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Neuromusculoskeletal Model
Calibration Significantly Affects
Predicted Knee Contact Forces
for Walking
Though walking impairments are prevalent in society, clinical treatments are often
ineffective at restoring lost function. For this reason, researchers have begun to explore
the use of patient-specific computational walking models to develop more effective treat-
ments. However, the accuracy with which models can predict internal body forces in
muscles and across joints depends on how well relevant model parameter values can be
calibrated for the patient. This study investigated how knowledge of internal knee contact
forces affects calibration of neuromusculoskeletal model parameter values and subse-
quent prediction of internal knee contact and leg muscle forces during walking. Model
calibration was performed using a novel two-level optimization procedure applied to six
normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo
Knee Loads. The outer-level optimization adjusted time-invariant model parameter val-
ues to minimize passive muscle forces, reserve actuator moments, and model parameter
value changes with (Approach A) and without (Approach B) tracking of experimental
knee contact forces. Using the current guess for model parameter values but no knee con-
tact force information, the inner-level optimization predicted time-varying muscle activa-
tions that were close to experimental muscle synergy patterns and consistent with the
experimental inverse dynamic loads (both approaches). For all the six gait trials,
Approach A predicted knee contact forces with high accuracy for both compartments
(average correlation coefficient r¼ 0.99 and root mean square error (RMSE)¼ 52.6 N
medial; average r¼ 0.95 and RMSE¼ 56.6 N lateral). In contrast, Approach B overpre-
dicted contact force magnitude for both compartments (average RMSE¼ 323 N medial
and 348 N lateral) and poorly matched contact force shape for the lateral compartment
(average r¼ 0.90 medial and �0.10 lateral). Approach B had statistically higher lateral
muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lat-
eral normalized muscle fiber lengths compared to Approach A. These findings suggest
that poorly calibrated model parameter values may be a major factor limiting the ability
of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately
for walking. [DOI: 10.1115/1.4033673]

Keywords: knee contact forces, muscle force estimation, neuromusculoskeletal model
calibration, static optimization, sensitivity analysis, biomechanics

1 Introduction

Disorders affecting walking ability (e.g., osteoarthritis and
stroke) are prevalent in society. Worldwide each year, approxi-
mately 15 million individuals suffer a stroke [1] and 250 million
individuals are diagnosed with knee osteoarthritis [2]. Walking
dysfunction from these and other disorders leads to a decreased
quality of life and other serious health conditions such as heart
disease and diabetes, thereby increasing the risk of death as well
[3]. Unfortunately, current clinical interventions are largely inef-
fective at reversing walking impairments [4,5]. Even total joint
replacement frequently does not achieve full normalization of
walking function [6]. Improved clinical treatment methods are
therefore needed to address this important societal problem.

Researchers have begun to explore using computational walk-
ing models to develop improved clinical interventions for walking
impairments [7]. One of the primary challenges with this approach
is indeterminacy of model-predicted muscle forces, since

more muscle actuators exist than degrees-of-freedom (DOFs) in
the skeleton. Researchers have explored several computational
approaches to address the muscle redundancy problem. The most
common approach found in the literature is static optimization,
where a cost function is minimized one time frame at a time to
find muscle forces that reproduce experimental joint moments
calculated via inverse dynamics [8–11]. Musculoskeletal models
used in this process are typically scaled versions of generic mod-
els available in the literature [12,13]. While this approach can be
computationally efficient, it does not take advantage of experi-
mental electromyographic (EMG) data when available, and the
correct physiological form of the cost function to be minimized is
unknown. An alternate approach is to use an EMG-driven model
whose muscle excitation inputs are taken directly from experi-
mental EMG measurements [14–16]. With this approach, no
assumptions are required about the form of the cost function being
minimized, plus model parameter values are often calibrated to
match the subject’s experimental joint moments from inverse
dynamics. However, “flexibility” still remains in the solution
process, since the absolute amplitude of each muscle excitation is
difficult to determine, the number of EMG measurements is often
limited, and EMG data are typically unavailable from large
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deep muscles (e.g., psoas). Regardless of which approach is used,
the estimated muscle forces remain sensitive to both the computa-
tional method used to resolve muscle force indeterminacy and the
parameter values used in the neuromusculoskeletal model.

One way to address the dual problem of indeterminate muscle
force solutions and unmeasurable model parameter values is to
identify additional types of experimental data that could limit
muscle force solutions and the model calibration process further.
Neural control studies have shown that a large number of muscle
EMG signals (8–32) collected during walking can be decomposed
into three to six independent time-varying basis signals called
“neural commands” [17–20]. Recent work has also shown that
neural commands extracted from a subset of experimentally
measured EMG signals can reconstruct the shapes of the omitted
EMG signals accurately [21]. Thus, it may be physiologically rea-
sonable to use experimentally derived neural commands as basis
functions to construct all model-predicted muscle activations
[22]. In addition, instrumented knee studies performed using
force-measuring knee replacements have provided internal force
data that permit at least two additional inverse dynamic knee loads
to be used as constraints in the muscle force estimation and model
calibration process [23,24]. While synergy-derived neural com-
mands can limit only muscle activation shapes, knee contact
force measurements can limit both the amplitudes and shapes of
predicted activations.

