
 

 

 

Abstract— A multivariable control strategy based on model 

predictive control techniques for the control of variable 

speed variable pitch wind turbines is proposed. The 

proposed control strategy is described for the whole 

operating region of the wind turbine (both partial and full 

load regimes). Pitch angle and generator torque are 

controlled simultaneously to maximize energy capture, 

mitigate drive train transient loads and smooth the power 

generated while reducing the pitch actuator activity. This 

has the effect of improving the efficiency and the power 

quality of the electrical power generated, and of increasing 

the life time of the system’s mechanical parts. Furthermore, 

safe and acceptable operation of the system is guaranteed by 

incorporating most of the constraints on the physical 

variables of the WECS in the controller design. In order to 

cope with nonlinearities in the WECS and continuous 

variations in the operating point, a multiple model predictive 

controller is suggested which provides near optimal 

performance throughout the whole operating region. 

  

I. INTRODUCTION 

ONTROL systems play a very important role in 

modern Wind Energy Conversion Systems (WECSs). A 

well designed WECS control system enables more efficient 

energy generation, better power quality and the alleviation of 

aerodynamic and mechanical loads resulting in increased life 

of the installation. Consequently, such a control system will 

have a direct impact on the cost of energy produced [1]-[3].  

In general, a variable speed variable pitch WECS has two 

operating regions with different control objectives, as shown 

in Fig. 1 [1]. The partial load regime includes all wind 

speeds between the cut in wind speed, 𝑣𝑐𝑖 , and the rated 

wind speed, 𝑣𝑟  (wind speed at which the system rated power 

is achieved). In this region, the control system is required to 

adjust the turbine rotor speed, 𝜔𝑡 , such that maximum 

energy is extracted. When the wind speed is above 𝑣𝑟  and 

below the cut out wind speed, 𝑣𝑐𝑜 ,  the wind turbine is 

operating in the full load regime. In this region the control 

system is required to regulate both the output power and the 
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generator (turbine) speed to their rated values.  

Design of WECS control systems is not a straight forward 

task. One of the main reasons for this is that the controlled 

system is a multiple-input multiple-output (MIMO) system 

with strongly coupled variables. Furthermore, the system 

non-linearity, the stochastic variations of the input power 

and the presence of physical constraints on the system 

variables render the control design task more difficult.  

 

 
Fig. 1. Ideal Power curve for a WECS. 

The literature of WECS control system design is vast. 

Most of the papers focus on designing the control system in 

either the partial load regime or the full load regime.  

Many control techniques were proposed to control the 

WECS in the partial load regime [1], [4]-[8].The design of 

the classical Proportional Integral (PI) controller is described 

in [4] and [8]. To cope with the system non-linearity, it is 

proposed in [5] and [6] to use a gain-scheduling Linear 

Quadratic Gaussian (LQG) controller.  In [1] and [7], a gain 

scheduled H∞ controller is suggested. 

Recently, many papers focusing in the control of variable 

speed variable pitch WECSs operating in the full load 

regime have appeared [8]-[10]. Most of the work reported 

ignores the multivariable nature of the problem [8]-[9]. 

Classical PI controllers are used in [8]. A PI controller in the 

power loop and an adaptive self-tuning regulator in the 

speed loop are proposed in [9]. A multivariable gain 

scheduled H∞ controller is proposed in [10].  

The presence of two control regions with different control 

goals and control structures requires the ability to switch 

between these controllers. This topic has been considered in 
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several recent studies indicating that when wind speed 

fluctuates around its rated value, undesirable drive train 

transient loads and electric power overshoots can occur [1].  

This paper is motivated by the lack of papers considering 

the design of an overall control strategy that can work for 

both partial and full load regimes. Furthermore, as discussed 

in [1], [10]-[11], recognizing the multivariable nature of the 

problem and designing a MIMO controller will lead to much 

superior performance as compared to the decentralized 

approach commonly used in the literature.  To the 

knowledge of the authors, the only work that describes the 

design of a multivariable controller that can work for both 

partial and full load regimes is found in [1],[12], where a 

multivariable gain scheduled H∞ controller is proposed.  

In this paper, a new control strategy based on Model 

Predictive Control (MPC) techniques is proposed for 

controlling variable speed variable pitch WECSs in both 

partial and full load regimes. The main advantage of the 

proposed strategy is that it is a multivariable control method 

that effectively uses the full capability of the controlled 

system to obtain the desired performance in the whole 

operating region of the WECS, while keeping the system 

variables within safe operating limits. 

