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Algorithms for Multicommodity Flows 
in Planar Graphs 

Hitoshi Suzuki, ~ Takao Nishizeki, ~ and Nobuji Saito 1 

Abstract. This paper gives efficient algorithms for the multicommodity flow problem for two classes 
Ct2 and Co~ of planar undirected graphs. Every graph in Ct2 has two face boundaries B t and B 2 
such that each of the source-sink pairs lies on B 1 or B 2. On the other hand, every graph in Cot has 
a face boundary B t such that some of the source-sink pairs lie on B 1 and all the other pairs share a 
common sink lying on B t. The algorithms run in O(kn + nT(n)) time if a graph has n vertices and 
k source-sink pairs and T(n) is the time required for finding the single-source shortest paths in a 
planar graph of n vertices. 
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1. Introduction. The network flow problem and its variants have been extensively 
studied. It is well known that the Max Flow-Min Cut theorem holds for single- 
and two-commodity flows. There are efficient algorithms for finding a maximum 
single-commodity flow [14]. It is also known that the maximum two-commodity 
flows in an undirected graph can be found by using an algorithm for a single- 
commodity flow [13]. The situation is different with regard to flows of  more than 
two commodities. No simple polynomial-time algorithm is known for the multi- 
commodity flow problem on general graphs. Very recently Tardos reported a 
strongly polynomial algorithm to solve combinatorial linear programs including 
the multicommodity flow problem [19]. However, it employs a polynomial linear 
programming algorithm, does not have a polynomial time bound of  lower order, 
nor  is easy to implement. Therefore simple efficient algorithms are useful in 
practice even if they are valid for restricted classes of  graphs [2], [5], [7], [8], [ 12]. 

In the multicommodity flow problem, we would like to (1) test the feasibility, 
that is, decide whether a given graph G has multicommodity flows, each from a 
source to a sink and of  a specified demand, and (2) then actually find them if G 
does have them. The problem can be applied to many practical problems such 
as traffic control, design o f  communication networks, and routing of  VLSI [9], 
[16]. 

This paper  deals with the multicommodity flow problem for two classes C12 
and C01 o f  planar undirected graphs. Every planar graph in the first class C12 
has two specified face boundaries B 1 and B2 such that each of  the source-sink 
pairs lies on  B1 or B2. On the other hand, every planar graph in the second class 

Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980, 
Japan. 

Received January 30, 1987; revised November 9, 1987. Communicated by Tatsuo Ohtsuki. 



472 H. Suzuki, T. Nishizeki, and  N. Saito 

C01 has one specified face boundary B 1 such that some of the source-sink pairs 
lie on B~ and all the other pairs share a common sink located on B1. Figure 1 
depicts two planar graphs belonging to C12 or Col. The Max Flow-Min Cut 
theorem is known to hold for graphs in C12 or Cm [10]. We show that the 
multicommodity flow problem for an undirected graph G in C~2 (resp. Col) can 
be reduced to the shortest path problem for an undirected (resp. a directed) graph 

8 2 s+ 3 2 t3 

,+./  \,+ � 8 8  
/ o  +, 

~? / ~ \ 5/d,=P. d~=5 
\ / / o \ / d+=+ ++=+ 

" ~ + ] /  4 v5 \ / ++ = + 
~ -  " -- d+= 4 

s+ t 2 

(a) 

s 5 4 5 v+=t I =t+ =t+ =t+ 

? 

81 

5 ~ 

1 
\ 3/ o\ ~/ d~=a d~=2 \ / ~\ / d~=+ d~=~ 

R \ / A \/ d~=i _ 8 V 4 _wt, ?~=4 

(b) 
Fig. l .  (a) A network in C12 and (b) a network in Cot. (s+ is a source, t+ is a sink, and d+ is a demand.)  
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obtained from the dual of  G. The reduction yields simple polynomial-time 
algorithms for the two classes of planar graphs. More precisely, we can find 
multicommodity flows in a graph belonging to C~2 or Co~ by solving the single- 
source shortest path problem O(n) times, where n is the number of vertices in 
a graph. Furthermore, we can find half-integral flows for C12 and Co~ if the 
capacities of  edges and the demands of source-sink pairs are all integers. However, 
our algorithms do not work for directed graphs. A preliminary version of this 
paper appeared as [17]. 

2. Preliminaries. In this section we first define some terms, and then present 
known results. 

A flow network N = ((3, P, c) is a triplet, where: 

(1) G =  (V, E)  is a finite undirected simple connected graph with vertex set V 
and edge set E. 

(2) P is the set of source-sink pairs ( s ,  h), where source s~ and sink t~ are 
distinguished vertices in V. Both source and sink are often called terminals. 

(3) c: E ~ R § is the capacity function. (R (or R § denotes the set of (nonnegative) 
real numbers.) 

A network N = (G, P, c) is planar if G is planar. In what follows, we assume 
�9 that G has n vertices and P contains k source-sink pairs, i.e., I vl -- n and tPI = k. 

Each source-sink pair (s ,  t~) of N is associated with a positive demand d~. 
Although G is undirected, we orient the edges of G arbitrarily so that the sign 
of a value of a flow function can indicate the real direction of the flow through 
an edge. A set of functions { f b f z , . . . , f k }  with each f :  E ~ R  is k-commodity 
flows of demands dl, d2 , . . . ,  dk if it satisfies: 

(a) For each e ~ E 

k 

Z If(e)t<-c(e). 
i = 1  

(b) Each f satisfies 

I N ( f ,  v )=  OUT( f ,  v) 

for each v ~ V-{s~, t~}, and 

OUT( f ,  s ~ ) - I N ( f ,  s,) = I N ( f ,  ti) - O U T ( f ,  t~) = d~, 

where I N ( f ,  v) is the total amount of flow f of commodity i entering v, and 
OUT( f ,  v) is the total amount of flow f emanating from v. 

Classes C1, CtE, and Cm of planar networks N = (G, P, c) are formally defined 
as follows: 

(1) Class (71. One face boundary of G is specified, and all the source-sink pairs 
are located on it. 
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(2) Class C12. Two face boundaries Bi and B2 of G are specified, and each of 
the source-sink pairs lies on Bl or  B E. That is, the set P is partitioned into 
P1 and P2 so that 

and 

if (s . t , )~P1 then s , , t ~ B l  

if (si, ti)~P2 then si, ti~l?2. 

