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ABSTRACT 
Dimensional variation is inherent to any manufacturing 

process. In order to minimize its impact on assembly products 
is important to understand how it propagates through the 
assembly process. Unfortunately, manufacturing processes are 
complex and in many cases highly non-linear. Traditional 
assembly models have represented assembly as a linear 
process. However, assemblies that include the contact between 
their components and tools show a highly non-linear response. 
This paper presents a new assembly methodology considering 
the contact effect. In addition, an efficient to predict output 
response is presented. The enhance dimension reduction 
method (eDR) is used to accurately and efficiently predict the 
statistical response of the assembly to variation on the input 
parameters. 
 
INTRODUCTION 

Dimensional variation is inherent to any manufacturing 
process. Therefore, it is important to understand how it 
propagates through the process. Fast and accurate evaluation 
models of process variation are critical in determining the final 
dimensional variation of a product and in selecting robust 
product/process design. Unfortunately, manufacturing 
processes are complex and in many cases highly non-linear 
restraining the potential of the analysis. In general, the lack of 
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efficient modeling tools limited the analysis capabilities to 
simplified linear models.  

One commonly used non-linear manufacturing process is 
the compliant assembly process. Compliant assembly is defined 
as the process of joining flexible or non-rigid parts. Many 
products, including automobiles, aircraft, furniture, and home 
appliances, are constructed primarily from compliant parts. In 
many of these products, the number of parts can be very large, 
such as the several hundred compliant parts that form a typical 
auto body assembly. Since parts and fixtures inherently have 
geometrical variation, understanding how these variations 
propagate through the system is of significant interest to the 
design and control of such systems. Two approaches have been 
widely adopted to model assembly processes: rigid body 
analysis [1-2] and compliant analysis [3-6]. However, all these 
methodologies are based on linearized models. Finally, Cai et 
al. [7] introduced the contact non-linear effect on the assembly 
of compliant parts. They used a second order Taylor expansion 
(TSE) method to estimate the non-linear effects.  However, 
TSE methods are efficient and accurate only on close-to-linear 
methods. 

Variation propagation analysis is defined as mechanism by 
which input uncertainty is propagated to output uncertainty 
through a system or process. The system or process may consist 
of subsystems or sub-processes. Input uncertainty includes any 
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type of parameters or variables that are uncertain, as shown in 
Table 1. Although uncertainty propagation has been extensively 
investigated in many engineering fields, uncertainty 
propagation is still a state of art, mainly due to its 
expensiveness and inaccuracy for nonlinear behavior of 
systems. 

Table 1 Sources of uncertainty 

Source Uncertainty 
Type Examples 

Shape Circularity 

Size Length; Thickness 

Configuration Angles 
Product 

Material Young’s Modulus 

Geometrical Fixtures position;  
Welding gun location 

Process  
Process 
Parameters 

Pressure; Sequence 
Welding temperatures;  
Current Welding speed;  
Welding direction 

Accordingly, many different methods have been developed 
for uncertainty propagation analysis. These methods can be 
categorized into three approaches: sampling techniques, 
expansion techniques, and Advanced First-Order Second 
Moment (AFOSM). 

 The most common sampling techniques are Monte Carlo 
Simulation (MCS) and Design of Experiments (DOE). In 
general, these methods are quite comprehensive and easy to use 
but prohibitively expensive to achieve good accuracy. 
Simulation methods [3] can be expensive for predicting high 
reliability, whereas DOE [8] can be costly for high dimensional 
problems, so-called a curse of dimensionality. Therefore, 
sampling techniques are often used for verification or 
benchmarking studies.  

There exist three types of expansion methods: Taylor series 
expansion, perturbation method, and Neumann expansion. 
Taylor series expansion method is sometimes called Root Sum 
Squares (RSS) method. It yields highly inaccurate estimates for 
nonlinear system. Hence, its application has been restricted to  
linear or mildly nonlinear systems. In addition to such 
difficulty, it requires a second-order sensitivity analysis for 
uncertainty control and management, which is expensive and 
complicated [9]. In the perturbation method, the solution is 
approximately represented in a perturbed form. Thus, it can be 
applied to diverse systems represented by differential, integral, 
and algebraic equations. Its primary disadvantages are the lack 
of applicability to experiments and computational 
expensiveness when the dimension of the system is large [10]. 
Similarly, the main limitation of Neumann expansion method is 
the requirement that the perturbation terms must be small. 
Further, this method is in general difficult to apply in 
conjunction with modeling complex nonlinear systems, as the 
model equations are often mathematically intractable [11]. It is 
quite interesting that the common drawback of expansion 
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methods is inaccuracy of uncertainty characterization for 
nonlinear systems. 

