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Competition between energy and phase relaxation in electronic curve
crossing processes

John M. Jean
Department of Chemistry, Washington University, St. Louis, Missouri 63130

Graham R. Fleming
Department of Chemistry and The James Franck Institute, University of Chicago, Chicago, lllinois 60637

(Received 17 January 1995; accepted 3 May 1995

We present results from simulations of vibrational energy and phase relaxation and electronic curve
crossing using a multilevel formulation of Redfield theory, which demonstrate the shortcomings of
the optical Bloch approximation and the importance of coherence transfer processes in the
relaxation dynamics of multilevel systems. Specifically, we show that for a harmonic well, energy
relaxation can occur with retention of vibrational phase, and that for sufficiently strong electronic
coupling, the product of an electronic curve crossing process can be formed vibrationally coherent
even when no coherence is present in the initially excited statd9@€5 American Institute of
Physics.

I. INTRODUCTION 1 1 1
. =57 T (1b)
Improvements in femtosecond lasers have made the ob- T2 2T; T3

servation of vibrational quantum beats commonplace. Par- . o .
ticular interest has been excited by the detection of oscillagepend'ng on whether the lower level is |n_f|n|te_ly I_ong-llved
tions in the stimulated emissiband spontaneous emissfon ©" not. HereTy, and*T.lb are the populatlpn Ilfetlmes of
of the special pair of the bacterial reaction center, and by thbevels a andb a_md T2 IS Fhe pure dephasing time. In the
observation of oscillations in the transient absorption spec§'econd casel, is the lifetime of the upper level. Thug,
trum of the initial photoproduct of the retinal chromophore in can never exceedT3 or

the rhodopsin systemThese results imply that the two fun- 2T, T

damental photobiological processes of photosynthesis and T,=<
vision have initial steps that are fast compared to vibrational
dephasing and thus have been referred to as “coherent.” Seyn the latter caseT, cannot exceed; if T;,=T;p=T;.

eral other studies have observed coherent vibrational motio‘mhus the observation of Vibrationa' quantum beats has gen_
following what would generally be considered a curve crosserally been taken to imply that vibrational energy relaxation
ing process. For example, Schertral:* see well-defined s slow. Is this generally so or do relaxation pathways ne-
wave packet motion out to abbd A bond length following  glected at the optical Bloch level, i.e., coherence transfer
solvent-induced photodissociation of iodine from the bountterms, play an important role?
B state to the dissociative or a’ states in hexane solution. A second and related question raised by the experiments
Wynneet al® find vibrational quantum beats produced in thejs: Can vibrational coherence be created in a reactive event
ground state of the TCNE-HMB complex following optical (e.q., curve crossingeven if the initial state has little or no
excitation to the charge transfer state and subsequent iRjprational coherence or does such an observation imply a
tramolecular electron transfer back to the neutral stategoherently vibrating reactant? Is optical excitation of a state
Equally intriguing is the comparison of classical simulationsgitferent from preparation of the same state via an interme-
and experimental studies of iodine caging in solid kryptongiate state? Further, can a nonadiabatic process lead to co-
described by Zadoyaet al® Following excitation into thé\  herence in the product or does this require that the process
state, very rapid energy relaxation occurs with significantyroceed on a single electronic surface? If strong electronic
retention of vibrational phase. Indeed at low temperaturegoupling is required for coherence to be created in the prod-
vibrational phase is even partly retained for times up to 4 pg;ct, are electronic recurrences expected in addition to the
in iodine molecules reformed as a result of rebounding fromyiprational beats? Finally, if a vibrational wave packet is
the krypton cage. observed in the reactant but not in the product, does this
These studies raise many challenges to conventional d¢nean that the coherent motion is not important in the reac-
scriptions of vibrational and electronic relaxation based onjgn?
the approximations of the optical Bloch equations. For a  \ve have attempted to provide answers to these questions
two-level system, the total dephasing rate in the opticahy means of simulations based on Redfield relaxation

_—. (1c
TiatTap

Bloch picture is given by theory’~° As described in more detail below, the ability to
1 1/ 1 1 1 set particular elements of the Redfield tensor to zero allows a
.73 (T—+ T—) + T (19 precise analysis of the applicability of the Bloch model to
2 ta b 2 multilevel systems and the competition between vibrational
or and electronic relaxation and dephasing.
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In the Redfield approach, the dynamics of a few “sys-simple Bloch model. The tern®g;; ,, transfer coherence be-
tem” degrees of freedom are treated explicitly, while the re-tween state& and| to states andj and have no analog in
maining degrees of freedom comprise a thermal bath, whickhe Bloch model.
is weakly coupled to the system. A second order perturbative  Nonsecular term$Aw+0) tend to be relatively ineffec-
treatment of the system-—bath coupling yields dissipativdive in the relaxation process since their effect averages out
terms that correspond to transitions between system levefsr times, 7, that satisfyAw- 7>1. These include terms such
(population relaxation random fluctuations of system en- as R;; ;;, which couples populations and coherences and
ergy levels(pure dephasing coupling between populations R;; ,(Aw#0), which connects coherences having different
and coherences, and transfer of coherences between pairsuwfperturbed time dependence. Walsh and Codfduave re-
levels. The latter two terms are neglected in the standardently carried out Redfield calculations on a harmonic oscil-
Bloch approximation. lator linearly coupled to a harmonic bath that show that the