(3) Class Col. One face boundary Bl together with a vertex vc on Bl is specified, 
and some of the source-sink pairs are located o n  B1, while the sinks of all 
the other pairs must lie on v~ but their sources can lie anywhere in G. That 
is, the set P is partitioned into Po and P1 so that 

if (si, ti)~Po then ti=vc 

and 

if (si, t~)~P1 then si, ti~B1. 

Note that Cl is a subclass of Cl2 and of Col. For the network of C12 depicted 
in Figure l(a) P1 = {(Sl, tl), �9 �9 �9 (s4, t4)} and P2 = {(ss, ts), (s6, t6)}. For the network 
of Col depicted in Figure l(b) Po = {(Sl, t l ) , . . . ,  (s4, t4)} and P1 = {(ss, ts), (s6, t6)}. 

We have already given a polynomial-time algorithm MULTIFLOW which 
finds multicommodity flows in a network belonging to class C1 and runs in 
O(n(k+ T+(n))) time [7]. Throughout the paper T+(n) denotes the time required 
for finding the single-source shortest paths in a planar graph with nonnegative 
edge weights having n vertices, while T_(n) denotes the time for a planar directed 
graph with edge weights of real numbers. 

We may assume without loss of generality that B1 is the boundary of the outer 
face of a given plane graph G. The face boundaries B1 and B2 are not always 
simple cycles, but are closed walks (that is, some vertices or edges may appear 
twice or more). We denote by bl (resp. b2) the number of edges on B1 (resp. BE), 
and denote by B 1 (resp. BE) the set of vertices and also the set of edges o n  B 1 
(resp.  B2). Let Vo, v l , . . . ,  Vb,-1 be the sequence of vertices appearing on B1 in 
clockwise order, and let e~ = (v, v , ) ,  i=0 ,  1 , . . . ,  b~- l ,  where vb, = Vo. Let 
v~, v~, . . . ,  v~2_l be the vertices on B2 appearing in clockwise order, and let 
e~= (vl, v~+l), i=0,  1 , . . . ,  b2-1, where v~,2= v~. 

We denote by E(X, Y) the set of edges with one end in X c  V and the other 
in y c  V. If X c  V, then E(X)=E(X,  V - X )  is called a cut. E(X) is called a 
cutset if the graph G - E ( X )  obtained from G by deleting the edges in E(X) 
has one more connected components than G. Define 

and 

c(X, Y) =~ (c(e)le ~ E(X, Y)} 

c(X) = c ( x ,  v - x ) .  
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Denote by D(X,  Y) the set of source-sink pairs with one terminal in X and the 
other in Y. Define 

and 

D(X) = D(X, V-X) ,  

d(X, Y)=E {dil(s,, ti)~ D(X, Y)}, 

d(X)=d(X, V-X) ,  

m ( X )  = c(X)  - d ( X )  (the margin of a cut). 

We say that a network N satisfies the cut condition for given demands if 
m(X)>_O for every X c  V. The cut condition is necessary for the existence of 
k-commodity flows of given demands in a network, but not necessarily sufficient. 
However, Okamura [10] has proved the following theorem. 

THEOREM 1 [10]. Let N = (G, P, c) be a planar network in class C12 o r  Col. Then 
N has multicommodity flows of given demands if and only if N satisfies the cut 
condition. 

Our algorithms are based on Theorem 1. The Max Flow-Min Cut theorem 
does not always hold for general undirected planar networks having source-sink 
pairs on three or more face boundaries or for directed planar networks [7], [10]. 
Therefore our algorithms do not work for these networks. 

The following lemmas have been known. 

LEMMA 1 [7], [11]. A network N = (G, P, c) satisfies the cut condition if and only 
if re(X) >- 0 for every cutset E (X).  

LEMMA 2 [10], [11]. Let N = ((3, P, c) be a network satisfying the cut condition. 
I f  m ( X )  = m ( Y )  = 0 and d ( X -  Y; Y - X )  = 0 for X, y c  V, then m ( X  n Y) = 
m ( X w  Y)=0  a n d c ( X -  Y; Y - X ) = 0 .  

PROOF. 

and 

By simple counting we have the following two equations: 

c(X)  + c (Y)  = c (X  u Y) + c (X  c~ Y) + 2c(X - Y; Y -  X )  

d ( X ) +  d( Y ) =  d ( X  u Y )+  d ( X  n Y )+  2 d ( X -  Y; Y - X ) .  

Subtracting the latter from the former we have 

m ( X ) + m ( Y ) - - m ( X w  Y ) + m ( X n  Y) 

+ 2 c ( X -  Y; Y - X ) - 2 d ( X -  Y; Y - X ) .  

The claim follows immediately from the above equation. [] 
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Fig. 2. Graph G in C~2 and its G*.  

3. Testing Feasibility for Class C12. In this section we give an algorithm to test 
the feasibility of  a given network N = (G, P, c) belonging to class C12, that is, to 
determine whether there are multicommodity flows in N. A new graph G* is 
constructed from G as follows (see Figure 2): 

(1) Replace each edge e~ B l u B 2  of  G with two multiple edges (if either 
e ~ B~ n B2 or e is a bridge (i.e., a cutset of  a single edge) then replace e with 
three edges). 

(2) Construct a dual of the resulting (multi)graph. 
(3) Remove from the dual the two vertices corresponding to B1 and B2. 

Figure 2 illustrates a plane graph G in C~2 and the corresponding G*, where 
G is drawn by solid lines and G* by dashed lines. Let ui' be the vertex of G* 
corresponding to edge ei o n  B1, i = 0, 1 , . . . ,  b I - 1, and let U 1 = { u 0 ,  U l ,  . . . , U b l _ l } .  

Similarly define ul, ,i = 0, 1, . . . ,  b 2 - 1 ,  and U2 with respect to B 2, Each edge of 
G* has length equal to the capacity of  the corresponding edge of  G. 