Depending on the order of system approximation, 
uncertainty propagation can be analyzed using First-Order 
Reliability Method (FORM) and using Second-Order 
Reliability Method (SORM). These methods accurately predict 
a tail approximation of the probability distribution for a system 
but, respectively, require first-order and second-order 
derivatives for system performances with respect to input 
uncertainties [12]. Thus, the application of AFOSM is limited 
to relatively simple mathematical models. 

Current assembly models for geometrical variation 
propagation prediction are limited to linear sensitivity analysis. 
However, real assembly processes are more complex and 
heavily subject to uncertainties of system parameters. In order 
to extend the capabilities of current models, it is necessary to 
create new methods that predict geometrical variation 
propagation by taking into account the non-linear effects due to 
the contact between the components and tools in the physical 
assembly process. 

This paper presents a new methodology to predict the 
effect on assembly dimensions due to variation on geometrical 
dimensions on the assembly components. The methodology 
considers the components interaction due to the physical 
contact between the components and tools (clamps and welding 
guns). These interactions produce additional deformations in 
the components during the assembly process. In addition, due 
to the limitation of traditional uncertainty propagation methods 
a new methodology for uncertainty propagation in non-linear 
assembly systems is presented.  

The paper is organized as follows. Section 2 reviews the 
traditional rigid and compliant assembly methodologies. 
Section 3 presents the new methodology to predict assembly 
variation propagation in non-linear contact assemblies. The 
enhanced dimension reduction (eDR) method is presented in 
Section 4. The eDR method allows predicting the output 
distribution for the assembly based on given distribution of the 
input parameters. In Section 5, a case study of a hood bracket 
assembly is discussed. The case study shows the application of 
the new methodology. Finally, Section 6 draws the conclusions. 
 
2. TRADITIONAL SHEET METAL ASSEMBLY 
MODELING 

Several models have been proposed to predict how 
variation propagates during assembly. Initial approaches were 
focused on rigid part assembly using either the Root Sum 
Squares (RSS) method or Monte Carlo Simulation. Detailed 
review and discussion can be found in Chase and Parkinson 
[13]. Recently, multi-level variation propagation models have 
also been developed. Mantripragada and Whitney [2] proposed 
a state transition model to predict the variation propagation in 
multi-stage assembly systems. Ding et al. [1] presented a state 
space model for dimensional control in sheet metal assembly 
assuming rigid parts. For compliant assembly, Liu and Hu [3] 
proposed a compliant assembly model to analyze the effect of 
deformation and springback on assembly variation by applying 
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linear mechanics and statistics. Using finite element methods 
(FEM), they constructed a sensitivity matrix to establish a 
linear relationship between the incoming part deviation and the 
output assembly deviation. Camelio et al. [4] extended this 
approach to multi-station systems using a state space 
representation. 

Assembly variation is estimated as a function of the 
components’ geometry, process layout and the contribution of 
various sources of variation. Three main sources of variation 
have been identified in compliant sheet metal assembly: 
component variation, fixture variation and joining method 
induced variation. Part variation includes the mean deviation, �, 
and the variance of the deviation, σ2, on parameters that 
describe the geometry of the component. A deviation is the 
difference between the actual part dimension and the nominal 
dimension. Part deviation can be denoted as a vector V ∈ Rnx1, 
in which the elements correspond to deviations at each 
parameter. Traditional assembly modeling approaches define 
part deviation as point based considering only key control 
characteristics.  

Liu and Hu [3] presented the method of influence 
coefficients (MIC) to predict the impact of the part deviation, 
Vu, on the assembly deviation, Va. Finite element methods and 
MIC are used to obtain the sensitivity matrix, S, for a sheet 
metal assembly. The elements of the sensitivity matrix, sij, 
measure the sensitivity of the assembly at node i to the 
incoming part deviation at node j. This approach considers a 
linear relationship between the incoming parts deviation and 
the final assembly deviation. Therefore, the assembly deviation, 
Va, can be calculated using Eq. (1). By definition Va is the 
assembly deviation vector, where the column elements 
represent the assembly deviation at the key measurement 
points. Vu is the component deviation vector, where the 
elements represent the component deviation at the welding 
nodes. 
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The station level model presented in Eq. (1) describes the 
assembly variation behavior at a single station. However, sheet 
metal assembly processes are typically multilevel hierarchical 
manufacturing processes, where parts are joined together at 
different sequential or parallel stations. Dimensional variation 
will propagate from station to station based on incoming parts 
variation, fixture variation and the joining process variation. 
The propagation effect of the dimensional variation can be 
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modeled as a linear time discrete system, where the variable 
time, k, represents the station location (Eq. 2), A is the state 
matrix, X is the state vector, B is the input matrix, U is the 
input vector, W is a perturbation vector, Y is the 
measurement/observation vector, C is the observation matrix, 
and V is a measurement system noise vector.  