This study investigated how knowledge of in vivo knee contact
forces affects calibration of neuromusculoskeletal model parame-
ter values and subsequent prediction of knee contact and leg mus-
cle forces during walking. The two primary questions investigated
were the following. First, can a static optimization that uses a
well-calibrated neuromusculoskeletal model predict experimental
knee contact forces accurately for multiple gait trials? This ques-
tion addresses whether poorly calibrated model parameter values
may be just as critical as an indeterminate muscle force solution
in affecting predicted knee contact and leg muscle forces during
walking. Second, which model parameter values change the most
when experimentally measured knee contact forces are not used
as part of the model calibration process? This question addresses
whether particular types of parameters require more refined cali-
bration methods to achieve accurate knee contact force predic-
tions. The novel two-level static optimization approach used to
address these questions employed muscle synergy information
extracted from experimental EMG signals to limit predicted acti-
vations, thereby accounting for subject-specific neural control
characteristics.

2 Methodology

2.1 Experimental Data. Experimental data for this study
were obtained from the Fourth Grand Challenge Competition to
Predict In Vivo Knee Loads [23]. Surface marker, ground reac-
tion, EMG, knee contact force, and single-plane fluoroscopic knee
motion data were available from a subject (gender: male, age:
88 yrs, mass: 65 kg, and height: 166 cm) implanted with a force-
measuring tibial prosthesis (right knee). The prosthesis possessed
four uniaxial load cells located in the four quadrants of the tibial
tray [25]. Six normal overground gait trials performed at a
self-selected speed (1.26 6 0.03 m/s) were selected for analysis.
Available data included trajectories of 53 surface markers, ground
reactions from three force plates, knee contact forces from the
instrumented implant, and EMG data from ten muscles (adductor
magnus—addmag; biceps femoris longhead—bflh; gastrocnemius
lateralis—gaslat; gastrocnemius medialis—gasmed; peroneus
longus—perlong; semimembranosus—semimem; soleus—sol;
tibialis anterior—tibant; tensor fascia latae—tfl; and vastus
lateralis—vaslat).

The experimental data were processed using standard methods.
The EMG data were high-pass filtered (fourth-order zero phase-
lag Butterworth at 30 Hz), full-wave rectified, demeaned, and

low-pass filtered (fourth-order zero phase-lag Butterworth at
6 Hz). Each processed EMG signal was resampled to 101 data
points and normalized to its maximum value over all movement
trials from the Fourth Grand Challenge Competition, including tri-
als from other walking conditions (e.g., medial thrust gait).
Ground reaction and knee contact force data were also low-pass
filtered in a consistent manner (fourth-order zero phase-lag Butter-
worth at 6 Hz) [26].

2.2 Muscle Synergy Analysis. Experimental neural com-
mands were calculated by performing muscle synergy analysis on
the ten processed muscle EMG signals after they were passed
through an activation dynamics model. Activation dynamics was
modeled using a first-order ordinary differential equation [27],
where the activation and deactivation time constants for each
muscle were taken from the literature [28]. Muscle synergy analy-
sis was then performed on the experimental activations using a
non-negative matrix factorization algorithm [22,29,30]. The anal-
ysis decomposed the ten experimental activations into a prede-
fined number of synergies (<10), where each synergy consisted of
a single time-varying neural command with a corresponding set of
time-invariant weights (called a “synergy vector”) describing how
the neural command contributed to each experimental activation.
The weights in each synergy vector were normalized to a maxi-
mum value of one, and the associated neural command was scaled
such that the product of the synergy vector and neural command
did not change. The analysis was performed iteratively with the
predefined number of synergies incremented by one each time
until the total variance accounted surpassed 90%, which required
five synergies. Muscle synergies were calculated for all six gait
trials together. The five neural commands varied from trial-to-
trial, while the five synergy vectors remained constant across all
trials.

2.3 Musculoskeletal Model Analyses. A subject-specific
musculoskeletal model of the pelvis and right leg (femur, patella,
tibia/fibula, and foot) [23] was constructed in OPENSIM [31] and
used to calculate joint kinematics and inverse dynamic loads for
the six normal walking trials. The model incorporated subject-
specific bone and implant geometry and possessed 23 DOFs: three
translations and three rotations defining the position and orienta-
tion of the pelvis with respect to ground, three rotations (flexion,
adduction, and rotation) for the hip, three rotations (flexion,
adduction, and rotation) and three translations (superior–inferior,
anterior–posterior, and medial–lateral) for the knee, three rota-
tions (flexion, adduction, and rotation) and three translations
(superior–inferior, anterior–posterior, and medial–lateral) for the
patella relative to the femur, and two rotations (flexion and ever-
sion) for the ankle. A published OPENSIM lower-body model pos-
sessing 44 muscle-tendon actuators (see Supplemental Table S.1,
which is available under the “Supplemental Materials” tab for this
paper on the ASME Digital Collection) on each leg [12] was
scaled to match the subject-specific bone geometry, and muscle
origins, insertions, and wrapping surfaces were transferred to the
subject-specific skeletal model. Patellar flexion was coupled with
the knee flexion angle, while the remaining patellar DOFs were
locked at constant values of zero. The one exception was patellar
height, which was locked at a nonzero value such that patellar
motion relative to the femoral component was visually similar to
that observed fluoroscopically. No ligaments were included in the
model. Each head of the quadriceps was modeled as two muscles:
one that inserted into the patella which was used for muscle-
tendon length and velocity calculations, and one that wrapped
around the patella and inserted into the tibia which was used only
for muscle moment arm calculations.