II. MODELING OF WECS 

A model of the entire WECS can be structured as several 

interconnected subsystems as shown in  Fig. 2 [1]. Details of 

individual blocks are given in Appendix A [1]-[3] and [9]. 
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 Fig. 2. WECS model. 

A. Linearized WECS model 

The overall WECS model described in (A.1)-(A.10) is 

nonlinear. Linearizing the turbine torque equation in (A.4) 

yields (1)-(2).  

𝛿𝑇𝑡 = 𝐿ω 𝜔 𝑡 , 𝑣, 𝛽  𝛿𝜔𝑡 + 𝐿𝑣 𝜔 𝑡 , 𝑣, 𝛽  𝛿𝑣 +

 𝐿𝛽 𝜔 𝑡 , 𝑣, 𝛽  𝛿𝛽                            
  (1) 

 

𝐿ω 𝜔 𝑡 , 𝑣, 𝛽 =  𝜕𝑇𝑡

𝜕ω𝑡
 
 𝜔 𝑡 ,𝑣,𝛽 

𝐿𝑣 𝜔 𝑡 , 𝑣, 𝛽 =  𝜕𝑇𝑡

𝜕𝑣
 
 𝜔 𝑡 ,𝑣,𝛽 

𝐿𝛽 𝜔 𝑡 , 𝑣, 𝛽 =  𝜕𝑇𝑡

𝜕𝛽
 
 𝜔 𝑡 ,𝑣,𝛽  

 
 

 
 

  (2) 

The symbol 𝛿 is used to represent the deviation of the 

variable from its operating point value while the over bar in 

•  denotes the value of the variable at the operating point. 

The WECS operating point is completely defined by 𝑣 [1]. 

Now the lineaized state space representation of the 

WECS, (A.1)-(A.10), can be written as (3)-(5) where 

𝒙 ≝  𝛿𝜔𝑡 𝛿𝜔𝑔 𝛿𝑇𝑡𝑤 𝛿𝑇𝑔 𝛿𝛽 𝑇 ∈ ℝ5 is the state 

vector, 𝒖 ≝  𝛿𝑇𝑔
∗ 𝛿𝛽∗ 𝑇 ∈ ℝ2 is the control input and 

𝒚 ≝  𝛿𝜔𝑔 𝛿𝑃𝑔 𝑇 ∈ ℝ2 is the measured output. The 

symbols 𝑇𝑔 , 𝑇𝑡𝑤 , 𝜔𝑡 , 𝜔𝑔 , 𝛽 and 𝑃𝑔  denote the generator 

torque, the drive train torsional torque, the turbine speed, the 

generator speed, the pitch angle and the generator power, 

respectively. 

𝒙 (𝑡) = 𝑨 𝒙(𝑡) + 𝑩 𝒖𝒖(𝑡) + 𝑩 𝒗𝛿𝑣(𝑡)

𝒚 𝑡 = 𝑪 𝒙 𝑡                                         
  (3) 

𝑨 =
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,𝑪 =  
0 1 0 0 0
0 𝑇 𝑔 0 𝜔 𝑔 0  (5) 

It can be seen that the system is MIMO and that the 

system dynamics vary when the average wind speed varies. 

III. CONTROL PROBLEM DESCRIPTION 

There are two operating zones with different control 

objectives - the partial and the full load regimes. 

In the partial load regime, the primary objective is to 

control the turbine rotor speed to maximize the wind 

turbine's aerodynamic efficiency. This is achieved by 

manipulating the generator torque set point and fixing the 

pitch angle at its optimal value (usually very close to zero). 

The main control challenge is to design a controller that can 

maximize the energy conversion efficiency while 

minimizing transient loads on the drive train [5].  

In the full load regime, the main control objective is to 

regulate both the generator power, 𝑃𝑔 , and the generator 

speed, 𝜔𝑔 , at their rated values 𝑃𝑔 ,𝑟𝑎𝑡  and 𝜔𝑔 ,𝑟𝑎𝑡 , 

respectively, by manipulating the generator torque set point 

𝑇𝑔
∗ and the pitch angle set point 𝛽∗.  