Two model systems are considered hdfg;relaxation importance of nonsecular terms on the relaxation dynamics
within a single harmonic surface afi2) electronic relaxation increases as the system—bath interaction increases. In what
between two diabatic states following either optical or ther-follows, we keep both secular and nonsecular terms in the
mal preparation of one of the two states. We consider only &edfield tensor.
single vibrational degree of freedom; however, extension to  The solution to the coupled Redfield equations can be

multidimensional systems is straightforward. expressed in the form
p(t)=e"'p(0), (4)
Il. REDFIELD FORMALISM wherep(0) denotes the density matrix &0 and theL ma-

] ) trix is given by
The elements of the reduced density matrix for the sys-
tem obey the coupled Redfield equatibns Lij 0= —1 i 68— Rij ki - (5)

Exact evaluation of the propagat@-', can be carried out
bij(t)= _iwijpij_z Rij kipki(t)- (2)  via diagonalization of thé& matrix as described in Ref. 8.
K ’

The first term on the right-hand side describes the {oee
herent motion of the system under the influence of its lll. QUANTUM HARMONIC OSCILLATOR COUPLED
Hamiltonian. The second term corresponds to the dissipativéO A THERMAL BATH

effect of the environment on the system. Elements of the
Redfield tensorR;; \,, connect density matrix elemepy; at
time t to elementp;; at some later time’. A second-order
treatment of the system—bath interaction yields the followin
expression for the tensor elements in terms of correlatio
functions of the system—bath coupling matrix elements:

In this section we discuss the structure of the Redfield
relaxation tensor and compare results from simulations of
elaxation of a harmonic oscillator obtained using the full

£{ﬁledfield tensor with those obtained from a multilevel Bloch

model (i.e., only population relaxation and pure dephasing
present At issue arg1) Does the Bloch relation hold for the
overall energy relaxation timeg, and the coordinate damp-
<V”(O)Vik(7)>efiw,jf ing time, 75? (2) What effect do coheren_ce transfer terms
have on the relation between these two times? (@hdoes
the Bloch relation hold for a pair of levels in a multilevel

1 ©
Rij,k|:_ﬁ fo dT

+(Vij(1)Vig(0))e™ iK™ system?
We will denote the system coordinate @sand the bath
_5”2 (Vis(T)Vi(0))e ™ sk coordinates a®]. The coupling to the bath contains terms
S

that are linear and quadratic in the system coordinate,

Q=(1/2)(a+a™). The Hamiltonian is

— i <V|s(0)Vsj(T)>e_'w'sT}- (©))

S H=Hg+Hg+V, (6)

The Redfield equations are based on the assumption that there

timescale of interestAt, is short compared to the relaxation

times but long compared to the bath correlation time,

That isRjj > At>r. Hs=
Elements of R in which the frequency mismatch

(Aw)=w,— oy~ 0+ ;=0 (i.e., secular termsare particu- 1 1

larly effective in the relaxation process. These include terms V= 7 fi(g)(a+a™)+ > fo(q)(a+a’)?,

SUChRii’“‘ y Rij,ij y andRij’k| for Wh|Ch Aw=0 The firSt two

terms are rate constants for population transfer from gtate anda™ anda are the boson creation and annihilation opera-

to statei and dephasing of coherence between statel | tors. The linear coupling term connects states that differ by

and are the analogs of the inver§g and T, times in the one quantum of energy and are thus give rise to one-phonon

1
ata+ =

5 ho,
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2094 J. M. Jean and G. R. Fleming: Electronic curve crossing processes

relaxation processes. The quadratic term introduces pura our treatment, the bath is stochastic, thus we replace the
dephasing into our model in addition to two-phonon relax-quantum mechanical correlation functions appearing in Eq.

ation processes.