We may assume that bl,  b 2 -  < 2k: otherwise, new edges of  capacity zero can be 
added to G to yield bl, bE<-2k, as discussed in [5] and [7]. Theorem 1 and 
Lemma 1 together imply that we can test the feasibility by verifying whether 
m(X)  >- 0 for every cutset E(X) .  Since G is planar, IE(X) n Bll = 0, 1, or 2 and 
I E ( X )  n BEI = 0, 1, or 2 for every cutset E(X) .  Therefore the cutsets are classified 
into four types: 

(0) E ( X ) n B ~ = O  and E ( X ) n B 2 = ( ~ ;  
(1) IE(X) n B~ I = 1, 2 and E ( X )  c~ BE = 0;  
(2) E ( X ) n B I = O  and tE (X)nB2[=I ,  2; or 
(3) IE(X)  n B] I = 1, 2 and IE(X) n B21 = 1, 2. 

We now show how to compute margins of  cutsets, separating these four types. 

Type (0). Since every terminal lies on B1 or B2, D(X)  = O for any cutset E(X)  
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of type (0). Thus all cutsets of type (0) have nonnegative margins, and con- 
sequently i t i s  not necessary to compute them. 

Type (1). I f  two edges eg, eh ~ B~ are fixed, then all cutsets E ( X ) with E ( X ) n 
B1 = {eg, eh} have the same D ( X )  n P1; let d~(eg, eh) = Y. {dil(si, ti) ~ D ( X )  n P1}. 
Define the following terms: 

c l ( e g  , eh) = M I N { c ( X ) I E ( X )  is a cutset of  G, E ( X )  n BI = {eg, eh}, 

E ( X )  n B2 = 0 }  

and 

m~(eg, eh) = c~(eg, eh) -  d~(eg, eh). 

For a fixed edge eg ~ B~ and all edges eh ~ B~ we can compute the values 
dl(eg, eh) in O(b~ + k) time. These values can be updated for the edge eg+l s B~ 
clockwise next to eg on B~ in O(b~) time. Thus we can compute dl(eg, eh) for all 
edges eg, eh C B1 in O(b 2) time [5]. 

On the other hand, we compute c~(eg, eh) as follows. Clearly, the cutset of  G 
attaining the value cl(eg, eh) corresponds to the shortest path between vertices 
u s and Uh in G*. Therefore, applying a single-source shortest path algorithm to 
G* once, choosing ug as the starting point, we can compute in O(T§ time 
cl(eg, eh) for a fixed edge eg ~ B 1 and all edges e h c B~. 

Repeating the computation for each eg ~ B~, we can find the minimum of 
m~(eg, eh) over all eg, ehCB1 in O(biT+(n)) time. Thus we can check the cut 
condition for cutsets of  type (1) in O(biT+(n)) time. 

Type (2). If  two edges e~, eq ~ B2 are fixed, then all cutsets E ( X )  with E ( X ) n  
B 2 = {ep, eq} have the same D ( X )  n P2; let d2(e~, e~) = ~ {d,l(s,, t,) ~ D ( X )  n P2}. 
Define 

c2(e'p, e~) = M I N { c ( X ) I E ( X )  is a cutset of G, 

E ( X )  n B1 = Q, E ( X )  n Bz= {e~, e~}} 

and 

m2( e;, e'q) = c2( e;, e'q) - d2( e'p, e'q). 

As in the case of  type (1) above, we can check the cut condition for cutsets of 
type (2) in O(b2T+(n)) time. 

Type (3). I f  four edges eg, eh ~ BI and e~, eq s B2 are fixed, then d ( X )  is constant 
_ _  ! for all outsets E ( X )  such that E ( X )  n B1 = {eg, eh} and E ( X )  n B2 - {ep, e~}; the 

constant is denoted by dl2(eg, eh; e~, eq). (See Figure 3.) Then we can easily verify 

d12( e~, eh; e'p, e'q) = dl( es, eh) + d2( e'p, e'q). 
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Fig. 3. Illustration for cl2(eg, eh ; e~, e~). 

We now define 

c12(eg, eh; ep, e'q) = M I N ( c ( X ) I E ( X  ) is a cutset of G, 

E ( X )  n B~ = {eg, eh}, E ( X )  n B2 = {ep, el} } 

and 

mlE(e s, eh; ep, el) = c12(es, eh; ep, eq)-d12(es, eh; ep, eq). 

Clearly, c12 is equal to the length of a shortest pair of vertex-disjoint paths, 
' ' Such a pair can be found by the sophisticated each from u s or Uh to Up or Uq. 

algorithm of Suurballe and Tarjan [15]. However, we can check more efficiently 
the cut condition for cutsets of type (3) simply by applying an ordinary shortest- 
path algorithm. The key point to notice is that we need not compute 
m12(e s, eh ; ep, el) itself. Instead we compute m~2(es, eh ; ep, e i) defined as 
follows: 

m~2(e s, eh; ep, eq)= dist(ug, Up)+ dist(uh, u'q)- d~2(eg, eh; ep, e'q), 

where dist(u, u') denotes the distance between vertices u and u' in G*, i.e., the 
length of the shortest path from u to u'. Although the two paths of length 
dist(ug, up) and dist(uh, Uq) in G* may not be disjoint, the following lemma holds. 

LEMMA 3. A network N in C12 satisfies the cut condition if and only if ml( es, eh) >>- 
O, m2(ep, e'~) >-- O, and m~2(eg, eh; ep, e'q) >--- 0 for all eg, eh ~ B1 and ep, e'q ~ B2. 

PROOF. Clearly, MIN{m~2(eg, eh; e/o, e,;), m~2( eh, eg; e; , e~)}----- mlz( eg, eh; e;,  e~) 
for all eg, eh ~ BI and ep, e i ~ B:. Thus the " i f "  part is trivial, and we shall prove 
the "only i f "  part. Assume that N satisfies the cut condition. Then ml(eg, eh)>--0, 

' ' > ' el) -- 0 for all es, eh~B~andep ,  e i~B2 .Thus  m2(el,, eq) --0, and mlu(e s, eh; ep, 
we shall verify m~2(e s, eh; ep, e~)>-O for all es, en ~ B~ and ep, e ~  B2. Let Rsp 
be a shortest path from u s to up in G*, and let Rhq be a shortest path from uh 
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to u~ in G*. If  paths R~p and Rhq are vertex-disjoint, then there exists a cutset 
of G which consists of the edges corresponding to those of Rsp and Rhq. Therefore 

m~2(e~, eh; e;, e'q)>-m12(e,, eh; e'p, e'o)>--O. 