Tibiofemoral kinematics (three rotations and three translations)
consistent with the knee contact force and surface marker meas-
urements from each gait trial were calculated in MATLAB using an
elastic foundation contact model of the subject’s femoral

081001-2 / Vol. 138, AUGUST 2016 Transactions of the ASME

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1115/1.4033673


component and tibial insert [32]. First, initial OPENSIM inverse
kinematic analyses were performed with all tibiofemoral DOFs
locked except for flexion. These analyses provided an initial esti-
mate of the knee flexion time history for each gait trial. Next, for
each time frame of each gait cycle, the pose of the femoral com-
ponent on the tibial insert was estimated by performing a nonlin-
ear least squares optimization. The optimization locked three
DOFs (flexion angle from inverse kinematics, internal–external
rotation and anterior–posterior translation from fluoroscopy
data collected in an earlier test session) and adjusted three DOFs
(superior–inferior translation, medial–lateral translation, and
varus–valgus rotation) to match the experimentally measured
medial and lateral compressive contact forces and a medial–
lateral shear contact force of zero. The 6 DOF tibiofemoral kine-
matics found for each gait trial were used for both optimization
approaches. A more detailed description of this process can be
found in Ref. [22].

OPENSIM analyses were performed to calculate joint kinematics,
inverse dynamic loads, muscle-tendon lengths and velocities,
and muscle moment arms as required for the subsequent muscle
force optimizations. For each gait trial, a second OPENSIM inverse
kinematic analysis was performed where all tibiofemoral DOFs
except flexion were prescribed to match their values from the
pose estimation optimizations. The resulting joint kinematics
were filtered (four-order zero phase-lag Butterworth at 6 Hz)
prior to performing an OPENSIM inverse dynamic analysis that cal-
culated net loads for three hip, six knee, and two ankle DOFs.
The filtered joint kinematics were also used in an OPENSIM muscle
analysis that calculated muscle-tendon length and muscle
moment arm time histories for all muscles in the model. Muscle-
tendon velocities were calculated by differentiating muscle-
tendon lengths.

Muscle force generation was modeled in MATLAB using a custom
Hill-type model with a rigid tendon. The model possessed normal-
ized force–length and force–velocity characteristics and included
both active and passive force generation. Peak isometric strength
values were taken from Ref. [33], while pennation angles were
taken from Ref. [12]. To avoid infeasible initial guesses, we
scaled the initial values of optimal muscle fiber lengths and
tendon slack lengths taken from the literature [12] following an
approach similar to Ref. [34]. Muscle-tendon model inputs
included activation, optimal muscle fiber length, and tendon slack
length values guessed by the two-level optimization described
below and muscle-tendon length and velocity information pro-
vided by the final OPENSIM inverse kinematic analyses.

2.4 Optimization Problem Formulations. We formulated a
two-level optimization problem in MATLAB to calibrate neuromus-
culoskeletal model parameter values to data from the six selected
gait trials (Fig. 1). The outer-level optimization used a nonlinear
least squares algorithm to adjust design variables related to time-
invariant model parameter values (optimal muscle fiber length
scale factors, tendon slack length scale factors, muscle moment
arm deviations, activation scale factors for muscles with associ-
ated experimental EMG data, and synergy vector weights for
muscles without associated experimental EMG data). The outer-
level cost function minimized a weighted sum of squares of
terms that included passive muscle forces, moment arm devia-
tions, optimal muscle fiber length and tendon slack length
changes, activation deviations away from synergy-based activa-
tion estimates (i.e., linear combinations of experimental neural
commands), and reserve activations (from reserve actuators with a
strength 0.5 Nm) required to balance six commonly used inverse
dynamic loads (three hip, one knee for flexion only, and two
ankle). Each reserve actuator torque was constructed by multiply-
ing its reserve activation by the reserve actuator strength of
0.5 Nm. The strength of the reserve actuators was chosen such
that all reserve activations remained between 0 and 1. Sixteen of
the 44 muscle bundles were associated with one of the ten

experimental EMG signals (see Supplemental Table S.2 in the
“Supplemental Materials”). For muscles with associated experi-
mental EMG data, minimizing activation deviations away from
synergy-based estimates is similar to tracking scaled experimental
activations directly. In addition, the outer-level cost function
included penalty terms raised to a higher power that enforced
physiologically realistic bounds. These terms bounded optimal
muscle fiber length and tendon slack length scale factors to remain
within 20% of 1 while also remaining within 20% of each other,
activation scale factors to remain between 0.1 and 1, synergy-
based activation estimates to remain between 0 and 0.7, average
values of normalized muscle lengths for related muscles (see Sup-
plemental Table S.3 in the “Supplemental Materials”) to remain
within 10% of each other, and moment arm deviations for related
muscles (see Supplemental Table S.4 in the “Supplemental Mate-
rials”) to remain within 5 mm (for moments) or 0.015 (for knee
superior–inferior force) of each other.

The inner-level optimization used a fast quadratic programing
algorithm applied to one time frame at a time of all six gait trials
to adjust design variables for time-varying muscle activations
given the current guess for model parameter values from the
outer-level optimization. The inner-level cost function minimized
the sum of squares of muscle and reserve activations [35] subject
to equality constraints that the same six inverse dynamic loads be
matched and bound constraints that predicted activations be
within 60.05 of synergy-based activation estimates and also
remain between a small positive value (to prevent a singularity in
the Hill-type muscle model) and 1.