(79) with their time-symmetrized classical analdgsin

Examples of the secular terms that arise from this formterms of the classical correlation functions, the spectral den-

of the system—bath coupling are shown below;
one-phonon relaxationj &),

-1 . . _
Rii,jj:F [Ki1QIiNA[I1 (wji) +I1 (wij)]
j—il=1, (78)
two-phonon relaxationji),
— a2z +
Rii,jj:F [(i1Q%[)[°[ I3 (wji) + I3 (wij)]
li—il=2, (7b)
population decay of leval,
1 ,
Rii,ii:-l—_l’i:;#i Resii [s—i[=1,2, (70

dephasing,

1
Ryss=1, =52 (Ci1Q2) = (11Q%11)21 0]

pure dephasing

1 . .
+§ 2 Rssii+2 Rssjj |J_I|:0!1121
SFI SFi

(7d)
coherence transfépne-phonon terms
-1 i e
Rij,jk:?_<k|Q|J><||Q|J>[J1(wkj)‘l"];_—(wij)]
|k—i|=2
1-j|=2, (79
coherence transfétwo-phonon terms
-1 2[i\(ilO2 - +
Rij,kI:F<I|Q [DGQK)IZ (wij) + I3 (wik)]
II-il=2
lk—jl=2. (7f)
The spectral densitied;(w), are given by
Jf(wij):fo d=(fi(q,7)f(g,0)ye"" i,
(79

3 ()= | “ar(ti(@.0)f (@, m)e e,

where

fi(q,7)=e'"s7f;(q,0)e” s,

sities become

i (@) =(1+ePrei)~

Xfwd7'<fi(qyT)fi(Q-O»clefiw”T,
0

8
Ji(wij)z(l-l-e*ﬁﬁ“’ii)’l ®)

Xfwd7<fi(qvo)fi(qi7')>cle_iwij7-
0

Using these definitions for the spectral densities, it is easy to
verify that the population relaxation rates obey the detailed
balance relation, i.e., R j;/R;; i) =€""“i.

To construct the Redfield tensor, we assume the bath
correlation functions decay exponentially with a correlation
time, 7, . Assuming this time is much shorter than any times-
cale relevant to the system allows us to make the replace-
mentJ;(w)—J;(0)=(f?)7,. The spectral densities that en-
ter into the Redfield tensor thus have the form

I (wij) = fire(1+ePhon) 1,

- __£2 —Bhowjiy—1 (9)

Ji (wij)—firc(l-i-e 'J) .

We begin by examining the role of coherence transfer
terms in the relaxation of an oscillator in which the coupling
to the bath contains only the linear term. Thus in this ex-
ample, interactions that lead to pure dephasing between any
pair of levels are absent. The primary observables of interest
are the system energy and the value of the coordir@te,
The average values of these observables are given by

(E(1))=Tr{p(t)Hg}, (10)

(Q(1))=Tr{p(1)Q}. (12)

The density matrix at=0 is given by the superposition state
pes(0) = p77(0) = pe7(0) = p76(0)=0.5,
pij(0)=0; i,j#6,7,

which corresponds to a coherence between levels 6 and 7.
The linear coupling term,f2r., is chosen such that
T,(1—0)=2.0 ps. Note from the form of the one-phonon
relaxation terms that the population relaxation rate increases
linearly with quantum number. ThusT;(h—n—1)
=n"1T,(1—0). Since we are working in the eigenstate rep-
resentation, the system energy depends only on the diagonal
elements of the system density matrix. The only terms of the
Redfield tensor that enter into the relaxation of the energy are
the one-phonon population relaxation terms. The decay of
the system energy to its equilibrium value is shown in Fig.
1(a). The decay fits well to a single exponential with a time
constant,7z, of 4.2 ps.

The coherence present in the density matrix=a0 re-
sults in an initial value for the ensemble-averaged coordi-

J. Chem. Phys., Vol. 103, No. 6, 8 August 1995
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FIG. 1. (a) Decay of the nonequilibrium energy for a quantum oscillator. | e
The equilibrium energy in the system is given {&(«))=[%w/exp#w/kT) 0 1 L ! i —
—1]. w/27=100 cni’Y, T,(1-0)=2.0 ps,T5(An = 1) = , T=298 K. (b) 0 2 4 6 8 10 12

Decay of the coordinate amplitude obtained using the full Redfield tensor. Time (ps)

. . . o FIG. 2. Time-dependence of selected density matrix elements for the oscil-
nate,(Q), that is displaced from its equilibrium value of |ator described in Fig. 1 obtained using the full Redfield tensar.

zero. The dissipative dynamics are governed primarily by thes(=(6lpl7); (b) ps4; () pos; (&) () pesi(—)p77-

one-phonon population relaxation terms and the one-phonon

coherence transfer terms. The decay of the amplitude

is shown in Fig. 1b). Fitting the data to the function

(Q(1))=(Q(0))cos(t)e V" yields a value of 6.2 ps for coherence transfer terms should still play an important role.
7o- We thus have the unusual condition that the loss of en-  The above result clearly shows that if one equates the
ergy from the system to the environment occurs faster thaenergy relaxation time of the oscillator with, and the