Thus we may assume that R,p and Rhq a r e  not vertex-disjoint. Then Rsp + Rhq 

contains two edge-disjoint paths: a path Q~h between ug and Uh and a path Qpq 
between u~, and u~. Let E ( X )  and E ( Y )  be the cutsets of G corresponding to 
Qgh and Qpq, respectively. Then we have 

m ( X )  = leng(Qgh) - dl(eg, eh) >- m~(eg, eh) 

and 

! ! ! r m(Y) = leng(Qm) - d2(e. eq) >- m2(ep, eq), 

where leng(Q) is the length of path Q in G*. Clearly, 

leng(Qsh) + leng(Qpq) - leng(R,p) + leng(Rhq). 

Therefore 

m~2(eg, eh; e~, e~) = leng(Rgp) +leng(Rhq) - d12(eg , eh; e'p, e'q) 

>-ml( es, eh) + m2( e'p, e'q) >- O. [] 

Thus it suffices to check whether m~2(e~, eh; e'p, e'q) >- 0 for all eg, eh e B~ and 
e~,, e~ r B2. The checking can be done as follows. First compute for each eg e B~ 
and eq e B2 

and 

m*2( e,, e;) = MIN{-d , (e , ,  eh) + dist( uh, U'q)leh e nl} 

m*l(es, eq) = MIN{dist(ug, Up) - dl(e'p, e;)lep s B2}. 

Note that for e~ s B1 and eq e B2 

m*2( e~, ' * ' ' eq) + m21( eg, e~) = MIN{m~2(eg, eh; ep, e'o)leh e B1, ep s B2}. 

Then compute 

A=MIN{mI*2(e~, ' * ' ' eq) + m21(eg, eq)leg s B1, eq e B2}. 

Clearly, A->-> 0 if and only if m~:(%, eh; e~, e~) > 0 for all es, eh e B~ and e~, e~e B2. 
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We now show that the computation above can be done in O((b~ + b2)T+(n)) 
time. We can compute ml*2(eg, eq) for a fixed eg ~ B1 and all eq ~ B2 in O(T§ 
time: construct a planar graph from G* by adding a new vertex v and edges 
(v, Uh) of length L - d l ( e g ,  eh) for all Uh C U1- Ug, and find shortest paths from v 
to all Uq~ U2, where L is a sufficiently large positive number. Thus we can 
compute all ml*2 in O(blT+(n)) time. Similarly we can compute all m2"1 in 
O(bET+(n)) time. From these m*2 and re*l, value A can be computed in time 
O( bl b2) < - O( ( b~ + b2) T+ ( n ) ). 

From the discussions in (0), (1), (2), and (3) above, we can conclude: 

THEOREM 2. The feasibility of a network N in C12 can be tested in 
O((bl+b2)T+(n)) time if  N, B1, and B2 have n vertices, bl edges, and b2 edges, 
respectively. 

4. Finding Flows for Clz. In this section we give an algorithm MFLOW12 which 
finds multicommodity flows in a network N belonging to C12 and satisfying the 
cut condition. The algorithm spends O(kn+ nT+(n)) time. In this section we 
assume that all edges of capacity zero are deleted and consequently all edges 
have positive capacities. 

4.1. Basic Procedure PUSH. In this subsection we present a basic procedure 
PUSH which our algorithms repeatedly use to find flows in a network in C12 
and Col. 

For an edge e = (v, w) ~ E and set Pt (1 = 0, 1, 2), procedure PUSH(N, Pl, e) 
repeats the following operation for each pair (si, t~) ~ Pt having a terminal, si say, 
on v: 

(a) Push an appropriate unit D of flow f~ through e. 
(b) Decrease the capacity of e by D. 
(c) Split the  single demand d~ o f f  into two, demand D of a new pair (w, t~) 

and the residual demand d ~ -  D of pair (s~, t~). (Two flows realizing split 
demands will be superimposed to realize the original single flow f~.) 

We choose D so that the resulting network N '  satisfies the cut condition. 
Furthermore, we choose e so that N '  also belongs to C12 (resp. Col) if N belongs 
to C12 (resp. Co~). Our algorithm repeatedly applies procedure PUSH until the 
network is eventually transformed into one belonging to C~. 

We now present the details of procedure PUSH. Of course, D cannot exceed 
di or c(e), but we wish to choose D as large as the resulting network will allow 
before violating the cut condition. If  pushing D units o f f  changes the margin 
m(X)  of a cutset E(X) ,  then e s E(X) ,  st, ti ~ X, and m(X)  is decreased by 2D. 
Therefore D cannot exceed one-half of the minimum margin of these cutsets. 
Thus we choose D as follows: 

D = MIN{c(e), di, m(e, (si, ti))/2}, 

where 

m(e, (si, t i ) )=MIN{m(X)IE(X)  is a cutset of G, ec E(X) ,  s~, t ~  X}. 
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To keep track of  the origin we assign to each pair (s~, t~) a commodity number 
commodity(i);  deafly,  commodity(i)  = i if i -  k; and commodity(i)  = 
commodity( j )  if i >  k and (s~, t~) raises from (st, t~). Then the superimposition 
in operation (c) above can be done mechanically using this numbering. We now 
describe procedure PUSH in pidgin ALGOL. 

procedure PUSH(N,  Pt, e); 
begin 

{ l=O, 1 or 2. edge e=(v ,  w) is suitably chosen} 
for each terminal s~ (not necessarily source) on v belonging to Pt do 

begin 
D:=MIN{c(e) ,  di, m(e, (si, t~))/2}; 
{ push D units of  flow through e } 
if D > 0 then 

begin 
j := commodity(i);  
f~(e):=f)(e)+ D; 

{l--<j--- k } 
{ the sign + depend on the orientation 

of  e and whether si is a source or 
sink } 

c(e) := c ( e ) -  D; { residual capacity } 
if D = d~ then { flow of (s~, t~) has been entirely pushed 

through e } 
begin 

s~ := w; { move terminal s~ from v to w } 
if s,=ti  then Pt:=Pt-(s~,t~) {flow of  (si, t~) has 

been realized } 

end 
else { D<di ,  flow of (s~, t,) has been partly pushed 

through e } 
begin 

di :--- d i -  D; { residual demand } 
if t~ ~ w then 
{ add a surrogate (Sk+l, tk§ of pair (si, t~) } 

begin 
Sk+ 1 : :  W; 

tk+ l : = ti ; 
Pt :  = Ptu{(sk+~, tk+O}; 
commodity(k + 1) := j ;  
dk+~ := D; { split demand } 
k : = k + l  

end 
end 

end 
end 

end; 
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Fig. 4. The network after the execution of-PUSH(N, P1, Co). 