One of the main challenges for designing WECS control 

systems in the full load regime is the presence of severe 

fluctuations in the input turbine power, 𝑃𝑡 , caused by erratic 

variations in the wind speed. Fluctuations in 𝑃𝑡  can lead to 

large variations in the drive train torsional torque, 𝑇𝑡𝑤 , and 

in the electric power supplied to the grid. These, in turn, can 

cause reduction in the life time of the WECS components 

and voltage flicker problems [8]-[9].  
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A common challenge in both partial and full load regimes 

is the presence of nonlinearity in the system dynamics and 

the continuous variation of the operating point.  

It is clear that there are many design aspects that must be 

considered in the design of an effective control system for 

WECSs. The most important ones are summarized below. 

 Maximizing the energy capture. 

 Smoothing the electrical power supplied to the system 

in the full load regime. 

 Minimizing transient loads on the drive train and the 

control activity of the pitch actuator system. 

 Ensuring good performance of the closed loop system 

over the whole operating range of the WECS. 

 Keeping system variables within acceptable limits. 

The last aspect is explained as follows. For WECSs, there 

are some physical actuator limits such as the ones the 

amplitude and speed of the pitch servos. Ignoring such 

constraints during the controller design can lead to 

performance degradation [13]. Furthermore, due to safety 

and operational issues, there are maximum limits on the 

generated power and the turbine speed that must be 

maintained during operation. A violation of these limits 

during system operation can cause WECS disconnection.  

IV. CLASSICAL WECS CONTROL STRATEGY 

This section describes a control strategy that is commonly 

used in commercial WECSs [12]. The objective is to explain 

the shortcomings of this classical strategy and the motivation 

for the proposed control strategy described in Section V. 

The classical controller is shown in Fig. 3. The main part 

of the controller is a set of two PI controllers for tracking of 

the generator speed. In partial load operation, the pitch angle 

set point 𝛽∗ is fixed at zero and the generator torque set 

point 𝑇𝑔
∗ is manipulated by a PI controller so that the 

generator speed 𝜔𝑔  tracks the desired generator speed set 

point 𝜔𝑔
∗ . In the full load regime, the generator torque set 

point is fixed at its rated value 𝑇𝑔 ,𝑟𝑎𝑡 , while the pitch angle 

set point is used as control signal to regulate the generator 

speed at its rated value. Using this approach, the power is 

indirectly regulated at its rated value. Generally, these PI 

controllers are gain scheduled, in order to take into account 

the variations in the aerodynamics. Furthermore, a bumpless 

switching between the partial and the full load control 

configurations is implemented. 

The main shortcomings of this classical strategy are 

explained as follows. In the partial load regime, the main 

criticism for this approach is that the controller design does 

not allow a fine tuning of the trade-off between the energy 

performance and the reliability demands in terms of transient 

loads in the drive train [2]. Furthermore, when the system is 

operating near the rated wind speed, the partial load control 

structure focuses on controlling the generator speed only 

irrespective of the generator power. Due to wind speed 

fluctuations, significant power and drive train torsional 

torque overshoots can occur [1]. Finally, in the full load 

regime, using the pitch actuator alone to regulate the 

generator speed can cause large pitch activity and severe 

power fluctuations. This in turns reduces the life time of the 

equipments and deteriorates the power quality produced. 
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Fig. 3. Classical control strategy using two PI controllers. 

V. PROPOSED CONTROL STRATEGY 

The proposed control strategy based on Multiple Model 

Predictive Control (MMPC) is described below. 

A. Review of Model Predictive control 

Model-based predictive control (MPC) has been 

successfully used in many industrial applications in recent 

decades for many reasons such as [13]- [16]:  

 MPC is very suitable for MIMO control problems.  

 MPC algorithms can directly take into account 

constraints on the system variables.  

 MPC is based on optimal control techniques. In fact, 

under some conditions, the MPC controller coincides 

with the famous LQG controller. 

The main drawback of using MPC controllers is the 

requirement to solve a quadratic programming (QP) problem 

on line. This has restricted the use of MPC to applications 

with slow dynamics. However, due to the advances in 

computational power and in optimization algorithms, MPC 

can be used now for systems with fast dynamics [15]. 

B. Multiple Model Predictive Control (MMPC) for 

variable speed variable pitch WECSs 

The use of linear model predictive control with a non-

linear plant, such as the one considered in Section II, in 

which the operating point is continuously changing can lead 

to degradation in the closed loop performance [13]. There 

has been extensive research effort to extend the applicability 

of MPC to non-linear systems [17]. One of the most straight 

forward approaches is to use MMPC [18]. In the MMPC 

approach, the whole operating region is divided into 𝑀 sub-

regions with 𝑀 linearized models that adequately represent 

the local system dynamics within each sub-region. A linear 

MPC controller based on each model is designed. Finally, a 

criterion by which the control system switches one controller 

to another as operating conditions change is defined.  

