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ABSTRACT 
Static deflection and free nonlinear vibrations of thin 

square plate made of biological material are investigated. The 

involved physical nonlinearity is described through Neo-

Hookean, Mooney-Rivlin and Ogden hyperelastic laws; 

geometrical nonlinearity is modeled by Novozhilov nonlinear 

shell theory. The problem is solved by sequentially constructing 

the local models that describe the behavior of plate in the 

vicinity of a certain static configuration. These models are the 

systems of ordinary differential equations with quadratic and 

cubic nonlinear terms in displacement, which allows 

application of techniques used in analysis of thin-walled 

structures of physically linear materials. The comparison of 

static and dynamic results obtained with different material 

models is carried out. 

 

INTRODUCTION 
 Dynamic properties of structures made of materials that are 

not linearly elastic are poorly understood. They are currently 

being investigated in many research areas and increasingly used 

in engineering, more specifically in biomedical engineering, 

because they can model the mechanical properties of real soft 

tissues.  

 Most of studies on shell-type structures of hyperelastic 

materials involve using finite elements approach [1, 2], which 

requires large number of degrees of freedom. This significantly 

complicates the investigation of the dynamics. Another widely 

used simplification is the assumption of known simple shape of 

the structure after deformation (see, for example, [3, 4]). 

However, this assumption also is valid mostly in static 

problems. 

 

 Another approach, that does not have the drawbacks of the 

above-mentioned ones, is used in this study. The approach 

consists in the meshless approximation of the deformed shape 

by truncated series of eigenmodes with the convergence study 

of the series. Such approach is frequently employed in 

problems of shells made of linear materials and also was 

applied to solve problems of hyperelastic plates [5, 6] and 

membranes [7-9]. Also it was used in the problem with another 

type of physical nonlinearity [10].  

 The present study uses a general methodology dedicated to 

exploration of the statics as well as the dynamics of a square 

plate made of biomaterial. The material nonlinearity is captured 

by Neo-Hookean, Mooney-Rivlin and Ogden hyperelastic laws 

in order to reproduce a key structural feature of biological 

materials that is a sharp increase in stiffness above a strain 

threshold. The geometrical nonlinearity induced by large 

displacements is also accounted for through Novozhilov’s plate 

theory. The results obtained with different material models are 

compared. 

GEOMETRICAL AND PHYSICAL PARAMETERS OF 
THE PROBLEM  

A square plate made of biomaterial is considered. It is 

defined on the following domain: 
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with a = 0.1 m, b = 0.1 m, h = 0.0005 m.  

We aimed to model only the key feature of soft biological 

tissues, i.e., a sharp increase in stiffness after a given strain 

threshold is reached. The experimental data for the adventitia of 
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human aorta from [11] were approximated by Neo-Hookean, 

Mooney-Rivlin and Ogden hyperelastic laws. Also, linear 

material model is used. The strain energy densities for these 

laws are given in Tab. 1. 

 

Table 1. STRAIN ENERGY DENCITIES FOR 

DIFFERENT MATERIAL MODELS. 
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In Tab. 1,    is the first invariant of the right Cauchy-Green 

deformation tensor C; E is the Young’s modulus of the plate's 

material;    stands for the second invariant of the right Cauchy-

Green deformation tensor;          are the principal stretches 

of the plate;   , are the components of the Green-Lagrange 

strain tensor for thin plates. 

The parameters of the models (1-4)         are fitted to 

experimental data by least-squares method. The stress-strain 

diagram and experimental points for uniaxial tension for 

material under consideration are shown in Fig. 1. 

 

 
Figure 1. STRESS-STRAIN CURVES AND 

EXPERIMENTAL POINTS FOR UNIAXIAL TENSION 

OF BIOMATERIAL.  

 

 

Table 2. BIOMATERIAL PARAMETERS OF 

HYPERELASTIC LAWS. 
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Mooney-Rivlin             a              a 

Ogden 
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   a  

                   a   
  
              a  

                    
                   

 

CONSTITUTIVE RELATIONS  
The Lagrange equations are used to describe the dynamic 

behavior of the plate. The potential and kinetic energies are 

given by the formulas [14]:  
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where V is the volume of the plate, S is the surface of the 

middle plane of the plate, ρ is the mass-density of the plate 

material, h is the thickness of the plate and u, v, w are the 

displacements along the axes of the rectangular coordinate 

system x, y, z, respectively. The dot stands for differentiation 

with respect to time.  

The geometrical nonlinearity is described by Novozhilov 

strain-displacement relationships [14]: 
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The right Cauchy-Green deformation tensor C is defined as 

[5, 6, 13]: 

 

  (

         
         
       

). (8) 

 

The principal stretches are the square roots of the 

eigenvalues of C and three invariants can be calculated 

according to known formulae: 
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However, the expression in terms of displacements for one 

strain component in Eqn. (8), namely for     is unknown. To 

obtain this expression the fact that soft biological tissues are 

incompressible [12, 13] is used. The incompressibility 

condition     yields 
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A so-called local models method is purposely developed 

for the problem of interest. It can be described as Newton-

Raphson method with expanding at each step the non-

polynomial strain energy densities Eqns. (1-3) into a truncated 

power series expressed in the strain components. In more 

details the method is described in [5].  

