !
¼ 1 (A15)

a ¼ 2

R�k
X1
n¼1

n

n!

 ! (A16)

Note that
P1

n¼1ðn=n!Þ ¼ e, substituting Eq. (A15) into Eq.
(A16), one obtains

ct ¼
1� 1

e

X1
n¼1

n

n!

R�k
R�

� �2n
" #

R� � R�k

0 R� < R�k

8><
>: (A17)

cl ¼
1

e

X1
n¼1

n

n!

R�k
R�

� �2n
" #

R� � R�k

1 R� < R�k

8><
>: (A18)

For Newtonian fluid flow, the experiments show that, for a circu-
lar pipe, the critical Reynolds number Re¼VD/� is about 2300,
where V is the mean cross-sectional velocity and D is the diameter
of pipe. Then, the relation between the two critical Reynolds num-
ber is R*¼ (2Re)0.5¼ 67.82.
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