EXAMPLE. Suppose that PUSH(N,  P1, e) is executed for a network N in Figure 
l(a) ,  choosing an edge eo = (Vo, vx) on Ba as e. In this case there are two terminals 
sl and s2 on Vo. We can verify that m(eo, (sl, h)) = m(X) = 8 with X = {Vl, v2, w2}. 
Therefore D = MIN{3, 2, 8/2} = 2 for sl. Since D = d~, terminal s~ is moved to 
Vl and c(eo) is reduced to 3 - D - -  1 when D units o f fx  are pushed through e. 
Then we know that m(eo, (s2, t2))=m(Y)=2 with Y={va, rE, v3, w2, w3, v~}. 
Therefore D = MIN{1, 3, 2/2} = 1 for s2. Since D < d2, a surrogate (ST, t7) of  pair 
(S2, t2) is introduced with s7 on v~ and t7 on the same vertex as t 2 when D units 
off2 are pushed through e. Note that c(e) becomes zero. Thus network N becomes 
as shown in Figure 4 when PUSH terminates. 

4.2. Algorithm MFLOWI2. Algorithm MFLOW12 first realizes the flows 
between source-sink pairs in P1, and then realizes all the remaining flows in the 
resulting network belonging to C1 simply by using the known algorithm MULTI-  
FLOW [7]. 

MFLOW12 realizes flows of/)1 by repeating the following: choose an appropri-  
ate edge e on the outer boundary  B1 and push flows of  Pa through e by procedure 
PUSH(N,  P1, e). The algorithm initially chooses as e an arbitrary edge (v, w) on 
B1, and pushes flows of  P1 having terminals on v through e in the clockwise 
direction by PUSH(N, / '1 ,  e), where w is the vertex clockwise next to v on B~. 
Then the algorithm chooses as a new e the edge on BI clockwise next to e, and 
repeats the same operation. When the capacity e(e) of  e is decreased to zero, 
MFLOW12 deletes edge e from the graph G and chooses as a new e an edge 
on the new boundary B~ of  G. When a connected graph G is disconnected into 
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two components,  the algorithm recurses to each subnetwork. Since only edges 
on B~ are chosen as e, the network always belongs to C12 during the execution 
of  MFLOWl2.  

The algorithm is formally described as follows: 

procedure MFLOW12(N) ;  
begin 

for each edge e ~ E and i (1 - i x  k) do j~(e):= 0; 
for each i (1 -< i -  < k) do commodity(i)  := i; 
e:= an arbitrary edge on B~; { e = (v, w) } 
ROTATE(N, e) 

end; 

{ initialization } 

procedure ROTATE(N, e); 
begin 

i f  N c C~ then M U L T I F L O W ( N )  { M ULTIFLOW is given in [7] } 
else { N~C12-C1} 

begin 
PUSH(N,  P1, e); { c(e) may be decreased } 
e ' :=the edge clockwise next to e on B~; 
e" := the edge clockwise next to e around v among the edges 
incident with v; (see Figure 5) 
{ either e' or e" is chosen as new e below } 
if c(e)> 0 then ROTATE(N, e') { proceed to e '} 
else { c ( e ) = 0 }  

begin 
G : = G - e ;  { delete edge e} 
if G is connected then ROTATE(N, e") { proceed to e" } 
else { e was a bridge, and new G is disconnected } 

begin 
let G~ and Gb be the two connected components in G; 
let ?Ca and Nb be the subnetworks of  N with graphs 
Ga and Gb, respectively; 
{ either Na or Nb belongs to C 1 } 
assume that v is in Ga and w in Gb; 
ROTATE(N~, e"); 
ROTATE(Nb, e') 

end 
end 

end 
end; 

EXAMPLE. Figure 6 illustrates a partial traversal of  variable e in the network 
N of  Figure l(a). The deleted edges are drawn in dashed lines. Number  i in a 
circle and an arrow next to an edge indicate that MFLOW12(N)  assigns the edge 
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V e W 

Fig. 5. Edges e, e', and e". 

to variable e for the orientation of the arrow in the ith execution of  PUSH. The 
edge (Vl, w2) has been assigned to e once for each of  the two orientations. 

For simplicity MFLOW12 above uses the known procedure MULTIFLOW [7] 
when a network is reduced to one in C~. However, MFLOW12 itself can substitute 
for MULTIFLOW. Note that the computation of  margins for networks in C1 is 
easier than for C12. 

4.3. Polynomial Boundedness. In this subsection we show that MFLOW12 cor- 
rectly finds multicommodity flows in polynomial time. Since the time required 
by PUSH is dominating in the running time, we bound the number of times 
PUSH is executed, that is, the number of edges variable e traverses. We claim 
the following Lemma 4. 

LEMMA 4. PUSH is executed O(n) times during one execution of MFLOW12. 

In order to prove Lemma 4 we need some terms and lemmas. Let st ~ BI be a 
terminal of  PI, and let ej be an edge joining s~ and a clockwise next vertex on 

t~, 

�9 81 

| . g'3 

de=2 
\ J /  . ~> \ / 6 :5  

4 ~5 ~J't 2 d4=4 
s 4 t 7 d 7 =1 

t e do=0.5 

Fig. 6. The network after eight executions of PUSH. 
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B~. (Note that there exist two or more such edges if s~ is a cutvertex of  G.) Edge 
ej blocks terminal s~ if  there exists a cutset E ( X )  such that re(X)=0,  ej~ E(X) ,  
and (ss, ti) ~ D(X) .  Clearly, only the flows of  pairs in D(X)  can pass through 
edges in such a outset E(X) ,  and hence flow f~ cannot pass through edge ej. 
Terminal s~ is blocked if there is such an edge blocking s~. When the execution 
of  PUSH(N, P1, (v, w)) does not reduce the capacity of  edge (v, w) to zero, each 
of  the terminals of P~ remaining on v is blocked. The following two lemmas 
hold. 