 
( ) ( ) ( -1) ( ) ( ) ( )
( ) ( ) ( ) ( )
k k k k k k
k k k k

= ⋅ + ⋅ +
= ⋅ +

X A X B U V
Y C X V

 (2) 

Camelio et al. [4] developed a methodology to analyze the 
propagation of variation in compliant multi-station assembly 
systems using a state space representation. Based on their 
model, the state space equation can be rewritten as: 

 
3 2 1

3                                      
k k k k k k

N g
k k k k k

− −
− −

−

1 i 1X = (S - P + I)(X + M (X - U ))

- (S - P )(U + U ) + W
(3) 

where Sk is the sensitivity matrix (similar to MIC), Pk is the 
part deformation matrix, and Mk is the relocation matrix 
associated with station k. U3-2-1 is the variation vector of a 3-2-1 
locating fixture, UN-3 is the variation vector for a N-2-1 fixture 
with N>3, and Ug is the variation vector for welding guns. W 
represents the noise which is the propagated variation not 
accounted by this model. 

As presented in this section, traditional assembly models 
are linear and point based. In order to include non-linear 
contact effects, a new methodology to represent the assembly 
process is needed.  
 
3. MODELING ASSEMBLY VARIATION INCLUDING 
CONTACT CONSIDERATIONS 

Although the Method of Influence Coefficients (MIC), 
presented by Liu and Hu [3] and widely used on assembly 
variation simulation, can precisely and efficiently predict the 
assembly distribution based on the linear mechanics, it cannot 
be directly used for problems that behave in the nonlinear 
domain. One of the limitations of the MIC is that the assembly 
deformation is considered linear and no consideration to part 
interference is included. Therefore, the parts are allowed to 
penetrate each other when get in contact during the assembly 
process. In addition, the MIC approach constructs the 
sensitivity matrix evaluation using the response of a nominal 
assembly under external displacements for each individual 
component and the assembly.  An equivalent force for each 
source of variation is generated by exerting the corresponding 
deviation of the component departing from a nominal position. 
The forces and displacements are estimated using a finite 
element model. Then, the clamping effect is simulated by 
applying the equivalent force in the opposite direction to make 
the component to recover it's nominal position. This approach 
differs significantly from the real assembly process, limiting its 
capacity to represent the process under non-linear conditions. 
As it was mentioned earlier, non-linear behavior on assembly 
systems is common under the contact interaction between parts 
and due to welding distortion effects.  

Based on these limitations, a new methodology to 
represent the assembly process is needed. Considering the 
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actual capabilities of commercial available finite element 
packages, a good method will be a model that can represent the 
assembly process as close to reality as possible. The proposed 
new approach is able to better simulate the real assembly and 
allows system parameterization. The system parameterization is 
a powerful tool to characterize the response of the assembly for 
different sources of variation. Combining the FEA tool with the 
enhanced Dimensional Reduction Method (eDRM), the new 
methodology can efficiently and precisely handle nonlinear 
contact problems. 

Traditionally, an assembly process of sheet metal parts 
considers five steps: 1) the parts are located in the assembly 
station, a 3-2-1 locating fixture is used; 2) additional locators or 
clamps are closed to nominal, deforming the sheet metal part if 
the part is non-nominal; 3) the welding gun(s) is closed to 
nominal, producing additional deformations; 4) the parts are 
joined together using, in general, resistance spot welding; 5) the 
welding gun and clamps are released; and 6) the assembly 
springback. In order to precisely represent the assembly 
process, a similar process is simulated in finite elements using 
Abaqus. 