The proposed WECS control strategy MMPC is shown 

Fig. 4. The main components of the MMPC controller are 

the prediction model bank, the optimization problem and the 

state estimator [13], [16]. Details of these selections for the 
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case of variable speed variable pitch WECS are given below. 
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Fig. 4. Proposed control strategy using MMPC. 

1) Prediction model bank 

A model bank (6), consisting of 𝑀 linearized models that 

represent the WECS dynamics in the whole operating region 

shown Fig. 1 must be available. 

𝒙𝑖(𝑘 + 1) = 𝑨𝑖𝒙𝑖(𝑘) + 𝑩𝒖
𝑖 𝒖(𝑘) + 𝑩𝒅

𝑖 𝒅𝒊(𝑘)

𝒚𝑖 𝑘 = 𝑪𝑖𝒙𝑖 𝑘 + 𝑫𝒅
𝑖 𝒅𝑖 𝑘                            

, 𝑖 = 1, …𝑀  (6) 

For the case of the WECS, 𝒖(𝑘), 𝒙𝑖(𝑘) and 𝒚𝑖(𝑘) of 

model 𝑖 in (6) at the sampling instant 𝑘 are defined in (7). 

𝒙𝑖(𝑘) ≝  𝛿𝜔𝑡
𝑖 (𝑘) 𝛿𝜔𝑔

𝑖 (𝑘) 𝛿𝑇𝑡𝑤
𝑖 (𝑘) 𝛿𝑇𝑔

𝑖(𝑘) 𝛿𝛽𝑖(𝑘) 
𝑇

𝒖 𝑘 ≝  𝛿𝑇𝑔
∗ 𝑘 𝛿𝛽∗ 𝑘  𝑇                                                         

𝒚𝑖(𝑘) ≝  𝛿𝜔𝑔
𝑖  𝑘 𝛿𝑃𝑔

𝑖 𝑘  
𝑇

                                                      

 

 (7) 

The fictitious unmeasured disturbance 𝒅𝑖(𝑘) ∈ ℝ𝑛𝑑  is 

used to represent the effect of actual unmeasured 

disturbances on the plant and it is modeled using (8). 

𝒙𝒅
𝑖 (𝑘 + 1) = 𝑨 𝑖𝒙𝒅

𝑖 (𝑘) + 𝑩 𝑖𝑛𝑑(𝑘)

𝒅𝑖 𝑘 = 𝑪 𝑖𝒙𝒅
𝑖  𝑘 + 𝑫 𝑖𝑛𝑑 𝑘           

  (8) 

It is assumed that 𝑛𝑑(𝑘) is zero mean white noise.  

The matrices 𝑨𝑖 , 𝑩𝒖
𝑖  and 𝑪𝑖  in (6) with sampling period, 

𝑇𝑠, can be obtained by discretizing the linearized continuous 

plant model in (3) at different operating wind speeds, 𝑣
𝑖
.  

Combining (6) and (8), the augmented prediction model 

bank used in the MPC formulation is given by: 

 
𝒙𝑖(𝑘 + 1)

𝒙𝒅
𝑖 (𝑘 + 1)

 =  
𝑨𝒊 𝑩𝒅

𝑖 𝑪 𝒊

𝟎 𝑨 𝒊
  

𝒙𝑖(𝑘)

𝒙𝒅
𝑖 (𝑘)

 +  𝑩𝒖
𝑖

𝟎
 𝒖(𝑘)

𝒚𝑖 𝑘 =  𝑪𝑖 𝑫𝒅
𝑖 𝑪 𝑖  

𝒙𝑖(𝑘)

𝒙𝒅
𝑖 (𝑘)

                          

  (9) 

2) Optimization problem 

Assuming knowledge of the estimates of the plant states 

𝒙 𝒊 𝑘 𝑘  and disturbance states 𝒙 𝒅
𝒊  𝑘 𝑘  given the data up to 

time 𝑘, the MPC solves the quadratic program in (10)-(13). 

min
∀ Δ𝑇𝑔

∗ 𝑘+𝑗  ,Δ𝛽∗ 𝑘+𝑗  

𝑗 =0,1,…,𝑁𝑐−1

 
  
 

  
 