LEMMA 5. I f  a network N = ( G, P, c) in C~2 satisfies the cut condition, then there 
exists no cut E ( X ) satisfying the following conditions: 

(5a) IE(X) n Bll = 1 o r  2; 
(5b) X contains no terminal of  P2; 
(5c) r e ( X ) = 0 ;  and 
(5d) every terminal of  P~ in X is blocked. 

PROOF. Suppose that a cut E (X) satisfies conditions (5a)-(5d), and that [X n B~[ 
is minimum among such cuts. We may assume that (Vb~-l, VO) ~ E ( X )  ca B~ and 
Vo ~ X. Furthermore, interchanging the roles of  sources and sinks if  necessary, 
we may assume that every source of P~ precedes the corresponding sink o n  B 1 

clockwise going from Vo to vb,-l. Clearly, D ( X ) ~  f~ because c ( X ) > 0  and 
re(X) =0.  Let (s ,  t~) be a pair in D(X)  such that sink t~ appears first on Bt 
clockwise going from vo. Since source si lies in X, s~ is blocked by an edge ej 
joining s~ and a clockwise next vertex on B~. Thus #.here is a cutset E (Y) such 
that s~, t~ ~ Y, m(Y) = 0, and ej c E(Y).  Condition (Sb) and the selection o f ( s ,  ti) 
imply that there is no source-sink pair having one terminal in X - Y  and 
the other in Y - X ,  and hence d ( X - Y ;  Y - X ) = 0 .  Thus Lemma 2 implies 
m ( X n Y ) = O  and c ( X - Y ;  Y - X ) = 0 .  If  ( X n Y ) n B ~ f ~ ,  then the cut 
E ( X c a r )  satisfies conditions (5a)-(5d) and [ (XnY)nBII<-[XCaB~I-1 ,  
contradicting the minimality of [X n B~[. If  (X n Y) n B~ = O, then ej 
E ( X -  Y; Y - X ) ,  contrary to c ( X -  Y; Y - X ) = 0 .  [] 

LEMMA 6. I f  network N = ( G~ P~ c) in C12 satisfies the cut condition and P~ ~ f~, 
then at least one terminal of  P~ is unblocked. 

PROOF. Suppose for a contradiction that every terminal of P1 is blocked. Then 
a source si of  P1 is blocked by an edge ej ~ BI, that is, there is a cutset E ( X )  
such that s~, tle~X, m(X)=O, and e j s E ( X ) .  The sink ti is also blocked by an 
edge es e BI, that is, there is a cutset E(Y)  such that s~, t~ ~ Y, m(Y) = 0, and 
el ~ E(Y) .  Since every terminal of P~ is blocked, Lemma 5 implies that X n B2 # O 
and Y n B2 # O. Since m(X)  = m(Y) = 0 and (s,  t~) ~ D(X)  u D(Y),  all the edges 
in E ( X ) u  E ( Y )  are occupied by flows other than f .  Furthermore, terminals s~ 
and t~ lie in distinct components in G - E ( X ) u  E ( Y )  (see Figure 7). Therefore 
flow f~ cannot exist. However, since N satisfies the cut condition, by Theorem 1 
N has multicommodity flows, a contradiction. [] 
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y~ 

Fig. 7. Two saturated cutsets E(X) and E(Y) .  

Lemma 6 implies that MFLOW12 pushes a positive amount  of  a flow through 
at least one edge on B~ while variable e traverses edges on BI once. Thus 
MFLOWl2  correctly finds flows if it terminates finitely. 

Intuitively we claim that variable e traverses each edge of  G no more than 
twice. We may assume that edge eo is initially chosen as variable e. As shown 
later in Lemma 9, if an edge is deleted before e proceeds to the last edge eb,-~ 
on B~, then the claim can be rather easily verified. Otherwise, all the unblocked 
terminals of  P~ lie on vertex vb,-l, and there must exist a "saturated"  cutset 
intersecting with B~ and B2. More precisely we have the following lemma. 

LEMMA 7. Let network N = (G, P, c) in C~2 satisfy the cut condition. I f  all the 
unblocked terminals of P1 lie on vb,-l, then there is a cutset E ( X )  satisfying the 
following conditions: 

(7a) E ( X )  n BI # 0;  
(7b) X c~ B2 ~ Q; 
(7c) m(X)=O; 
(7d) vb~-l, v o ~ X ;  
(7e) X induces a connected subgraph; and 
(7f) X contains no terminal of P1. 

PROOF. Suppose that all the unblocked terminals of  P1 lie on Vb,-1. We may 
assume that every sink of  PI precedes the corresponding source on B1 counter- 
clockwise going from Vb,-1 to Vo. Let si be the source that first appears  on B1 
counterclockwise going from Vb,-~ to V0. Since s~. is not on vb~-l, si is blocked by 
an edge ejc B1 and hence there is a cutset E ( X )  such that si, t ~ X ,  re (X)  =0 ,  
ej ~ E ( X ) ,  and vb~-l, Vo~ X. Since every terminal of  P~ in X is blocked, by Lemma 
5 X contains a terminal of  P2 and hence X n B2 ~ •. Clearly, E ( X )  satisfies 
conditions (7a)-(7e). Thus it remains to show that E ( X )  satisfies condition (7f). 