Considering the six steps in the assembly process 
presented, a new methodology based on finite elements was 
developed. The two objectives of the new methodology are: 1) 
to represent the assembly process as real as possible using finite 
elements; and 2) to incorporate the effect of the physical 
contact between the components and tools in the assembly. 
Two types of contact are considered the tool/part interactions 
and the part/part interactions. The new methodology consists of 
four steps that represent the assembly process of compliant 
sheet metal parts:  

Step 1 The parts are located in the station. This is equivalent 
to construct the finite element model. The compliant parts are 
represented as shell elements. The locators are simulated as 
single point displacement constraints. In addition, to enhance 
the capability of the model to handle the interaction between 
parts and tools, contact pairs elements are defined. The 
contact areas include both the contact between components 
or parts and the contact between the tools and the 
components. The parts are modeled including any deviation 
from its nominal shape. In order to model uncertainty in 
some dimensions, the model is parameterized. Therefore the 
components geometry and mesh can be modified by a small 
set of parameters. 
Step 2 The clamps are closed deforming the individual 
components to their nominal position. Each clamp is 
modeled as a rigid body. In general, the stiffness of the 
clamps is much larger than the stiffness of the individual 
components. Therefore, this is a reasonable assumption. At 
this step, the clamp is moved towards the part, the part is 
deformed due to the contact between the clamp and the part.  
Step 3 The welding gun is closed and the parts are joined 
together. The welding process is simulated in three sub-steps. 
First, the contact elements in each component corresponding 
to the welding area are assigned as bonded. Bonding is one 
property available for the contact pairs to determine the 
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behavior of elements that become in contact. Second, an 
additional type of elements is introduced. The welding 
nugget is represented by connector elements. These elements 
constrain the nodes in the different parts to share the same 
DOF. Finally, an additional finite element tool, micro-gap 
adjusting, is used to ensure the welding area between parts is 
completely in contact.  
Step 4 The parts are released. At this state, the welding gun 
tools and additional locators and clamps are removed, then, 
the assembly springbacks.  

One of the main limitations of modeling contact elements 
is convergence of the finite element model. The proposed 
methodology has shown reliable results avoiding convergence 
issues. Several measures were taken to improve the 
convergence of the contact model. Some of the measures that 
improve the performance of the simulation and that are include 
in the methodology are:  1) a fine mesh and fillets near the 
contact areas are used to avoid a single node penetration; 2) 
connector elements representing the weld nugget are used to 
ensure sufficient constraint between welded parts; 3) micro-gap 
adjusting is used to overcome the micro gap, separation errors 
between the parts caused by the calculation errors in the finite 
element. 

 
Fig. 1 Predictive contact assembly and MIC 

This simulation process differs from the MIC presented by 
Liu and Hu [3] because it simulates the assembly process as a 
complete set of sequential operations without incorporating the 
use of equivalent forces or displacements to determine the final 
springback. Figure 1 shows the steps of each methodology. The 
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main limitation of the new approach is that requires a complete 
simulation to evaluate the final springback of the assembly for 
each set of input deviation. Due to the non-linear response of 
the contact behavior, an expensive Monte Carlo simulation is 
required to completely describe final distribution of the output 
dimensions considering some variability in the input 
parameters. To overcome this limitation, an efficient method to 
predict the variation propagation in non-linear contact assembly 
processes is presented in the next section. 

 
4. ENHANCED DIMENSIONAL REDUCTION METHOD 

4.1 DIMENSION-REDUCTION (DR) METHOD  
In general, statistical moments (or PDF) of a certain system 

response can be calculated as 

 { }( ) ( ) ( )m mY Y f d
+∞ +∞

−∞ −∞
= ⋅ ⋅� � XX x x x�����  (4) 

In Eq. (4), a major challenge is found in multi-dimensional 
integration of joint probability density function of system 
inputs. To resolve this difficulty, the DR method uses an 
additive decomposition [14, 15], which converts a multi-
dimensional integration in Eq. (4) into multiple one-
dimensional integrations. The additive decomposition is 
defined as 

 1 1 1 1
1
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In aid of the additive decomposition, uncertainty 
quantification of system responses becomes much simpler. For 
reliability and quality assessment, the math statistical moments 
for the responses are considered in Eq. (6) as 
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Uncertainty of system responses can therefore be evaluated 
through multiple one-dimensional numerical integrations. The 
remaining challenge of the problem is how to carry out one-
dimensional integration effectively. Using numerical 
integration, the one-dimensional integrations will be performed 
with integration weights ,j iw  and points ,j ix  using Eq.(7). 
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The number of integration points determines 
computational efficiency of the DR method. In general, the 
univariate DR method uses kN+1 integration points where N is 
the number of input random parameters and k is the integration 
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points along each axis excluding the sample at the mean. It is 
suggested that k must be maintained at 2, or at most, 4, for 
large-scale engineering problems. 