the destruction of phase coherence in the system, i.edamping time of the coordinate with the dephasing tihg,
Te<Tq, Which is the multilevel analog of;<T,. The ori- the relation between these two times does not necessarily
gin of the above result can be seen by examining the effect afbey the Bloch relation, Eq1c). We next ask whether the
the coherence transfer terms on the dynamics. Since the axelation betweenT; and T, hold for a pair of levels in a
erage value of the coordinate depends only on the offmultilevel system when coherence transfer processes are op-
diagonal density matrix elements, we look at the magnitudesrable. Figure @) shows the decay of population m=6

of these elements as a function of time. The magnitudes aind n=7 as a function of time employing the same initial
the coherence for several pairs of levels are shown in Figsondition and linear coupling parameter as stated above. The
2(a)—2(c). We see a rapid destruction of the initial phaselifetimes for the levels are given byT;(n=6)
coherence involving levels=6 andn=7. The only dephas- = Rg61,66=0.19 ps andTl(n=7)=R;7%77=O.16 ps. The

ing terms here are the one-phonon relaxation terms which amoherence between these two levels is shown in FHa). 2
quite large at such high energies. The temporal behavior ofwo things are clear form the decay profilés;the decays

the off-diagonal elements shows that as the population reare nonexponential, which results from the fact that the
laxes to lower levels, phase coherence is also transferregopulation of a given level is determined by several compet-
The efficiency of the coherence transfer process is a result afig source and loss terms, afid) the dephasing rate of the
the harmonic form of the potential, which guarantees exactoherence is smaller than one-half the sum of the two popu-
frequency matching between pairs of levels that differ by thdation decay rates. Thus in multilevel systems the dynamics
same number of quanta. An anharmonic form of the potentiabf any given level receive contributions from relaxation ten-
would result in frequency mismatches rendering the cohersor elements neglected at the Bloch level. The appropriate
ence transfer terms less effective; however, if Thepro-  Redfield tensor elements, however, do obey the Bloch rela-
cesses are fast compared @9, — w; ! in such a system, tion, i.e.,

J. Chem. Phys., Vol. 103, No. 6, 8 August 1995
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FIG. 3. Decay of the coordinate amplitude for a quantum oscillator obtained 0.5
using the Bloch approximationw/27=100 cml, T;(1—0)=2.0 ps, A -
T5(An = 1) = », T=298 K. = 0
<
v
-0.5
R 1 1 1 ( 1 1 ) -1
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as shown in Eq(7d). 0 1 2 3 4 5 6 7 8

We contrast the behavior seen above with that obtained Time (ps)

on the identical system employing a multilevel Bloch ap-
proximation. Here the only terms included in the Redfielthhlg- ;Eef;n?:zca% 0; &f:: rét;npilt:::g};m efoeégsé ,';95 a gU(almttg)n ;sgillgtsor in
; T= ) —0)=2. .

tensor gre the one-phonon poDUIatlon relaxaﬂﬁ.n“ , and - T§(A_n=1)=ﬁ.0 ps,T=298_ K. (b). Decay of the coérdinate amplitude
dephasingR;; j; , terms. The decay of the coordinate ampli- hained using the full Redfield tensor.
tude is shown in Fig. 3. The energy relaxation dynamics are
unaffected by the absence of non-Bloch relaxation terms
since only population relaxation terms enter into the dynamvyent caging at low temperature by Apkarian and co-worRers.
ics. However, the coordinate relaxes on a subpicoseconfihey observe coherent oscillations of the newly reformed |
time scale due to the rapid loss of population. The absence @holecule out to 4 ps, though energy relaxation is found to be
coherence transfer terms traps the coherence to those levédsgely complete on a subpicosecond time scale. The appar-
initially populated. In this case, we have the usual inequalityent efficiency of coherence transfer processes in this system
TE>TQ- may be a result of a near harmonic form for thebtential

It is interesting to investigate the situation where thefunction in the presence of the krypton cage. This would give
coupling of the oscillator to the bath contains both linear andise to transfer of phase between pairs of levels with nearly
quadratic terms. This introduces pure dephasing as well ggentical transition frequencies.
two-phonon relaxation terms. An interesting competition
now arises between the pure dephasing and two-phonon
population relaxation terms, which increase the rate ofv' TWO ELECTRONIC STATES COUPLED TO A

. UANTUM OSCILLATOR

dephasing, and the two-phonon coherence transfer term
which lead to more efficient transfer of coherence to pairs of The second model we discuss pertains to the quantum
levels at lower energy. Figure 4 shows results for a systerdynamics of nonadiabatic transitions in a dissipative me-
with T;(1—0)=2.0 ps andT; = 6.0 ps. Though the linear dium. The effect of dissipation on condensed phase curve
coupling term is the same as that in the earlier example, therossing phenomena has been treated by numerous workers
7= time is now reduced 1.8 ps due to the presence of twoemploying both quantum mechanit&lt?-**and semiclassi-
phonon relaxation pathways. The decay of the coordinateal description$*~28We consider two electronically excited
amplitude occurs on a similar time scale, which shows thastates coupled to a quantum harmonic oscillator, which, in
even in the presence of pure dephasing mechanisms, the dfoin, is weakly coupled to a thermal bath. This serves as a
servation of vibrational oscillations does not imply that en-simple model for condensed phase photoinduced curve
ergy relaxation is slower than the coordinate damping timecrossing processes where the electronic states couple