Suppose there is a terminal of  P~ in X. Such a terminal must be a sink. Let 
(st, tt) be the pair in D ( X )  n P~ such that source sl first appears on BI clockwise 
going from Vo. Since h e X, ts is not on Vbl-1. Therefore sink h is blocked by an 
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edge ep, and hence there is a cutset E ( Y )  such that sl, t ~  Y, e p ~ E ( Y ) ,  and 
m(Y)  = O. We consider the following two cases: 

Case I: Y n  B2 = O. In this case clearly D ( X  - Y; Y - X )  n P2 = 0 .  Further- 
more, D ( X  - Y; Y -  X)  c~ Pa = 0 ,  due to the selection of  pairs (si, ti) and (st, h). 
Therefore d (X - Y; Y -  X)  = 0 and, consequently, Lemma 2 implies m (X c~ Y) = 
0 and c ( X - Y ;  Y - X ) = 0 .  If  X n  Y # O ,  then the cut E ( X n  Y)  satisfies 
conditions (5a)-(5d), a contradiction. I f X  n Y =  0 ,  then ep s E ( X  - Y;  Y - X ) ,  
contradicting c ( X  - Y;  Y -  X )  = O. 

Case 2: Y n B2 ~ 0 .  An edge eq ~ B~ blocks st, and hence there is a cutset E (X')  
such that st, tt~ X ' ,  eq ~ E ( X ' ) ,  and m ( X ' ) = 0 .  Since every terminal in X '  is 
blocked, X ' n  B: ~ O by Lemma 5. Thus a contradiction can be easily derived 
with respect to X' ,  Y, and (su tt) as in the proof  of Lemma 6. [] 

If  there exists a "saturated" cutset satisfying conditions (7a)-(7f),  then variable 
e will traverse each edge no more than once, as we claim in the following lemma. 

LEMMA 8. Assume that: 

(1) Network N = ( G, P, c) ~ C12 satisfies the cut condition. 
(2) A cut E ( X )  satisfies conditions (7a)-(7f).  
(3) For two distinct vertices Vh ~ B~ and vg c X n B~, all the unblocked terminals 

of  P~ lie only on the vertices Vh, Vh+l , . . . . ,  Vg. 

I f  MFLOW12(N)  is executed with choosing edge eh as initial e, then a single edge 
is not assigned to the variable e more than once for each of  its two orientations and 
none of  edges e~, eg+l,.. . , eh-1 is assigned to e for the orientation from vi to vi+~, 
g <- i <- h - 1, before N is reduced to subnetworks all belonging to C~. (See Figure 8.) 

PROOF. Assume that N = (G, P, c) is a network for which the lemma is not true, 
and that G has a minimum number of edges among such networks; clearly, the 
number is positive. Since X contains no terminal of  P~, procedure PUSH(N,  PI, e) 

(// %' 

Fig. 8. Illustration for proof of Lemma 8. 
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does not push flows through any edge incident with a vertex in X. Therefore the 
cut E ( X )  continues to satisfy conditions (7a)-(7f)  before N is reduced to 
subnetworks all belonging to C1. 

An edge must be deleted before edge eg is assigned to e. Otherwise, just before 
the algorithm assigns edge eg to the variable e, every terminal of P1 is blocked, 
contrary to Lemma 6. 

Let e~ be the first edge deleted from the graph G. Assume that network N 
results in N ' =  (G',  P',  c') when procedure PUSH for the edge ei finishes, where 
G'  = G -  e~. Note that MFLOW12(N)  has assigned each of edges eh, eh+~ . . . .  , ei 
to the variable e once so far. Furthermore, in N '  all the unblocked terminals of  
P1 lie on v~, v~+~,...,  vg. We consider the following two cases: 

Case I: G '  is Connected. Let e" be the edge clockwise next to ei around v~ 
among the edges incident with v~. (See Figure 8.) Since G'  has fewer edges than 
G, MFLOW12(N') ,  choosing e" as initial e, assigns no single edge of  G'  to e 
more than once for each of  its two orientations and assigns none of  edges eg, 
eg+~,.. . ,  eh-1,. �9  ei-~ to e for the orientation before N '  is reduced to subnet- 
works all belonging to C~. The behavior of  MFLOW12(N)  after edge (v~, v;+~) 
is deleted is identical with that of MFLOW12(N') .  Hence the lemma must hold 
for N, a contradiction. 

Case 2: G '  is Disconnected. Let Ga and Gb be the two connected components 
of  G', and let Na and Nb be the corresponding networks. We may assume that 
G~ contains B2, and hence N~ ~ C~2-C~ and N b E C1. Thus we consider the 
behavior of  MFLOW12(Na).  The cut E ( X )  is in N~ because E ( X )  satisfies 
conditions (7b) and (7e). Since G~ has fewer edges than G, we can derive a 
contradiction as in Case 1. [] 

We are now ready to prove the following lemma. 

LEMMA 9. Algorithm MFLOW12(N)  assigns no single edge to the variable e 
more than twice for each of  its two orientations before network N is reduced to 
subnetworks all belonging to CI. 

PROOF. Assume that N = (G, P, c) is a network for which the lemma is not true, 
and that G has a minimum number of edges among such networks. We may 
assume without loss of  generality that edge eo = (Vo, vl) is first assigned to e. 

If  at least one edge ei other than the last edge eba_ 1 o n  B 1 is deleted on the 
first traversal of  B1, then we can derive a contradiction as in the proof  of  Lemma 
8. (Note: If  only the edge ebl-1 is deleted on the first traversal of  B1, then there 
may appear an unblocked terminal on Vo, and consequently an argument such 
as the one in the proof  of  Lemma 8 does not work.) 

Thus we may assume that no edge is deleted before the algorithm assigns edge 
eb,-~ to the variable e. Assume that network N results in N ' =  (G',  P',  c') when 
procedure PUSH for edge eb,-2 finishes. Since all the unblocked terminals of P1 
lie on Vb,-1, by Lemma 7 network N '  has a cutset satisfying conditions (7a)-(7f).  
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Then Lemma 8 implies that, after assigning eb,-~ to e, the algorithm assigns no 
single edge to e more than once for each of  its two orientations. Thus 
MFLOW12(N) ,  choosing eo as initial e, assigns no single edge to the variable eo 
more than twice for each of its two orientations, contrary to the 
assumption. [] 

Flows in subnetworks belonging to C1 can be found by procedure MULTI- 
FLOW [7]. Like MFLOWl2,  MULTIFLOW repeats pushing flows through edges 
on a face boundary in clockwise order by using procedure PUSH. It has been 
shown that MULTIFLOW assigns no single edge to the variable e more than 
once for each of  its two orientations (Lemma 6 of  [7]). Combining this result 
with Lemma 9, we can conclude that the PUSH is executed at most six times the 
number of  edges of  G. Thus we have Lemma 4 because G is planar and has 
O(n) edges. 