Using the DR method, three major disadvantages are 
inaccuracy, inefficiency, and/or singularity for nonlinear 
applications.  For highly nonlinear problems, the use of 2N+1 
or 4N+1 integration points is not sufficient enough to capture 
the true nature of the problem. Inaccuracy can be resolved via 
increasing the number of integration points. However, this 
increases computational cost substantially.  The DR method 
suggests the use of a moment based quadrature rule. It requires 
only statistical information of the random input parameters and 
generates the integration points and weights for numerical 
integration.  Unfortunately, the large amount of integration 
points to characterize a nonlinear problem requires high order 
statistical moments of the input parameters to be known. It has 
been shown in Ref. 3 that the use of high order statistical 
moments creates a singularity problem in determining the 
weights and integration points. 
 
4.2 ENHANCED DIMENSION REDUCTION (EDR) 
METHOD 

The DR method is enhanced by incorporating a more 
robust one-dimensional numerical integration scheme. It is 
referred to as the enhanced Dimension-Reduction (eDR) 
method [16].  Compared to the DR method, the eDR method 
increases the accuracy by using a stepwise moving least 
squares approximation. It generates approximate response 

values, 1 1 , 1
ˆ( ,..., , , ,..., )j j i j NY xµ µ µ µ− + , at all integration 

points along each random input in Eq. (8).  This approximate 
response allows the incorporation of any numerical integration 
method. 
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 To recover the disadvantages of the DR method due to a 
moment based quadrature rule, it is suggested in [16] that the 
eDR method use the adaptive Simpson rule as an alternative 
integration approach. This allows more flexibility for the eDR 
method to handle any distribution type encountered in practical 
engineering problems. This is possible since the stepwise 
moving least squares approximation produces highly accurate 
one-dimensional responses.  Consequently, the number of 
integration points can be increased to as many as possible 
without evaluating actual system responses. Therefore, the eDR 
method turns out to be very efficient and accurate through the 
new one-dimensional integration scheme.  The highest order of 
error in applying the eDR method is 
Copyright © 2006 by ASME 
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The numerical procedure for the eDR method is as follows: 
 

Step 1 Define a reasonable set of sample points to be used for 
the stepwise moving least squares approximation, usually 
2N+1 or 4N+1, depending on available resources and any 
prior knowledge of system nonlinearity.   It is suggested that 
for a 4N+1 sample size, µ , 1µ σ± , and 3µ σ± , should be 
used.  However, if one parameter is known to be extremely 
non-linear, additional sample points for that variable should 
be performed.  It should be noted that this does not require 
additional samples along the remaining dimensions.  The 
dimensional reduction method does not require orthogonal 
arrays due to its one dimensional nature. 
Step 2 Perform one-dimensional function approximations for 
all random input parameters using the stepwise moving least 
squares approximation. 
Step 3 Perform numerical integration using the adaptive 
Simpson rule to calculate statistical moments for all 
approximate functions in Eq. (5) 
Step 4 Create probability density (or distribution) function 
based on statistical moments using the modified Gamma 
distribution [17] or a Pearson system [18]. 

 
4.3 VERIFICATION OF THE EDR METHOD 

To verify that the eDR method can handle nonlinear, multi-
dimensional problems where input parameters are non-
normally distributed, a vehicle side impact problem is 
considered for uncertainty propagation [5].  In fact, when all 
random inputs are set to normal distribution, the errors of 
statistical moments are maintained below 1%. So, in the vehicle 
side impact problem, the velocity of the door is considered with 
non-normal and skewed distributions for random inputs.  An 
explicit relationship for the velocity of the door at the B-pillar 
of the car frame, dV , has been determined [11] as  

 
1 4 2 3

2
5 6 5 7 7

0.75 0.489 0.843

.0432 .0556 .000786
dV X X X X

X X X X X

= − − +

− −
 (10) 

where all random variables are defined in Table 2.  This 
problem encompasses three different distribution types; normal 
distributions, ( , )N µ σ , beta distributions, ( , , , )q rβ µ σ , and 

uniform distributions, ( , )U L U , where µ  is the mean, σ  is the 
standard deviation, q and r are the beta distribution parameters, 
L is the lower bound, and U is the upper bound. Both X3 and X4 
are positively skewed, whereas others are symmetric. 
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Table 2 Distribution Parameters for Random Inputs 

Random Variable Parameters 

1X  the floor side inner (1,.05)N  

2X  the door beam (1,.05)N  

3X  the door belt line (1,.05,5,36.44)β  

4X  the roof rail (1,.05,5,36.44)β  

5X  Material property of 
door beam (0.3,.006,5,36.44)β  

6X  material property of 
inner B-Pillar (0,10)U  

7X  the barrier collision 
point width (0,10)U  

For this problem, the 4N +1 sampling points are used to 
generate the stepwise moving least squares approximation and 
they are chosen using the moment-based quadrature rule.  As 
shown in Fig. 2, it shows a good agreement of probability 
distribution for the velocity of the door at the B-pillar between 
the MCS and the eDR method.  As well, Table 3 displays the 
resulting statistical information of the response from the eDR 
method as well as the Monte Carlo simulation with 100,000 
samples. The skewness is quite small and thus the error in the 
skewness appears to be relatively large. But, it is negligible 
since the percentile error becomes highly susceptible to a small 
fluctuation.  This is justified by the resulting histogram of the 
simulation and the PDF of the eDR (generated using the 
modified Gamma distribution), shown in Fig. 2. 