The results above clearly demonstrate the pitfalls of apstrongly to a single nuclear mode such as a low frequency
plying the Bloch equations to the dynamics of a multilevelprotein phonon or an underdamped solvent librational mode.
system and point out the importance of coherence transfaie have recently examined in detail the competition be-
terms in determining the relation between the dephasing aniveen vibrational energy relaxation and dephasing and elec-
energy relaxation times. These results are significant in lightron tunneling in this systefrf and the manner in which this
of the recent results on iodine recombination following sol-competition is manifested in time-resolved fluorescence

J. Chem. Phys., Vol. 103, No. 6, 8 August 1995
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curve crossing process can lead to vibrationally cohererlt the de“S'tY matrix in t_he diabatieigenstaterepresenta-
product formation. The motivation for our studies Cc)mesnon.‘lfcontams the matrix elements of the system—bath cou-

from the recent observations of vibrational coherence irP!iN9 Operator in the eigenstate representation. In this repre-
time-resolved studies of the primary electron transfer step isentation, the Redfield equations become
bacterial photosynthesi8 and vibrationally coherent all

transretinal formed by ultrafast isomerization of &is reti- pum()=—i[(En— EM)/ﬁ]PNM_PEQ Rnm,poepal(t)
nal in the rhodopsin systefn. (15)
The Hamiltonian for our model system is h
wit
HS:HG+HE! (12) 1
with Rum,po= ~ 72 Jo d7| (W ou(0)Wyp(7))e ' oem
1 —iwnpT
He=|G)ja"a+ 5 ho(G|, H(Waom(T)Typ(0))e NP
1 —Squ (Ung(7)Wsp(0))e"os?”
He=|1)| €, + a*a+§ fiw+gi(a+a’)|[(1]+]2) S
1 — 3o (Wos0)Wgy(7)e ' “es"|,
X| e+ a+a+§ ho+gy(a+a™) (2| S

whereN,M,P,Q label eigenstates of the system. As before,
+3{|1)(2[+[2)(1]}, we replace the spectral densities in Etp) by their values at

whereG refers to the ground electronic state and 1,2 refer t¢?~0- Numerical solution of the Redfield equations provide

excited electronic states. The system coordinate is denotétf with the.time-dependent density .matrix' in thg eiggnstate
by Q and the bath coordinates hy.  is the vibrational representation. The total population in a given diabatic state

frequency andh anda* are the boson operators for the sys- is then found by transforming back to the diabatic represen-

tem coordinate, which is defined such tig0 corresponds ta_ltion _and tracing over all vibro_nic Ievels_ b_elor_lging to that
to the minimum of the ground state surface. The tunnelingli2batic state. Thus the population of stfifeis given by
interaction between diabatic statds and|2) is denoted by Pi(t)=Tr[p(t)]. (16)
J. The electron—phonon couplings,, have units of energy
and are related to the excited state dimensionless displac
ments,A;, by g;= —Aifiw/v2 and ¢ is the vertical energy
separation between the ground state and excited istate

As in the previous section, the system—bath interactio

g\_/hile population dynamics provide insight into coherence
effects on the dynamics of electronic curve crossing, addi-
tional information pertaining to coherent vibrational motion
;gan be obtained from the ensemble-averaged system coordi-

for diabatic statei) is assumed weak and expanded to sec!at€
ond order in the system coordinate about the minimum, (Q())=Tr p(1)Q], (17
Vi(q,Q)=f(li)(q)(Q—Ai)Jrf(zi)(q)(Q—Ai)z. (13 where the coordinate operator is defir@dthe diabatic rep-

I . . resentatiopas
Vibrational energy relaxation, dephasing, and coherence n

transfer rates in a given diabatic state can be constructed

from matrix elements of as shown in the previous section. Q=|1)
Convenient implementation of Redfield theory requires ~ A

that we work in the representation which diagonalizes the =Q1+ Q2. (18

system Hamiltonian. In this representation, the only couplingrhe average value of this operator is influenced by both vi-
present is the weak coupling between the system levels anglasional coherences and electronic population dynamics.
the thermal bath. The details of our approach derive fronpefining the coordinate operator in the manner above allows

earlier woré< of Wertheimer and Friesfierand Wertheimer s 1o separate the contributions(®Q(t)) from vibrationally
and Silbey® and are discussed in Refs. 8 and 9. Briefly, theconerent reactant and product motion.