 𝑞1
𝑖  𝑒1

𝑖 
2

+

𝑗 =𝑁𝑝

𝑗 =1

𝑞2
𝑖  𝑒2

𝑖  
2

 
𝑟1

𝑖Δ𝑇𝑔
∗2 𝑘 + 𝑗 + 𝑟2

𝑖Δ𝛽∗2 𝑘 + 𝑗 

+𝑟3
𝑖𝛽∗2 𝑘 + 𝑗 

𝑗 =𝑁𝑐−1

𝑗 =0  
  
 

  
 

 

  (10) 

Subject to: 

   Prediction model equations in (9)  (11) 

   𝒙𝑖 𝑘 = 𝒙 𝑖 𝑘 𝑘 , 𝒙𝒅
𝑖  𝑘 = 𝒙 𝒅

𝑖  𝑘 𝑘   (12) 

   Δ𝛽𝑚𝑖𝑛 ≤ Δ𝛽∗ 𝑘 + 𝑗 ≤ Δ𝛽𝑚𝑎𝑥 , 𝑗 = 1, 2, … , 𝑁𝑐   (13-a) 

   𝛽𝑚𝑖𝑛 ≤ 𝛽∗ 𝑘 + 𝑗 ≤ 𝛽𝑚𝑎𝑥 , 𝑗 = 1, 2, … , 𝑁𝑐   (13-b) 

   0 ≤ 𝑇𝑔
∗ ≤ 𝑇𝑔,𝑚𝑎𝑥 , 𝑗 = 1, 2, … , 𝑁𝑐   (13-c) 

   𝜔𝑔
𝑖  𝑘 + 𝑗 ≤ 𝜔𝑔 ,𝑚𝑎𝑥  , 𝑗 = 1, 2, … , 𝑁𝑝   (13-d) 

   𝑃𝑔
𝑖 𝑘 + 𝑗 ≤ 𝑃𝑔 ,𝑚𝑎𝑥  , 𝑗 = 1, 2, … , 𝑁𝑝   (13-e) 

Here, 𝑒1
𝑖 ≝ 𝑃𝑔

∗ 𝑘 + 𝑗 − 𝑃𝑔
𝑖 𝑘 + 𝑗 , 𝑒2

𝑖 ≝ 𝜔𝑔
∗ 𝑘 + 𝑗 −

𝜔𝑔
𝑖  𝑘 + 𝑗 , •𝑚𝑎𝑥 (•𝑚𝑖𝑛 ) is used to denote the maximum 

(minimum) dynamical limit of •. The limits 𝑇𝑔,𝑚𝑎𝑥 , 𝜔𝑔,𝑚𝑎𝑥  

and 𝑃𝑔 ,𝑚𝑎𝑥   are ususally higher than the rated generator 

torque, speed and power, respectively. The pitch angle set 

point control move, Δ𝛽∗ 𝑘 , is defined as 𝛽∗ 𝑘 −

𝛽∗ 𝑘 − 1 . Knowing 𝑇𝑠 and the actual pitch rate limits, 𝛽 
𝑚𝑎𝑥  

and  𝛽 
𝑚𝑖𝑛 , the limits Δ𝛽𝑚𝑎𝑥  and Δ𝛽𝑚𝑖𝑛  can be calculated. 

3) State estimation 

In this paper, the state estimates are computed using an 

observer bank consisting of 𝑀 state observers in (14)-(15). 

 
𝒙 𝑖 𝑘 𝑘 

𝒙 𝒅
𝑖  𝑘 𝑘 

 =  
𝒙 𝑖 𝑘 𝑘 − 1 

𝒙 𝒅
𝑖  𝑘 𝑘 − 1 

 +  

                      𝑲𝑖  𝒚 𝑘 − (𝑪𝒊 + 𝑫𝒅
𝒊 𝑪 𝒊)𝒙 𝑖 𝑘 𝑘 − 1     (14) 

 
𝒙 𝑖 𝑘 + 1 𝑘 

𝒙 𝒅
𝑖  𝑘 + 1 𝑘 

 =  
𝑨𝒊 𝑩𝒅

𝒊 𝑪 𝒊

𝟎 𝑨 𝒊
  

𝒙 𝑖 𝑘 𝑘 

𝒙 𝒅
𝑖  𝑘 𝑘 

 +  𝑩𝒖
𝑖

𝟎
 𝒖(𝑘) 

 (15) 

The gain, 𝑲𝑖 , is designed using Kalman filtering 

techniques [16] based on model 𝑖 in (9). 