Fig. 1 Block diagram of the two-step optimization formulation.
asyn stands for activations reconstructed from synergy compo-
nents, ma and madev for moment arm and moment arm devia-
tions, respectively, sa for activation scale factors for muscles
with experimental EMG data, SVmod for synergy vectors for
muscles without experimental EMG data, lM

0 and slM
0 for optimal

fiber lengths and their scale factors, lT
s and slT

s for tendon slack
lengths and their scale factors, a for model activations, ares for
reserve activations, Fs for reserve actuator strength values
(which are 0.5 Nm), athres for half-range of allowable activation
variation (0.01 for muscles with associated experimental EMG
data and 0.05 for all other muscles), f for muscle forces, and M
for inverse dynamic moments. i is the muscle (44 muscles), j is
the time frame (101 frames), and k is the tracked joint moment
(six loads).
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To explore how the knowledge of knee contact forces affects
model calibration and estimated knee contact and leg muscle
forces, we formulated the outer-level cost function two ways. The
first way (henceforth called “Approach A”) introduced additional
weighted terms that minimized the sum of squares of errors in
medial and lateral knee contact forces. Experimental medial and
lateral knee contact forces were calculated from the four load cell
measurements using a validated regression relationship [23].
Model medial and lateral knee contact forces were calculated by
subtracting muscle contributions to the superior–inferior force and
varus–valgus moment from inverse dynamics and then converting
the superior–inferior contact force and varus–valgus contact
moment into an equivalent medial and lateral force via an addi-
tional validated regression relationship [23]. Since no terms
existed in the inner-level cost function that tracked medial and lat-
eral knee contact forces, close matching of these quantities by the
inner-level optimization could only occur through proper calibra-
tion of model parameter values by the outer-level optimization.
The second way (henceforth called “Approach B”) did not track
experimental knee contact forces in the outer-level cost function
and thus did not use any experimental contact force information
during the model calibration process. Both approaches used an
identical inner-level problem formulation.

2.5 Data Analysis. We evaluated how knowledge of knee
contact forces affected calibration of model parameter values and
subsequent prediction of knee contact and leg muscle forces
using several quantitative measures. These measures fell into two
categories: (1) accuracy measures for when model predictions
from both approaches could be compared to experimental data,

and (2) similarity measures for when model predictions could be
compared between the two approaches. Accuracy measures were
calculated for knee contact force predictions relative to experi-
mental data and muscle activation predictions relative to activa-
tions constructed from experimental neural commands. Similarity
measures were calculated for knee contact force predictions, mus-
cle force predictions, model parameter values, normalized muscle
length predictions, and muscle activation predictions for
Approach B relative to Approach A. Accuracy and similarity
measures included mean difference MeanD as a measure of mag-
nitude differences, the coefficient of determination R2 as a mea-
sure of magnitude and shape differences, root mean square
difference (RMSD) as a measure of magnitude differences, and
the correlation coefficient r as a measure of shape differences.
Wherever possible, measures from the two approaches were com-
pared statistically for the six gait trials using either a two-tailed
paired t-test (default) or a two-way ANOVA (measures calculated
for multiple muscles). Knee contact force measures were calcu-
lated for medial, lateral, and total forces, while leg muscle force
and activation measures were calculated for medial, central, lat-
eral, and all muscles (see Supplemental Table S.1 in the
“Supplemental Materials” for description of muscle groupings).

To determine to which types of model parameters the predicted
knee contact forces were most sensitive, we also performed two
sensitivity analyses. Each sensitivity analysis performed four
inner-level optimizations involving changes in only one of four
types of model parameters: (1) optimal fiber length and tendon
slack length scale factors, (2) moment arm deviations, (3) activa-
tion scale factors (for muscles with associated experimental EMG
data), and (4) synergy vectors (for muscles without associated
experimental EMG data). In the first sensitivity analysis, all model
parameter values were set to those from Approach A, and then,
one type at a time was changed to the values from Approach B. In
the second sensitivity analysis, the same process was followed
except all parameter values started with those from Approach B
with one type at a time changed to values from Approach A.

3 Results

3.1 Knee Contact Forces. Accuracy of predicted knee con-
tact forces relative to the experimental measurements was signifi-
cantly higher for Approach A than for Approach B (Table 1;
Fig. 2). This result was expected, since the outer-level cost func-
tion for Approach A tracked experimental contact forces during
calibration, though not guaranteed, since the inner-level cost func-
tion for Approach A did not make use of experimental contact
force information. For every quantity calculated (MeanD, R2,
RMSE, and r) for medial, lateral, and total contact force,

Table 1 Accuracy of knee contact force predictions for the two
approaches. Accuracy was quantified using mean 6 standard
deviation of MeanD, R2, RMSE, and r values for each approach
relative to the experimental measurements. Statistically signifi-
cant differences (p < 0.05) in each quantity are indicated by an
asterisk (*).

Quantity Approach Medial Lateral Total

MeanD (N) A �0.3 6 12.4* 1.3 6 20.4* 1.1 6 23.3*
B 223.6 6 45.5* 145.1 6 44.7* 368.7 6 65.7*

R2 A 0.97 6 0.01* 0.88 6 0.05* 0.96 6 0.02*
B 0.10 6 0.28* �3.43 6 1.74* �0.36 6 0.24*

RMSE (N) A 52.6 6 16.4* 56.6 6 9.5* 92.8 6 26.0*
B 322.8 6 63.9* 347.8 6 33.1* 559.9 6 32.1*

r A 0.99 6 0.01* 0.95 6 0.02* 0.98 6 0.01*
B 0.90 6 0.03* �0.10 6 0.10* 0.74 6 0.07*

Fig. 2 Experimental knee contact forces and mean knee contact force predictions for approaches A and B. The gray area cor-
responds to the mean 6 standard deviation for the experimental forces.

081001-4 / Vol. 138, AUGUST 2016 Transactions of the ASME

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1115/1.4033673


predictions from Approach A (average MeanD¼ 0.7 N, R2¼ 0.94,
RMSE¼ 67 N, and r¼ 0.97) were statistically better (p< 0.05)
than those from Approach B (average MeanD¼ 245.8 N,
R2¼�1.23, RMSE¼ 410 N, and r¼ 0.51). For Approach A, the
medial, lateral, and total contact force predictions matched the
amplitudes and shapes of the experimental forces well. For
Approach B, the medial contact force was overpredicted but main-
tained a similar shape to the experimental forces, while the lateral
contact force had peaks in the beginning of stance and swing
phases that were not present in the experimental forces. Similarity
between predicted knee contact forces from the two approaches
was low (Table 2). Mean medial, lateral, and total contact force
were statistically higher (p< 0.05) for Approach B by an average
of 245 N, the average RMSD between the two approaches was
392 N, and the average r value between approaches was 0.58, con-
sistent with the accuracy results for the two approaches.