BOUNDARY CONDITIONS AND DISCRETIZATION 
The plate is simply supported with immovable edges, 

giving the following boundary conditions [14]: 

 

 |    |    |    |      

 

where    denotes the boundary of the plate middle surface. 

The bending moment per unit length M [14] reads: 
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where n and τ are the outer normal and tangent directions to 

  , respectively. 

Since the boundary conditions are linear the linear 

combination of the eigenmodes also satisfies them, so there is 

no need in additional transformations [14, 15].  

In problem under considerations as  well as in certain close 

problems the eigenmodes of linear vibrations can be expressed 

in terms of trigonometric functions [14, 16]. The displacements 

are expanded into truncated series of eigenmodes [5, 14, 17]: 
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The convergence study showed that model with four summands 

in each of the expressions (9) provides good approximation of 

the solution. 

STATIC BENDING OF A PLATE  
Attention is now paid to the static bending of the plate 

under uniformly distributed pressure. The pressure-deflection 

curves obtained with the exact method are depicted in Fig. 2. 

We can see that the Neo-Hookean and Mooney-Rivlin 

results are fairly similar, while the Ogden curve presents large 

differences at deflections higher than 80h (see Fig. 2). Ogden 

material becomes much stiffer at these deflections.  

 

 
Figure 2. PRESSURE LOAD VERSUS CENTRAL 

DEFLECTION FOR DIFFERENT HYPERELASTIC 

MODELS OF BIOMATERIAL.  

 

FREE VIBRATION OF A PLATE 
Free vibrations around different deformed configurations 

are investigated with the help of the harmonic balance method 

[18].  

Fig. 3 displays the dimensionless backbone curves for free 

vibrations around the first eigenfrequency of the pre-loaded 

plate for the three hyperelastic laws. For corresponding static 

configuration the principal bending coordinate         . The 

comparison with the exact static solution shows that Neo-

Hookean and Mooney-Rivlin local models are accurate for 

deflection up to 10h, but Ogden model is limited to deflections 

not larger 3h only. 

The evolution of the backbone curve with initial static 

deflection is shown in Fig. 4. We can see that nonlinearity 

weakens with the growth of initial deflection. We can see that 

the curves in Figs. 4 b)-4 d) are non-symmetric with respect to 

the horizontal axis due to the pre-load of the plate. For bended 

plates the amplitudes inward are greater than the amplitudes 
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outward [14]. In Fig. 4 curves for Neo-Hookean material are 

shown; other material models exhibit similar behavior.  

 

 
Figure 3. BACKBONE CURVES FOR FREE 

VIBRATIONS AROUND THE DEFORMED 

CONFIGURATION WITH          FOR DIFFERENT 

HYPERELASTIC LAWS. NON-DIMENSIONAL 

FREQUENCIES, NORMALIZED WITH RESPECT TO 

THE FIRST NATURAL FREQUENCY OF THE 

DEFORMED PLATE, ARE SHOWN IN ABSCISSA.  

 

The nonlinearity is of softening type and is very weak for 

all material models. The Neo-Hookean and Mooney-Rivlin 

backbone curve are very close and show a softer behavior than 

the Ogden curve. 

 

CONCLUSIONS  
Static deflection and free vibration of plate made of 

biological material are explored with the purposely created 

method. It is found that Mooney-Rivlin and Neo-Hookean 

materials exhibit similar behaviors. Corresponding constitutive 

laws properly capture the behavior of the actual material at 

moderate strains. The best approximation is provided by 

Ogden's model. The latter correctly reproduces the behavior at 

high strains, including the sharp increase in stiffness. However, 

this increase in stiffness limits the range of vibrations 

amplitudes which can be targeted.  

It is also shown that the pre-loaded plate exhibits very 

weak dynamic nonlinearity, i.e. the frequencies of the 

oscillations around the deformed configuration are close to the 

associated eigenfrequencies. 

The sensitivity of the backbone curves to the initial 

deflection is also discussed. It is shown that the higher the 

initial deflection, the higher the range of amplitudes at which 

the backbone curve displays softening behavior. Also, the 

frequency shift between low- and large-amplitude vibrations 

weakens with an increase of the initial deflection. 

 

 
a)  

       
b) 

       
c) 

 

 

 
d) 

Figure 4. BACKBONE CURVES FOR PLATE 

VIBRATIONS IN THE VICINITY OF DIFFERENT 

DEFORMED CONFIGURATIONS; NEO-HOOKEAN 

MODEL. a)        (FLAT PLATE); b)        ; 

c)         ; d)         . 
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