 
Fig. 2 Histogram (MCS) and PDF (eDR Method) 

 
Table 3  Results Side Crash Example 

Method Mean Std. 
Dev. 

Skewness Kurtosis 

MCS -0.6615 0.2331 -0.4364 2.7327 
eDR -0.6606 0.2328 -0.4380 2.7181 
Error, % 0.1325 0.1307 0.3605 0.5327 
Copyright © 2006 by ASME 
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5. CASE STUDY 
The proposed methodology is illustrated with an example 

representing the assembly of a hood-pin bracket. As seen in 
Fig. 3, the bracket consists of the attachment element and the 
locating pin for the hood. The location of the pin is a critical 
dimension that determines the appearance (gap and flushness) 
and closure effort of the hood. The material of each component 
is a mild steel with young modulus E = 20,700 N/mm2 and 
Poison’s ratio � = 0.3. The approximate length and height of 
this assembly is 150mm by 150mm.   

 
Fig. 3 Hood bracket 

The ABAQUS model was developed to replicate the 
assembly process, as shown in Fig 4. The assembly of the 
bracket includes two components: the bracket itself including 
the locating pin for the hood and the fender. Three contact areas 
have been identified for this assembly. Each contact area 
defines a set of contact element pairs between the two 
components. These contact areas 1, 2 and 3 are circled in Fig. 
4. Two additional contact areas are identified in the model; 
these areas correspond to the contact between the welding tool 
and the components. These contact pairs (4 and 5) are indicated 
by rectangles in Figure 4. The friction coefficient is assigned 
with value of 0.1. In order to improve the convergence of the 
model, a fine mesh is considered around the contact areas. The 
contact pairs are used to avoid the penetration between 
components and between a tool (clamp or welding gun) and the 
assembly components. 
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Fig. 4 Hood bracket assembly model 

Four possible sources of variation have been simulated in 
the assembly. The sources of variation are represented as 
nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
dimensional geometric errors in each component. As shown in 
Fig. 4, the sources of variation are: the material thickness of the 
bracket and fender, x1 and x2, respectively; the corner gap, x3, 
and the flange gap, x4. These dimensional errors are normally 
caused by the manufacturing process producing these two 
components. The FE model is parameterized to include these 
four variables., which are specified in Table 4. A Beta 
distribution is used to describe the random behavior of the input 
variables to avoid outliers in the distributions that may cause 
difficulty on the convergence of the finite element model. The 
key product characteristic in the bracket assembly is the angle 
and location of the hood pin. The objective of the analysis is to 
determine the angle change on the pin after assembly. 
Simulations are conducted to determine the statistical 
distribution and parameters that describe the random nature of 
the angle after assembly due to the input variation on the 
variables 1 2 3 4, ,  and x x x x . 

Table 4 Random Input Parameters 

Random 
Variable 

Physical 
Property 

Distribu
-tion 

Mean 
(mm) 

Range 
(mm) 

x1 
Thickness 

Component 1 Beta 1.1 0.9~1.3 

x2 
Thickness 

Component 2 Beta 1.0 0.7~1.3 

x3 Corner Gap Beta 1.5 0.0~3.0 

x4 
Flange 

Gap Beta 3.0 0.0~6.0 

 
The assembly process is simulated following the 

methodology presented in Fig. 1. First, the assembly 
components are located in the station using a set of locators. 
The displacement of the left flange on the bracket is 
constrained in all three Degree of Freedoms (DOFs) (tx, ty, and 
rxy in 2D plane model) where tx, ty, and rxy are translational 
displacements along horizontal and vertical axes and rotational 
displacement on the 2D plane, respectively. The fender is 
located using two locators at each extreme constraining the 
three DOFs. The assembly simulation begins approaching the 
lower electrode of the welding gun to the fender and moving 
the upper electrode downward in order to close the gap between 
the right ends of the two components. After the right end of 
components has been deformed, the vertical distance between 
the welding gun tools is maintained at the combined thickness 
of the two parts (e.g., x1+x2). Then, both components are joined 
together using the bonded contact property and the connector 
elements in the welding area not allowing any separation. 
Finally, the welding gun and the fixture at the right end of 
fender are removed, which results in the assembly springback.  
Figure 5 shows the change in the hood-pin angle before and 
after assembly. As can be seen in the figure, the angle of the pin 
does not recover its nominal position due to the new assembly 
constraints. 
Copyright © 2006 by ASME 
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Fig. 5 Finite element results from before and after assembly 