3.2 Leg Muscle Forces. Similarity of predicted leg muscle
forces between the two approaches was also low (Fig. 3). When
muscle forces were considered on a muscle-by-muscle basis, 29
of 44 muscles exhibited statistically different (p< 0.05) mean
force values. Of the 13 muscles with the largest mean force differ-
ences (> 40 N), eight were lateral muscles (bflh, bfsh, gaslat,
glmed1, glmed2, glmed3, tfl, and vaslat). When mean force differ-
ences were analyzed for different muscle groupings, the lateral
muscles and all muscles together had statistically higher
(p< 0.05) forces for Approach B (Table 3). For the same group-
ings, the average RMSD in muscle forces was on the order of
65–85 N, while average r values were between about 0.60 and
0.70. Passive muscle forces were lower than 40 N for most
muscles in both approaches.

3.3 Model Parameter Values. Model parameter values from
the two approaches were different for some parameter types but
not others (Table 4). Optimal muscle fiber lengths for Approach B
were statistically larger (p< 0.05) by 13.0% for lateral muscles
and 8.5% for all muscles together, with 33 of 44 muscles having
larger values for Approach B. In addition, activation scale factors
for Approach B were statistically larger (p< 0.05) by 0.31 for
medial muscles and smaller by 0.05 for central muscles. Given
that activation scale factors were limited to be between 0 and 1,
between-approach variability of 0.59 for lateral muscles was high.
No other parameter types exhibited statistically significant differ-
ences between approaches when grouped according to medial,
central, lateral, and all muscles. Though tendon slack lengths
were not statistically different between the two approaches for

Table 2 Similarity of knee contact force predictions between
the two approaches. Similarity was quantified using mean and
standard deviation of MeanD, RMSD, and r values for Approach
B relative to Approach A. Statistically significant differences
(p < 0.05) in MeanD are indicated by an asterisk (*).

Quantity Medial Lateral Total

MeanD (N) 223.9 6 50.2* 143.8 6 38.8* 367.7 6 80.3*
RMSD (N) 315.2 6 60.3 330.5 6 25.7 530.5 6 30.7
r 0.91 6 0.02 0.05 6 0.04 0.79 6 0.09

Fig. 3 Muscle forces for muscles with the greatest mean differences between approaches A and B. The plotted area corre-
sponds to the mean 6 standard deviation for all six gait cycles.
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any muscle grouping (i.e., no bias), large differences still existed
for many muscles. A similar situation was found for moment arm
deviations, where large differences existed between approaches
despite the lack of any statistically significant results. However,
when differences were analyzed on a joint-by-joint basis (see Sup-
plemental Table S.7 available in “Supplemental Materials”), knee
flexion–extension moment arm deviations were statistically larger
(p< 0.05) for Approach A for medial and all muscle groupings by
an average of 10–14 mm. The only other statistically significant
difference (p< 0.05) in moment arm deviations was for hip
internal–external rotation, which was higher in Approach A only
for the all muscles grouping.

3.4 Other Relevant Quantities. Normalized muscle lengths
possessed nearly identical shapes but different mean values
between the two approaches (Table 3). Mean normalized fiber
lengths were statistically lower (p< 0.05) for Approach B by
0.045 for all muscles together, while the shapes of the normalized
fiber length curves were basically the same for the two approaches
(r¼ 1.00 for medial, central, lateral, and all muscles). The RMSD
in normalized fiber lengths between the two approaches was on
the order of 0.1 for each muscle grouping (medial, central, lateral,
and all). For both approaches, all muscles operated primarily on
the ascending regions of their normalized force–length curves
(Fig. 4) [36,37], consistent with the low amount of passive force
generated by most muscles.

Shape accuracy of predicted muscle activations relative to
experimentally derived activations was generally higher for
Approach B than for Approach A (Table 5; Fig. 5). For muscles
with associated experimental EMG data, Approach B activation
shapes were statistically closer to experimental activation shapes
(p< 0.05) for lateral and all muscle groupings, while for muscles
without associated experimental EMG data, they were statistically
closer (p< 0.05) to activation shapes constructed from experimen-
tal neural commands for medial, central, and all muscle group-
ings. Similarity between predicted muscle activations from the

two approaches was high for amplitude and moderate for shape
(Table 3). Though statistically different (p< 0.05) for lateral and
all muscle groupings, mean activation differences between the
two groups were small, always being less than 0.03. Correspond-
ing RMSD for each muscle grouping was less than 0.1. In con-
trast, mean r values between approaches ranged from 0.52 to 0.70
for the different muscle groupings.

3.5 Sensitivity Analyses. The two sensitivity analyses
revealed that medial contact force predictions were most sensitive
to moment arm deviations and activation scale factors while lat-
eral and total contact force predictions were most sensitive to opti-
mal fiber length and tendon slack length scale factors (Table 6).
These findings held whether model parameter values started from
the Approach A solution and were changed toward the Approach
B solution or vice versa. In addition, when starting from the
Approach A solution, the lateral and total contact force predic-
tions were moderately sensitive to moment arm deviations, while
starting from the Approach B solution revealed moderate sensitiv-
ity to activation scale factors. Overall, the contact force predic-
tions were not very sensitive to the synergy vectors found for
muscles without associated experimental EMG data.