4) Bumpless switching between different MPC 

controllers 

At any sampling instant, only one QP in (10)-(13) based 

on one of the 𝑀 models of the model bank (6) is solved. 

However, all 𝑀 estimators in the estimator bank 

continuously receive the current control signal and measured 

signals and update their internal state estimates. 

Consequently, the internal states of all estimators are kept up 

to date, thus reducing the transients in the state estimation 

when a new MPC controller becomes active.  

Switching between different MPCs is based on the value 

of a scheduling signal as shown in Fig. 4. In the case of the 

WECS, the scheduling signal can be the generator speed and 

pitch angle or an average wind speed estimate [10], [12]. 

Due to wind speed fluctuations, it is important to ensure 

bumpless switching between different MPC controllers. This 

is ensured since the MMPC algorithm calculates the control 

increments, Δ𝛽∗(𝑘) and Δ𝑇𝑔
∗(𝑘), and by continuously 

updating all estimators in the estimator bank. 

C. MMPC tuning for variable speed variable pitch 

WECSs 

1) MMPC Weight selection 

In this paper the whole operating region (𝑣𝑐𝑖 ≤ 𝑣 ≤ 𝑣𝑐𝑜 ), 

with  𝑣𝑐𝑖   and 𝑣𝑐𝑜  given in Appendix B, will be partitioned 

into six operating sub-regions defined in Table I. For each of 

these sub-regions, a linearized model (3) at 𝑣
𝑖
 given in Table 
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I is assumed to be available. Using these models, six MPC 

controllers are designed. 
TABLE I 

MMPC SUB-REGIONS AND CONTROLLER DATA 

Sub-

region, 

i 

Speed 

range (m/s) 
𝑣

𝑖
 

(m/s) 

Weights 

1 4-9 6.5 q1 = 0, q2 = 1, r1 = 1,  

r2 = 1000, r3 = 1000 

2 9-11 10 q1 = 0, q2 = 2, r1 = 1, 

 r2 = 0.01, r3 = 0.15 

3 11-14 12.5 q1 = 50, q2 = 20, 

 r1 = 100, r2 =3, r3 =0 

4 14-18 16 Same as sub-region 3 

5 18-22 20 Same as sub-region 3 

6 22-26 24 Same as sub-region 3 

 

The first sub-region (𝑖 = 1) in Table I corresponds to the 

partial load regime. To achieve the control objectives for this 

region stated in Section III, the weights 𝑟2
1 and 𝑟3

1 in (10) 

should be set to large values to force the pitch angle set point 

to be fixed at zero. Since the objective is to force the 

generator speed to track its set point, the weight 𝑞1
1 should 

be set to zero while the weights 𝑞2
1 and 𝑟1

1 in (10) should be 

selected to achieve the desired trade-off between energy 

maximization and drive train transient load minimization.  

The second sub-region (𝑖 = 2) in Table I corresponds to 

partial load operation near the rated wind speed. The weights 

𝑞1
2, 𝑞2

2 and 𝑟1
2 should be selected similar to those in sub-

region 1. However, the weights 𝑟2
1 and 𝑟3

1 should be reduced 

in comparison with those in sub-region 1 and the constraint 

(13-e) should be replaced with (16). This selection allows 

the pitch system to be activated when required to prevent the 

power from exceeding its rated value when the wind speed 

fluctuates near the rated wind speed. Consequently, power 

and drive train twist torque overshoots are eliminated. 

𝑃𝑔
𝑖 𝑘 + 𝑗 ≤ 𝑃𝑔 ,𝑟𝑎𝑡  , 𝑗 = 1, 2, … , 𝑁𝑝   (16) 

The four sub-regions corresponding to 𝑖 =  3,4,5,6 , 
represent the WECS operation in the full load regime. The 

weight 𝑟3
𝑖  should be set to zero to allow the pitch angle to 

take any required value. The weights 𝑞1
𝑖 , 𝑞2

𝑖 , 𝑟1
𝑖  and 𝑟2

𝑖  are 

tuned to achieve the desired trade-off between output power 

smoothing, generator speed regulation, drive train transient 

loads reduction and pitch angle activity, respectively.  

The other MMPC parameters such as the sampling time, 

the prediction horizon, the control horizon are chosen as: 

𝑇𝑠 = 50 𝑚𝑠 , 𝑁𝑝 = 20 , 𝑁𝑐 = 10 (17) 

2) Offset free tracking MMPC 

It is important to design the MMPC to guarantee offset 

free tracking for the WECS. This property ensures that when 

the system reaches steady state, the controlled variables are 

equal to their desired set points in the presence of 

plant/model mismatch, constant exogenous disturbances and 

step variations in the set points.  