 
5.1 RESULTS FROM THE NON-CONTACT MODEL 
AND CONTACT MODEL 

In order to compare the results from the new contact 
assembly methodology with respect to the traditional linear 
non-contact assembly modeling, an MCS without considering 
contact between the components or tools was conducted. The 
difference of the effect between the non-contact model and 
contact model is showed graphically in Fig. 6. As shown in the 
figure, the main limitation of the linear assembly modeling is 
the penetration of the bracket into the fender.. Figure 6a shows 
the expected results using traditional MIC. As can be seen, the 
components penetration remains after assembly. Even that this 
condition is physically impossible, these results are common in 
assembly modeling. The proposed methodology result for 
contact assemblies is presented in Fig. 6b. Penetration between 
components is eliminated. This solution provides a closer 
estimation of the physical phenomenon.  

  
a) Non-Contact Model                  b) Contact Linear Model 

Fig. 6 Finite element results after assembly, non-Contact and 
contact linear models 

 
5.2 NON-LINEAR CONTACT MODELING RESULTS 

Using the eDR method and the predictive non-linear 
contact assembly model, the assembly of the hood-bracket was 
studied. The relationship between the input variables xi, shown 
in Table 4, and output variable y, the hood-pin angle, was 
studied. First, the non-linearity of the assembly response was 
analyzed. After an initial analysis, the variables x3 and x4 were 
identified to be significant to the response non-linearity. In 
other words, the pin angle is more sensitive to changes on the 
shape of the bracket (parameters x3 and x4) than to changes in 
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the thicknesses of the components (parameters x1 and x2). The 
non-linearity relation between the pin angle and the variables x3 
and x4, was investigated by building a response surface with 
multiple simulation runs, as shown in Fig. 7. For this study, two 
cases were considered: compliant assemblies with and without 
contact considerations. In the case of the linear model without 
contact, 15 points equally distributed along each range of x3 and 
x4 were sampled, while keeping x1 and x2 at their mean values. 
The pin angle was determined for the 225 data points. Figure 7a 
shows the results for the non-contact model results. As can be 
seen, the angle of the pin is independent of the variable x3. This 
can be explained because any change in the variable x4 only 
increases the penetration between the components without 
affecting the springback of the assembly. In contrast, the 
response surface for the contact model was built with 20 
equally spaced samples along x3 and x4 range. So, a total of 
400 FE analyses were conducted to study the non-linearity of 
the pin-angle. Figure 7b shows the nonlinear relation between 
the input variables x3, x4 and the output variable y for the 
contact model. Three zones can be identified in the figure. First, 
Zone 1 corresponds to the cases where the two components 
never become in contact, except for the welding area. Zone 2 
corresponds to the cases where the two components experience 
a weak contact. Weak contact means that the contact is 
observed as the corner section of upper component pushes the 
bottom component down, however no significant component 
deformation occurs.  Finally, Zone 3 corresponds to the case 
when the components significantly deform during the assembly 
process due to the component interference. During this 
interaction the corner section of upper component first pushes 
the bottom component down until reach the most deformation, 
and then the corner section of upper component is forced to 
move to left along the top surface of bottom component to 
compensate the deformation on the flange. 
 

 

 
 

 
a) Non-Contact Model                     b) Contact Model 

Fig. 7 Angle Response with respect to variables x3 and x4 
 

5.3 PIN ANGLE PREDICTION USING EDR METHOD 
AND MONTE-CARLO SIMULATION 

Direct MCS is performed by artificially generating a set of 
random numbers (5,000 sample size) for variables x1, x2 , x3 and 
x4. Those variables are assumed to follow an independent Beta 
Copyright © 2006 by ASME 
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distribution with random properties in Table 4. The sample size 
is chosen based on the following criteria: accuracy and 
efficiency of the predictive model. The predicted model will be 
compared between the MCS and the eDR method in terms of 
the PDF and statistical moments.  

 

  
Fig. 8 The eDR Method with predictive contact model 
 
The flow chart for the enhanced Dimensional Reduction 

Method combined with Predictive Model for Contact Assembly 
is showed in Figure 8. 