4 Discussion

The goal of this study was to investigate how knowledge of
in vivo knee contact forces affects calibration of neuromusculos-
keletal model parameter values and subsequent prediction of knee
contact and leg muscle forces during walking. The prediction
method utilized a two-level synergy-based optimization that
calibrated model parameter values such that the predicted activa-
tions would be close to a linear combination of experimental neu-
ral commands and would also reproduce the experimental contact
forces [22]. The most significant result was that when experimen-
tal contact force tracking was included in the outer-level cost
function (Approach A), one set of model parameter values was
identified that allowed the inner-level static optimization to pre-
dict the medial and lateral knee contact forces with high accuracy
in terms of both magnitude (average RMSE¼ 52.6 N medial and
56.6 N lateral) and shape (average r¼ 0.99 medial and 0.95 lat-
eral). This accuracy for six gait trials was achieved despite the
lack of experimental contact force information in the inner level
and was similar to or higher than that of other published unblinded
predictions for a single gait trial [22,38]. As expected, when knee
contact force tracking was not used in the outer-level cost function
(Approach B), the contact force predictions were poorer. The
medial contact force was overpredicted (average RMSE¼ 322.8 N
and r¼ 0.90) and the lateral contact force had a significantly dif-
ferent shape (RMSE¼ 347.8 N and r¼�0.1). These results sug-
gest that use of experimental muscle synergy information to limit
the shapes of the predicted activations may not be sufficient to
obtain accurate knee contact force predictions when knee contact
force measurements are not used to calibrate the model.

Table 3 Similarity of muscle force, normalized muscle fiber length, and muscle activation predictions between the two
approaches. Similarity was quantified using mean and standard deviation of MeanD, RMSD, and r values for Approach B relative to
Approach A. Statistically significant differences (p < 0.05) in MeanD are indicated by an asterisk (*).

Quantity Medial Central Lateral All

Muscle forces MeanD (N) �3.1 6 34.9 13.9 6 39.2 24.4 6 70.6* 9.6 6 51.8*
RMSD (N) 64.5 6 51.5 86.7 6 55.0 79.8 6 77.8 73.6 6 62.05

r 0.71 6 0.26 0.63 6 0.17 0.59 6 0.34 0.66 6 0.28

Fiber lengths MeanD �0.031 6 0.109* �0.047 6 0.152* �0.063 6 0.165* �0.045 6 0.136*
RMSD 0.075 6 0.084 0.125 6 0.088 0.128 6 0.120 0.102 6 0.100

r 1 6 0.00 1 6 0.00 1 6 0.00 1 6 0.00

Muscle activations MeanD �0.000 6 0.056 0.004 6 0.050 0.021 6 0.078* 0.009 6 0.064*
RMSD 0.08 6 0.05 0.09 6 0.06 0.09 6 0.07 0.09 6 0.06

r 0.70 6 0.26 0.67 6 0.21 0.52 6 0.45 0.63 6 0.34

Table 4 Similarity of model parameter values between the two
approaches. Similarity was quantified using the mean and
standard deviation of values for Approach B relative to
Approach A. Similarities are reported as percent differences for
optimal muscle fiber lengths lM

0 and tendon slack lengths lT
s

and as absolute differences for activation scale factors sa and
moment arm deviations madev. Statistically significant differen-
ces (p < 0.05) in each quantity are indicated by an asterisk (*).

Quantity Medial Central Lateral All

lM
o (%) 4.90 6 12.78 9.23 6 17.81 13.00 6 15.49* 8.54 6 14.76*

lT
s (%) 1.41 6 11.00 �1.47 6 4.80 �0.86 6 11.59 0.13 6 10.39

sa 0.31 6 0.25* �0.05 6 0.01* �0.07 6 0.59 0.12 6 0.43
madev (mm) �1.9 6 10.1 �1.9 6 14.1 �0.7 6 9.3 �1.5 6 10.4
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Furthermore, they suggest that poorly calibrated model parameter
values may be a major factor limiting the ability of neuromuscu-
loskeletal models to predict knee contact (and by implication, leg
muscle) forces accurately for walking.

While one could argue that Approach A matched the knee con-
tact forces by design, there was no guarantee that a single set of
model parameter values could reproduce the experimental medial
and lateral knee contact forces accurately for multiple gait trials
[39]. The most obvious way of creating a model that can match
the experimental knee contact forces is to develop a single-level
optimization problem that calibrates model parameter values
while also matching the knee contact forces in the cost function
[22]. However, such an approach does not guarantee that the opti-
mization will predict the correct knee contact forces when they
are not tracked in the cost function. In fact, if the knee contact

forces are removed from the cost function, it is likely that they
will not be matched closely. In contrast, our two-level problem
sought to identify a single set of model parameter values that
allowed the inner-level optimization to predict knee contact forces
well even though they were not included in the inner-level cost
function (i.e., a true prediction). The fact that our two-level opti-
mization was able to identify one such set of model parameter val-
ues does not guarantee that we found the correct parameter values
or the correct inner-level cost function, but it does demonstrate
that our existing model structure and inner-level cost function are
at least capable of predicting knee contact forces accurately for
multiple gait cycles, which was not known before performing this
study. It also demonstrates how critical the calibration of model
parameter values is for developing accurate predictions of knee
contact forces—and by implication leg muscle forces, since

Fig. 4 Normalized muscle fiber lengths for muscles with the greatest differences in mean muscle forces between approaches
A and B. The plotted area corresponds to the mean 6 1 standard deviation for all six gait cycles.

Table 5 Accuracy of muscle activation predictions for the two approaches for the 16 muscles with associated experimental EMG
data (top rows) and the 28 muscles without associated experimental EMG data (bottom rows). Accuracy was quantified using
mean 6 standard deviation of r values for each approach relative to activations constructed from experimental neural commands.
Statistically significant differences (p < 0.05) in each quantity are indicated by an asterisk (*).