procedure is as follows. The system Hamiltonian operator  the initial density matrixpy, in our simulations is gen-

and system—bath coupling operator are set up in the diabatiGateq by solving the equation of motion to second order in
representation. Denoting the matrix that transforms betweef},o system—field interaction sg=— u-E(t), whereE(t) is

the diabatic and eigenstate representationid,age make the  ihe electric field of the laser pulse, assumitigonly statel1)

1 1
_ + _ +
7 (a+a*+A) 7 (a+a +A2)}<2|

(1/+12)

following transformations: is “bright,” and (2) there is no dissipation during the pufse.
E=U"*HeU, If the displacement of this state from the ground state is zero,
then the effect of the optical excitation is to “lift” the ther-
v=U*Vvu, (14 mal distribution of the ground state up to the excited state. If

J. Chem. Phys., Vol. 103, No. 6, 8 August 1995
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—==oF

tive levels. In the latter case, the preparation results in a
thermal density matrix in the initial state. The crossing of the

diabatic surfaces in this case occur€at0. The time scale

of the tunneling interaction is comparable to the dephasing
time scale, thus we observe pronounced electronic recur-

0.2 - 7 rences in both cases. The lower frequency modulation, with a

01 | period of 2—2.5 ps results from the transfer of population
between pairs of levels that are resonant. For example, the
effective electronic coupling for the-80 transition is given

by Jo.o=J(0|0)=J exp(—S)=6.85 cm !, whereS=1/2 A?

is the Huang—Rhys factor. The period associated with this
coupling is (2Jy.0) 1=2.42 ps. The 41 transition has an
effective coupling ofJ, ;=20 cm %, which has a period of
0.83 ps. In the case of coherent preparation of the initial
state, modulation at higher frequencies is observed, which is
a result of vibrational phase interference effects between dif-
ferent Franck—Condon transitions. This is evident from the
population dynamics for the case of thermal preparation. The
modulation at the higher frequency is absent, whereas quan-
tum beats are still observed at the lower frequency.

Further insight into the role of quantum coherences
on the curve crossing process can be obtained from the
ensemble-averaged value of the system coordinate. Figure
5(b) shows the reaction coordinate trajectory for both coher-
ent and thermal preparation. In the former case, it is clear
that the vibrational coherence created initially persists
FIG. 5. Quantum dynamics of the symmetric double well potential with through the curve crossing process. For the case of thermal
;’/2727;81}30( C”)T;ﬂ;2&0T:a:;&;@):tﬁgnﬁziT’z;éﬁgr;o%()a):l\jghg Zsu preparation, the initial value of the coordinate corresponds to
librium p(.)pulation in thg ir?itially p;epared elegtropnic statb) Reac?ion the minimum of the potential Sl_Jrface pf Std@' As t_he )
coordinate trajectory. The crossing of the diabatic surfaces occu@s=at system moves through the crossing region, weak oscillations

become apparent. The period of these oscillations is shorter

than that associated with any of the effective electronic cou-
the ground and “bright” states have different potential plings between resonant levels and thus correspond to coher-
minima, however, the excitation process results in a localize@nces between levels involving different numbers of vibra-
vibrational wavepacket on the upper surface providing thdional quanta.
pulse is short compared to the vibrational period., impul- The relative importance of various coherences in the
sive). Our main objective here is to determine the influencecurve crossing dynamics can be seen in the frequency do-
of the initial state on the subsequent dynamical behaviornain. Figure 6 shows Fourier transforms of the population
thus we focus on the dynamics of curve crossing followingdecays and the coordinate trajectories shown in Fig. 5. The
impulsive excitation both with and without excited state dis-Fourier transforms of the population dynamics for both the
placement. thermally prepared and coherently prepared cases are domi-

In the examples that follow, the system—bath couplingnated by components corresponding to coupling between di-
terms are chosen such that the relaxation times of the diababatic states with the same number of vibrational quanta, i.e.,
tic vibrational states areT,(1—0)=2.8 ps andT3(n,n Jo.o andJ,_;. In addition to the components corresponding to
— 1) = 6.0 ps. The vibrational frequency is=w/27=100  coupling between resonant diabatic states, we also pick up
cm L. The electron—phonon couplings are chosen such thatigher frequency components. This is evident from the inset
g,—0;=200 cm ! corresponding to a dimensionless dis-in Fig. 6a@), which shows an expanded view of the highfre-
placement ofA=A,—A,;=2.82, and the temperature is 298 quency region. These frequencies are larger than any of the
K. The excitation pulse has a center frequency @f resonant coupling terms involving states initially populated
— wy.o=500 cm ! with a temporal duration of 20 fs. and correspond to coherences between eigenstates that have