 
Table 5 4N+1 Sampling points for the eDR Method 

X1 X2 X3 X4 Y 
0.9 1 1.5 3 1.8054 
1 1 1.5 3 1.7514 

1.2 1 1.5 3 1.6357 
1.3 1 1.5 3 1.582 
1.1 0.7 1.5 3 1.4966 
1.1 0.85 1.5 3 1.6002 
1.1 1.15 1.5 3 1.7696 
1.1 1.3 1.5 3 1.8276 
1.1 1 0 3 0.54317 
1.1 1 0.75 3 0.99872 
1.1 1 2.25 3 2.2272 
1.1 1 3 3 2.6692 
1.1 1 1.5 3 1.6933 
1.1 1 1.5 0 1.0414 
1.1 1 1.5 1.5 1.3444 
1.1 1 1.5 4.5 1.7431 
1.1 1 1.5 6 2.0324 

 
The eDR method used 4N+1 sampling points to predict 

random behavior of the pin angle, where N = 4, generating a 
total of 17 sample points, which are evaluated using the FE 
analysis. The sample points are chosen by the advised method 
discussed in Step 1 of the eDR method.  These sample points 
are listed in Table 5. While employing the eDR method for 
uncertainty propagation of the pin angle, one dimensional 
response approximation must be performed along each random 
variable using the SMLS method.  To show the accuracy of the 
stepwise moving least square method, the response with respect 
to x4 and 25 FE analyses, where x1, x2 and x3 remain constant 
are shown in along Fig 9.  As can be seen the stepwise moving 
least squares method accurately approximates the actually 
relationship.  The response with respect to x4 is the most non-
ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
linear of the four input parameters, therefore showing that all 
four responses can be accurately approximated with this 
method.   

 
Fig. 9 Nonlinearity prediction using Stepwise Moving Least 

Squares method 
As shown in Table 6, the eDR method estimated random 

behavior of the pin angle accurately and efficiently, compared 
to the MCS. It is also verified from the PDF approximation, as 
shown in Fig. 10. 

 
Table 6 Comparison of the methods 

Model No 

Contact 

With Contact 

Method MCS eDRM MCS Error (%) 
Mean(mm) 1.3653 1.5811 1.6028 1.3539 
Std. Dev. 0.4577 0.4402 0.4423 0.4771 

No of 
FEAs 

5,000 17 5,000 

CPU Time 
(minutes) 

7,500 34 10,000 

 
The compared results of non-contact and contact models 

are showed in Table 6. MCS was used for the non-contact 
model to predict the output distribution. For the contact model, 
MCS along with the eDR method were used to approximate the 
output uncertainty. The error percentage between the solutions 
of the MCS and the eDR method for the contact model is also 
shown in the table. It is evident that the eDR makes a good 
agreement in the mean and standard deviation with the MCS. 
As shown in Fig. 7, the pin angle response must hold highly 
nonlinear interactions between x3 and x4, since the stepwise 
response runs along the diagonal direction of x3 and x4. 
According to the error analysis of the eDR method, numerical 
error can be accumulated from bi-quadratic terms or higher. It 
is thus obvious that numerical error is mainly due to highly 
nonlinear interaction between x3 and x4. As well, it is expected 
that the MCS yield a minor degree of the error due to a finite 
number of samples. 

As shown in Fig. 10, there is a good correlation between 
the histogram from the MCS and the PDF from the eDR 
Copyright © 2006 by ASME 
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method.  So, this case study shows that the eDR method 
produces an excellent estimate of the uncertainty propagation 
of the highly nonlinear assembly process. 

 

Figure 10  MCS Histogram and eDR Method PDF 
 
6. CONCLUSIONS 

This paper presents a new methodology for variation 
propagation modeling on compliant assemblies that includes 
the contact effect between components and assembly tools 
(fixtures and welding tools). The methodology is based on 
finite element method. A parametric model is used in order to 
incorporate the input variation from different variables. In 
addition, several elements to improve finite element 
convergence were implemented. The new model response from 
contact assembly is non-linear; therefore, the traditional 
sensitivity analysis is not adequate to estimate the statistical 
response of the characteristics of the assembly.  In order to 
improve the efficiency of the methodology compared with 
MCS methods, the eDR method is used to sample and estimate 
the statistical response of the system. A case study is presented 
for the assembly of an automotive hood-bracket. The proposed 
methodology combined with eDRM produces an excellent 
estimate of the uncertainty propagation on highly nonlinear 
assembly processes. 
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