Following the guidelines in [19], it will be assumed that 

there are two integrated white noise unmeasured 

disturbances, 𝒅 𝑘 ∈ ℝ2, that enter at the input of the 

system. This can be achieved by using (18). 

𝑩𝒅 = 𝑩𝒖, 𝑫𝒅 = 𝟎, 𝑨 = 𝑩 = 𝑪 = 𝑰2 and 𝑫 = 𝟎 (18) 

This selection ensures offset free tracking and regulation 

in both partial and full load regimes, respectively [19]. 

VI. SIMULATION RESULTS 

In this section, the performance of the proposed control 

strategy is compared with the classical control strategy 

described in Section IV. In all simulations, the designed 

controllers are tested on the non-linear model in Appendix 

A, with data given in Appendix B. The speed, torque and 

power signals have been normalized based on the per unit 

system in [3]. For the sake of comparison, it will be assumed 

that an estimate of the average wind speed is available and is 

used as the scheduling signal in both strategies.  

A. Partial load with variable-speed operation (low 

wind speed) 

 

 
Fig. 5. Simulation results for low wind speeds. 

A simulation result for partial load operation is shown in 

Fig. 5. It can be seen that the MMPC controller allows better 

tracking of the generator speed and higher aerodynamic 

efficiency compared to the classical strategy. This is 

achieved while the drive train torsional torque is almost 

identical for both cases (the figure is not shown here). Table 

II indicates a slight increase in the average power produced 

and around 35% decrease in the standard deviation of  𝜆 

around its optimum value when using the MMPC controller. 
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TABLE II 

LOW WIND SPEEDS STATISTICS 

Quantity MPC PI MPC/PI 

AVG(𝑃𝑔) 

STD(𝜆) 

0.2136 

0.0605 

0.211 

0.0925 

1.011 

0.654 

B. Partial load operation and near rated speed 

operation (medium wind speed) 

 

 

 

 
Fig. 6. Simulation results for medium wind speeds. 

TABLE III 

MEDIUM WIND SPEEDS STATISTICS 

Quantity MPC PI MPC/PI 

STD(𝛽 ) 
Max(𝑇𝑡𝑤 ) 

Max(𝑃𝑔) 

0.2813 

0.7740 

0.9014 

0.1439 

0.8200 

1.0766 

1.95 

0.944 

0.837 

A simulation result for partial load operation near the 

rated wind speed (11m/s) is shown in Fig. 6. It can be seen 

that power and drive train torque overshoots occur when 

using the classical strategy. The MMPC eliminated these 

overshoots and 𝑃𝑔  and 𝜔𝑔  stay within the rated values. 

However, this is achieved by increasing the pitch activity as 

shown in Table III. Despite this increase, the value of the 

pitch activity is still very small when compared to the values 

obtained at full load in table IV.  

C. Full load operation (High wind speed) 

 
Fig. 7. Simulation results for high wind speeds. 

TABLE IV 

HIGH WIND SPEEDS STATISTICS 

Quantity MPC PI MPC/PI 

STD(𝛽 ) 
STD(𝑃𝑔) 

STD(𝜔𝑔) 

1.1673 

0.00037 

0.0108 

1.4295 

0.0028 

0.0037 

0.8166 

0.1321 

2.9189 

A simulation result for full load operation of the WECS is 

shown in Fig. 7. It can be observed that when using the 

MMPC controller, the power fluctuations are much reduced. 

The price is an increase in the generator speed fluctuations 

in comparison with the classical strategy. This does not 

represent a problem as long as it is guaranteed to keep the 

speed below its maximum limit. Furthermore, Table IV 

shows about 18% reduction in STD(𝛽 ) and more than 85% 

reduction in STD(𝑃𝑔) when using the MMPC controller.  
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VII. CONCLUSION 

A multivariable control strategy based on model 

predictive control techniques is proposed to control variable 

speed variable pitch WECSs over their full operating ranges. 