Muscles Approach Medial Central Lateral All

With EMG data A 0.37 6 0.24 0.55 6 0.32 0.28 6 0.50* 0.36 6 0.35*
B 0.43 6 0.25 0.57 6 0.33 0.44 6 0.61* 0.45 6 0.40*

Without EMG data A 0.42 6 0.33* 0.47 6 0.14* 0.64 6 0.31 0.51 6 0.31*
B 0.57 6 0.31* 0.71 6 0.17* 0.56 6 0.45 0.59 6 0.34*
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muscle forces are the primary determinants of joint contact forces
[40].

A unique aspect of this study was calibration of subject-specific
neural control parameter values. The typical approach for calibrat-
ing musculoskeletal model parameter values is to start with a
generic model and then scale it to match the physical dimensions
of the subject being studied. Muscle-tendon and muscle moment
arm parameter values are scaled automatically based on the
required scaling of the skeletal model. Most musculoskeletal mod-
els do not calibrate any neural control model parameter values to
account for the unique way that a particular subject activates his
or her muscles during the tasks being simulated. In our study, con-
struction of activations from experimental neural commands using
unknown activation scale factors and synergy vector weights pro-
vided a form of neural control model calibration. Nonetheless, use
of subject-specific neural commands alone was insufficient to pro-
duce accurate knee contact force predictions, despite contrary
results in a previous study [22]. However, that study used a differ-
ent optimization formulation, different design variables, and data
from a different instrumented knee subject. Further research is
therefore needed to determine whether use of subject-specific neu-
ral commands to limit activation shapes can help improve knee
contact force predictions.

Observed differences in predicted knee contact and leg muscle
forces between the two approaches were due to differences in
calibrated model parameter values. The use of knee contact force
information for calibration led to different muscle moment arms,
especially for knee flexion and hip rotation moments, with
moment arms being lower in Approach B. Optimal muscle fiber

lengths for lateral muscles were statistically higher when no con-
tact forces were used during calibration. Scale factors of muscle
activations for muscles with associated experimental EMG data
also had differences between approaches. These observations sug-
gest that improved model calibration methods are needed if knee
contact and leg muscle forces are to be predicted accurately for
individual subjects.

Differences in predicted leg muscle forces between the two opti-
mization approaches can also be viewed from the perspective of
muscle force changes needed to match the experimental knee con-
tact forces. The largest differences in predicted knee contact forces
occurred at three points in the gait cycle (13%, 43%, and 71%, Fig.
2), and these differences can be traced back to changes in how the
individual muscles contributed to knee contact forces (see Supple-
mental Fig. S.5 in the “Supplemental Materials”). For medial knee
contact force, vasmed was primarily responsible for changes in the
first peak near 17% and gasmed for changes in the second peak
near 43%. For lateral knee contact force, bflh and vaslat were the
main contributors to changes in the first peak, bflh, bfsh, gaslat, and
tfl to changes in the second peak, and vaslat and vasmed to changes
at the third location. For total contact force, bfsh, rf, semimem, and
vaslat were mainly responsible for changes in the first peak, bfsh,
gasmed, and tfl for changes in the second peak, and vaslat and
vasmed for changes at the third location. In most cases, Approach
A caused muscles to have a smaller contribution to knee contact
forces except for bflh, gaslat, and tfl at the second peak.

Because six of the nine muscles noted above are biarticular
(bflh, gasmed, gaslat, tfl, rf, and semimem), changes in the forces
produced by these muscles had a “domino effect” on the muscle

Fig. 5 Activations reconstructed from synergy components (activationSyn in solid lines) and model activations (activation in
dashed lines) for muscles with associated experimental EMG data in one representative gait cycle. Asterisks (*) indicate statis-
tically different r values between approaches A and B.
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forces produced by uniarticular muscles acting at the hip and
ankle joints. For example, as shown in Supplemental Fig. S.4
(available in the “Supplemental Materials”), uniarticular hip
flexor muscles pect and psoas had very different muscle forces
between the two approaches, as did uniarticular hip extensor
muscles glmax1 and glmed3. Forces in these uniarticular hip
muscles had to change between the two approaches to balance the
different forces produced by biarticular hip–knee muscles tfl, bflh,
rf, and semimem.

The main differences between approaches came from muscle
activations and forces for lateral muscles. Of the 13 muscles
with greatest differences in tendon forces, eight of them were
from the lateral side. It is possible that the use of alternate
motion patterns (especially ones that preferentially excite lateral
muscles) in the calibration process could improve the similarity
of calibrated model parameter values. We would hypothesize
that activities requiring large hip adduction and subtalar
moments would improve calibration of parameter values for lat-
eral muscles.

Comparing our results with those of other studies, we observed
that the muscle forces obtained from Approaches A and B (see
Supplemental Fig. S.4 in the “Supplemental Materials”) were gen-
erally within the ranges reported by others. Gaslat, gasmed, sart,
and sol forces had magnitudes and shapes similar to those in other
studies [41–44]. Hamstrings (bflh, bfsh, semimem, and semiten)
force, which is usually reported for all heads combined, was also
generally within previously reported ranges [42–48]. In contrast,
the vastus force, which is also usually reported for all heads to-
gether [42,44,48], was negligible for vaslat in Approach A, which
is not in agreement with other studies [46]. This finding may sug-
gest incorrect force sharing between tfl and vaslat.