As a first example, we compare the effect of the prepalarge projections onto diabatic states with different number
ration of the initial state on the curve crossing dynamics in af vibrational quanta. The appreciable mixing of nonresonant
symmetric double well potential in which the bare tunnelingdiabatic states results from the bare electronic coupling and
matrix element is one-half the vibrational frequency. Figurediabatic vibrational frequency being of comparable magni-
5(a) shows the nonequilibrium population dynamics of thetude. In the case where the initial state is vibrationally co-
initially excited state for the case whetg=—A,=—-1.41  herent, the higher frequency components are much more pro-
and for the case whera,=0 andA,=2.82. In the former nounced; however, the same components appear in the case
case, the impulsive excitation results in the formation of awhere the preparation of the bright state is thermal.
vibrational coherence involving several Franck—Condon ac-  Similar results are seen in the Fourier transforms of the

P1(t) - Py(c0)

-01

0.2 -

<Q(t)>

2 I 1 L 1 1

0 1 2 3 4 5 6
Time (ps)
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FIG. 6. (a) Magnitude of the Fourier coefficients obtained from the Fourier
transform of the population dynamics shown in Figa)5Inset, expanded

view of the region near the diabatic vibrational frequeriby.Magnitude of -0.4 : : :
the Fourier coefficients obtained from the Fourier transform of the system 2
coordinate dynamics shown in Fig(. (—) coherent preparation---)
thermal preparation. The Fourier amplitude is defined Aéw)
={|/5dte” 'R (D)5

Time (ps)

FIG. 7. Quantum dynamics of the asymmetric double well potential with
Ae=300 cm'l, w2r=100 cm?, J=50 cni’}, T,(1—0)=2.8 ps, T3 (An

. . . . . . .=1)=6.0 ps,T=298 K. (—) coherent preparatior(---) thermal prepa-
reaction coordinate trajectories. Note that in this symmetriGation. (a) Nonequilibrium population of the initially prepared electronic

model there is no component in the coordinate trajectory thadtate.(b) Product coordinate trajectorQ,(t)). (c) Vibrational contribution
corresponds to the diabatic vibrational frequency. This is noto the product coordinatéQ,(t) —A,). The crossing of the diabatic surfaces
surprising given that each diabatic state is strongly mixedocurs aQ=-1.10.
with a resonant state by the electronic interaction. When
viewed from the diabatic representation, the appearance of
frequency components that correspond to coherences bbiased so that the product is created with considerable excess
tween states with different number of vibrational quanta devibrational energy. The population relaxation rates increase
notes vibrationally coherent motion. It is clear from the with vibrational quantum number, thus rapid relaxation out
above results that even in the case where the time scale asf the crossing region would occur in such a system. Figure
sociated with the electronic coupling is somewhat longer7(a) compares the population dynamics for an asymmetric
than the unperturbed vibrational period, the product state idouble well withJ=100 cm * andAe=300 cni ! under con-
formed vibrationally coherent even when no such coherencditions of coherent and thermal preparation. The displace-
exists in the initially prepared state. ment of the two surfaces is identical to that of the previous
Also apparent from the above example is that the strongnodel. The population decay in both cases is dominated by a
electronic coupling necessary to generate a vibrationally cofast(~100 f§ component and a slowépicosecongicompo-
herent product from a thermally prepared initial state leads tment that shows weak modulation, which is effectively
numerous electronic recurrences. We next ask if there ardamped out by 1.8 ps. The corresponding product coordinate
circumstances under which an irreversible curve crossingrajectories{Q,(t)), are shown in Fig. (®). The energy bias
process from a thermally prepared state can lead to a cohdn this model is such that the crossing of the diabatic surfaces
ently vibrating product. Intuitively, we expect this to most occurs atQ=-—1.10, which means the system is near the
likely occur when the electronic coupling is such that popu-activationless region. It is clear in both cases that the product
lation of product vibrational levels occurs on a timescaleis formed vibrationally coherent with quantum beats observ-
comparable to or faster than one-half the vibrational fre-able out to times well past the time at which quantum beats
qguency and the dephasing of coherences between reactare observed in the population dynamics.
and product levels is fast compared to the electronic recur- As mentioned earlier, the average value of the coordinate
rence time. The latter situation will occur if the system iscontains contributions from coherences between vibrational
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present in the short time data and grows in as a result of

coherence transfer processes. This result clearly shows that
straightforward Fourier analysis of experimental decays in

systems systems undergoing electronic curve crossing can
lead to erroneous conclusions regarding diabatic vibrational

frequencies.