In the partial load regime, the MPC controller can be 

designed to provide the desired tradeoff between energy 

maximization and reduction of the drive train torsional 

torque. Near the rated wind speed, power and drive train 

torsional torque overshoots are eliminated. In the full load 

regime, the MPC controller can be designed to provide the 

desired tradeoff between power smoothing and speed 

regulation while reducing drive train torsional torque 

fluctuations and pitch actuator activity. Furthermore, the 

MPC controller provides the desired WECS performance 

while keeping the system variables within safe operating 

limits. Performance of the multivariable MPC controller is 

compared with the classical PI control strategy. Simulation 

results showed the superiority of the proposed control over 

the classical gain scheduled PI control strategy over the 

whole operating region of the WECS. 

APPENDICES 

A. Appendix A 

1) Pitch actuator system 

𝛽 = −
1

𝜏
𝛽 +

1

𝜏
𝛽∗ (A.1) 

𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥  (A.2) 

𝛽 
𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽 

𝑚𝑎𝑥  (A.3) 

Here, 𝜏 is the time constant of the pitch system and 

•𝑚𝑎𝑥 (•𝑚𝑖𝑛 ) is the maximum (minimum) limit of •. 

2) Aerodynamic system 

𝑇𝑡 =
𝐶𝑃  𝜆 ,𝛽 

𝜆

1

2
𝜌𝜋𝑅3𝑣2  (A.4) 

𝐶𝑃 𝜆, 𝛽 = 0.5176  
116

𝜆𝑖
− 0.4𝛽 − 5 𝑒

−
21

𝜆𝑖 + 0.0068𝜆 (A.5) 

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
  (A.6) 

Here,  𝑇𝑡  is the turbine torque, 𝑅 is the blade length; 

𝐶𝑃 𝜆, 𝛽  is the power coefficient, 𝜆 ≝
ω𝑡𝑅

𝑣
 is the tip speed 

ratio and 𝜔𝑡  is the speed of the low speed shaft.  

3) Drive train model 
𝑑𝜔𝑡

𝑑𝑡
= −

𝑖

𝐽𝑡
𝑇𝑡𝑤 +

1

𝐽𝑡
𝑇𝑡  (A.7) 

𝑑𝜔𝑔

𝑑𝑡
=

1

𝐽𝑔
𝑇𝑡𝑤 −

1

𝐽𝑔
𝑇𝑔  (A.8) 

𝑑𝑇𝑡𝑤

𝑑𝑡
= 𝑘𝑠𝑖𝜔𝑡 − 𝑘𝑠𝜔𝑔 −  

𝑖2𝐵𝑠

𝐽𝑡
+

𝐵𝑠

𝐽𝑔
 𝑇𝑡𝑤 +

𝑖𝐵𝑠

𝐽𝑡
𝑇𝑡 +

𝐵𝑠

𝐽𝑔
𝑇𝑔 (A.9) 

Here, 𝐽𝑡  and 𝐽𝑔  are the inertia of the turbine and the 

generator, respectively; 𝑇𝑡𝑤  is the drive train torsional 

torque; 𝑖 is the gear ratio; 𝑘𝑠 , 𝐵𝑠 are the shaft stiffness and 

damping coefficients, respectively.  

4) Generator model 

𝑇𝑔
 = −

1

𝜏𝑔
𝑇𝑔 +

1

𝜏𝑔
𝑇𝑔

∗ (A.10) 

Here, 𝑇𝑔 , 𝑇𝑔
∗and 𝜏𝑔  are the generator torque, torque set 

point and time constant, respectively. 

5) Wind speed model 

Wind speed, 𝑣(𝑡), is modeled as (A.11). The model used 

here is based on [1]. The model includes tower shadow, 

wind shear and rotational sampling effects. 

 𝑣 𝑡 = 𝑣𝑚  𝑡 + 𝑣𝑡(𝑡)  (A.11) 

B. Appendix B 

System rated power = 1.5 MW(0.9 p.u.); 𝑅 = 35 

m; 𝑣𝑐𝑖 / 𝑣𝑟 / 𝑣𝑐𝑜  = 4/11/26 m/s; 𝑖 = 62.6; Turbine inertia 

constant = 3 s; Generator inertia constant = 0.5 s; Shaft 

stiffness = 0.5 pu; Shaft damping = 0.01 pu; 𝛽𝑚𝑖𝑛 /𝛽𝑚𝑎𝑥  = 

0/45 
o
; 𝛽 

𝑚𝑖𝑛 /𝛽 
𝑚𝑎𝑥  = -10/10 

o
/s; , 𝜏𝑔  = 5 ms; Rated/Max 

generator speed = 1.2 p.u./1.3 p.u 
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