The sensitivity analysis revealed which model parameters had
the greatest influence on medial and lateral knee contact force

predictions. For medial contact force, EMG scale factors for
muscles with associated experimental EMG data and moment arm
deviations had the greatest influence. The latter were dependent
on other model parameter values, as suggested by the fact that
when starting from the solution of Approach B and using moment
arm deviations from Approach A, medial knee contact force pre-
dictions got worse. For lateral and total knee contact force, scale
factors for optimal muscle fiber lengths and tendon slack lengths
had the greatest influence. These results are in agreement with
Ref. [49]. Thus, future research should focus on improving the
calibration of these parameters when knee contact force data are
not used during the calibration process [50,51].

The most important limitations of this study involved the use
of data from only a single elderly subject and for only normal
walking trials. Since knee contact forces cannot currently be
measured in vivo from young subjects with healthy knees, it is
unknown how the measured knee contact forces and estimated leg
muscle forces would differ for younger healthy individuals. Anal-
ysis of additional instrumented knee subjects performing a wider
variety of tasks, especially those involving lateral muscles, would
be valuable for evaluating the two-level optimization formulation
more broadly. Possible additional movement tasks worth analyz-
ing include crouch gait, trunk sway gait, and one-legged squats.
Future work could also investigate whether identification of addi-
tional physiological constraints could improve knee contact force
predictions when no contact force data are used during calibration.
For example, use of fewer neural commands could lead to a
decrease in the amount of indeterminacy in muscle activation
predictions.

Another limitation involved omission of knee ligaments (espe-
cially the collaterals) from the model. To investigate whether liga-
ment contributions to knee contact forces may have affected our
muscle force predictions, we examined the medial and lateral
knee contact forces measured during a passive knee motion trial
performed by the subject on a Biodex isokinetic dynamometer
(Biodex Medical Systems, Shirley, NY). The selected trial cov-
ered a 0–60 deg flexion arc with only minimal knee muscle EMG
activity. Medial contact force was approximately constant at
100 N over the range of motion, while lateral contact force was
near 100 N at full extension and quickly dropped to almost 0 N as
the knee flexed. Near full extension, passive hamstring muscle
force likely contributes to knee contact forces, and during stance
phase, ligaments will be less strained since the knee is com-
pressed. Thus, during stance phase, we estimate that ligaments
contribute roughly 50 N of contact force on the medial and lateral
sides, and during swing phase, roughly 100 N on the medial side
and close to 0 N on the lateral side. Consequently, omission of lig-
aments from the model may have had a small effect during swing
phase on muscles that contributed significantly to medial contact
force. It would be valuable for future studies to perform a detailed
investigation of how knee ligament forces contribute knee contact
forces.

A key limitation of our two-level optimization approach is that
accurate prediction of knee contact forces requires knowledge of
the quantities being predicted. Ideally, we would like to identify
an outer-level cost function where knowledge of experimental
knee contact forces is not required to find model parameter values
that allow the inner-level optimization to predict knee contact
forces accurately. When the experimental contact forces were not
tracked in the outer-level, the medial and lateral knee contact
forces predicted by the inner-level optimization were generally
too large. This observation suggests that the minimization, track-
ing, and bounding terms used in our current out-level cost func-
tion are not adequate to produce well-calibrated model parameter
values, and that further research will be needed to identify an
appropriate outer-level cost function. Furthermore, there is no
guarantee that the inner-level cost function is physiologically cor-
rect, as the ability to predict knee contact forces accurately for six
gait trials using a single calibrated model is a necessary but not
sufficient requirement.

Table 6 Sensitivity of knee contact force predictions to
changes in each type of model parameter values, starting from
the Approach A solution (top) and the Approach B solution
(bottom). Only one type of parameter was changed at a time,
keeping all other types at the values from the original approach.
Highlighted rows in gray contain original results obtained from
Approach A (top) and Approach B (bottom). Numbers high-
lighted in bold indicate largest changes from original approach.

Starting from approach A Quantity Medial Lateral Total

Original approach A solution R2 0.97 0.88 0.96
RMSE 52.62 56.63 92.80

Changed lMo and lT
s scale factors R2 0.84 �1.02 0.44

RMSE 136.45 239.47 358.78

Changed moment arm deviations R2 0.61 -0.19 0.78
RMSE 209.48 170.52 222.50

Changed activation scale factors R2 0.65 0.09 0.86
RMSE 201.15 156.03 174.70

Changed SV weights R2 0.94 0.78 0.91
RMSE 84.13 76.53 132.77

Starting from approach B Quantity Medial Lateral Total

Original approach B solution R2 0.10 �3.43 �0.36
RMSE 322.73 347.78 559.95

Changed lMo and lT
s scale factors R2 0.38 20.33 0.41

RMSE 260.80 189.92 362.62

Changed moment arm deviations R2 20.46 �1.78 �0.08
RMSE 413.12 283.15 499.97

Changed activation scale factors R2 0.53 �1.53 0.20
RMSE 232.28 267.10 430.10

Changed SV weights R2 0.45 �3.87 �0.10
RMSE 255.20 363.38 503.18
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In conclusion, this study demonstrated that a single set of well-
calibrated muscle-tendon, moment arm, and neural control model
parameter values was capable of predicting medial and lateral
knee contact forces accurately over six walking trials using a
standard static optimization approach with slight modifications.
However, when knee contact force measurements were not avail-
able to the calibration process, use of experimental synergy infor-
mation alone to limit muscle activations was insufficient to
achieve accurate contact force predictions, especially for the lat-
eral compartment. Given the importance of using a properly cali-
brated model when predicting knee contact (and by implication,
leg muscle) forces for movement tasks performed by a specific
subject, future work should explore finding improved methods for
calibrating muscle-tendon, moment arm, and neural control model
parameter values uniquely and accurately for individual subjects.
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