T V. CONCLUDING REMARKS

g BT ST T o

Fourier Amplitude

The single well calculations show that the often-made
assumption that observation of oscillatory contributions to
pump—probe or fluorescence data imply slow vibrational en-
0 5'0 1(')0 1;0' ‘"2‘;0 2;0 300 ergy relaxation may not be generally supportable. Coherence
Frequency (cm™) transfer terms, neglected at the optical Bloch level, are re-
sponsible for this effect. Interestingly, the presence of pure
FIG. 8. Magnitude of the Fourier coefficients obtained form the Fourierdephasing does not destroy the coherence transfer since the
transform of product coordinate dynamics shown in Fig).7A—) Fourier concommitant two-phonon relaxation process enhances en-
tra_nsform of full trajectory(0—4 p3. (---) Fourier transform of truncated ergy relaxation. Anharmonicity will reduce the degree of co-
trajectory(1.8—4 ps3.
herence that can be transferred down a well, but as the
double well results showsee belowis not likely to remove
the effect entirely.
levels within a diabatic state and from electronic population In the two state calculations, coherence transfer also
dynamics. In the asymmetric system described above, thglays a critical role in producing coherent motion in final
splitting of the diabatic surfaces due to the tunneling interstate levels well below the crossing region. Without this ef-
action is larger than the diabatic vibrational frequency. Thisfect, coherences at frequencies corresponding to unperturbed
gives rise to strong mixing of diabatic states near the crossribrations of the product would not be observed. The devia-
ing region with the lowest-lying states being essentially di-tion from harmonicity in the product well due to the elec-
abatic in character due to the energy bias. Note that evetmonic coupling does not preclude the appearance of coherent
though the site states are harmonic, the first three spacings motion in the 0-1 superposition state following relaxation. At
the eigenstates of the product well are 96, 91, and 77'cm this point it is appropriately to recall that our calculations
respectively. Unlike the earlier example with smaller elec-involved a single internal degree of freedom. In real mol-
tronic splitting, the distinction between electronic coherenceecules it is possible that “spectator” modes that are orthogo-
effects and vibrational coherences is not so clear. To focus onal to the reaction coordinate will be impulsively excited and
the purely vibrational coherence, we must subtract out thamay transfer their coherence to the product. In this case beat
contribution to(Q,(t)) that comes from transfer of popula- frequencies at site state frequencies will appear immediately
tion between wells. This can be done by calculatingthe product is formed, rather than requiring relaxation out of
(Q,(t) —A,) [see Eq(18)], which is shown in Fig. ®). This  the crossing region. Perhaps this will allow discrimination
average value depends only on the off-diagonal elements dfetween reaction coordinate and other degrees of freedom.
the density matrix for stat) in the diabatic representation, In our calculations, we have not attempted to model the
and thus provides a measure of the magnitude of the produetkperimental signals for specific systems; however, we note
vibrational coherence. The Fourier transform{@%(t) —A,)  that for a monotonic difference potential, the wavelength
is shown in Fig. 8. Fourier components appear over a wid®f absorption corresponds to a particular internuclear dis-
range of frequencies reflecting the complex spectrum of eitance®>*3! thus the ensemble-averaged valueQf and the
genvalues due to the strong electronic mixing; howeversignal obtained in a time-resolved absorption experiment are
again, we see no appreciable amplitude at the diabatic vibratirectly connected. Recently, several experimental studies
tional frequency(i.e., 100 cm?). This result seems surpris- have detected vibrational coherences in products formed as a
ing given that at energies corresponding to the bottom of theesult of electronic curve crossing. For example, Wanhgl 2
product well the eigenstates are nearly pure product diabaticave shown that the isomerization of gik-retinal leads to
states due to the energy bias. If coherence transfer terms avibrationally coherent altrans retinal as determined by the
operable, then we expect vibrational relaxation of the prodwavelength-dependence of the phase of the oscillations seen
uct will result in the appearance of coherences that oscillaten the transient absorption of the product. It is interesting to
at nearly the diabatic frequency. Further analysis of the datask what types of coherences are being measured in this type
in Fig. 7(c) shows that this is indeed the case. Note that thef experiment. Is one measuri@,(t)), which, as stated
observed beat pattern is complex at short tif€4.8 pg  earlier, contains contributions from both electronic popula-
becoming more regular at longer times. The Fourier transtion dynamics and vibrational coherences,(@(t) —A,),
form of (Q,(t)—A,) at times greater than 1.8 ps is also which contains only vibrational information? The answer to
shown in Fig. 8. Here we clearly see a component-86  this would seem to depend on whether the reactant and prod-
cm %, which corresponds to the energy gap between the twact are spectrally distinct. If this is the case, then coherent
lowest lying eigenstates, which are essentiallythed and  cycling of the population between wells will contribute to the
n=1 diabatic levels of the product. This component is notsignal. If the transient absorption spectra of reactant and
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product have substantial overlap, then oscillations in thé!D. w. Oxtoby, Adv. Chem. Physi7, 487 (1981.

transient absorptioifor emission decay would provide di-
rect observation of vibrational coherence.
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