4.4. Complexity of MFLOW12. In this subsection we show that we can imple- 
ment MFLOWl2  to run in O(kn + nT§ time. The running time of MFLOWl2 
is dominated by the time for PUSH, and PUSH is executed O(n) times. Therefore 
we bound the time for one execution of  PUSH. 

The execution time of  PUSH(N,  P~, e) is dominated by the time for computing 
m(e, (si, t~)) for all pairs having a terminal on v. We claim that the computations 
can be done in O(k+ T§ time. We may assume that e=eo .  Assume that 
exactly l terminals of P1 lie on Vo. Since one execution of PUSH introduces at 
most one new source-sink pair, the number of  source-sink pairs is at most k + O(n) 
throughout the execution of  MFLOW12. Therefore l = O(k + n). We may assume 
that (s~, t l )  , ($2, t 2 ) , . . . ,  ($1, tl)sP~, all sources s~, l<-i<-l, lie on Vo, and 
tl, t 2 , . . . ,  h appear in that order on B1 clockwise going from Vo. For each edge 
eg e B1 - eo, define 

m(eg) = MIN{m(X)IE(X)  is a cutset of G, eo, eg e E(X)}.  

If  sink ti, l<-i<-l, lies o n  Z)hEB], then m(eo, (s,, ti))=MIN{m(eg)ll<_g<h}. 
Moreover, i f D  units of  flowf~ are pushed through eo, then all m(eg) with 1 - g < h 
decrease by the same units 2D and the remaining m(eg) do not change. Therefore, 
once all m(eg) have been computed before flows are pushed through eo, the 
values m(eg) can be effectively updated if the flows f~, f 2 , . . .  ,ft are pushed in 
that order. The update can be done in O(l+bl) time. Thus it suffices to show 
that we can compute m(eg) for all ege B~-eo in O(k+ T+(n)) time. 

As in the proof  of  Lemma 3, we have 

m(ee,) = MIN{ml(eo, eg), mi2(eo, eg)}, 

= �9 ' ' ' ' B2} .As in  Sect ion3 we can where m~2(eo, eg) MIN{m~2(eo, eg, ep, eq)lep, eq e 
compute ml(eo, eg) for all eg e B1 -eo in O(k+ T§ time. On the other hand, 
we compute m~2(eo, eg) for all eg e B I -  eo in O(k+ T§ time as follows: 

Step 1. Compute dist(uo, up) for all u~ e U2. 
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Step 2. Compute m*l(eo, e~) = MIN{dist(Uo, Up)-d2(e'p, e~)le~ B2} for all 
e~ ~ B2. 

Step 3. Compute C*l(eo, eg)= MIN{m*l(eo, e~)+dist(u~, u~)le' q ~ B2} for all e~ 
BI - Co. 

Step 4. Compute m~2(eo, es) = Cl*(eo, e s) - dl(eo, e~) for all eg ~ B1 - Co. 

Clearly, step 1 can be done in O(T+(n)) time. Using an appropriate data 
structure, we can execute step 2 in O(k+n)  time, as shown in the Appendix. 
Step 3 can be done in O(T+(n)) time as in the computation of m*12 in Section 3. 
Clearly, step 4 can be done in O(k+ n) time. 

Thus one execution of  PUSH can be done in O(k+ T+(n)) time. The other 
steps in M FLOW12, such as the initialization of flows, can be done in O (n (k + n)) 
time. Thus we can conclude: 

THEOREM 3. I f  a network N ~ C12 has n vertices and k source-sink pairs, then 
Algorithm MFLOW12 finds flows in O(kn + nT+(n)) time. 

5. Testing the Feasibility for Class Col. In this section we give an algorithm for 
testing the feasibility of  a network in class Cox. We first construct a planar digraph 
G* from a given planar undirected graph G as follows: 

(1) Replace each edge of  G on B1 by two multiple edges (replace each bridge 
on B1 by three multiple edges). 

(2) Construct the dual of  the resulting graph. 
(3) Remove the vertex corresponding to B1 from the dual. 
(4) Replace each edge e of the resulting graph with two directed edges, e + and 

e- ,  one in each direction. 

Figure 9 illustrates a pair G and G*, where G is drawn in solid lines and G* 
in dashed lines. Let U1 = {u0, u~, . . . ,  Ubl-~} be the set of  vertices in G* correspond- 
ing to edges in B~. 

Choose an arbitrary spanning tree T of G, and regard T as a rooted tree with 
root vc. Remember that vc is the vertex on B~ on which all sinks of  Po lie. In 
Figure 9 T is drawn by thick lines. In this section we orient the edges in T in 
the direction going from root v~ to leaves, and orient the other edges of G 
arbitrarily, as illustrated in Figure 9. Denote by e + and e-  the two directed edges 
of  G* corresponding to e of  G assuming that the arrowhead of  the oriented e 
first touches the arrowhead of  e + and then e-  when e is rotated clockwise in the 
plane. One example is illustrated in Figure 9. The lengths of edges e + and e-  
corresponding to an oriented edge e = (u, v) are defined as follows: 

(1) If e ~  T, then leng(e § = l eng(e - )=  c(e). 
(2) If  e ~ T, then 

leng(e +) = c(e)+Y, {dil(si, ti)~ Po, and si is a descendant of v in T} 

and 

leng(e-)  = c(e) - •  {di[(s. t~) e Po, and st is a descendant of v in T}. 
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Fig. 9. Graph G and G* of a network in Coy 

We now have the following lemma. 

LEMMA 10. Let E ( X ) be a cutset of G with E ( X ) n BI = 0 ,  Iet Zc be the clockwise 
cycle in digraph G* corresponding to E(X) ,  and let Zcc be the counterclockwise 
cycle. Then the lengths leng(Zc) and leng(Z~) of Z~ and Z~ satisfy 

leng(Z~) = m(X) ,  and 

leng(Z~) = m(X)  + 2d(X) .  

PROOF. For (si, t~)e Po let Qi be the unique path in tree T from sink t~ (=v  c) 
to source s~. We may assume that vc~ X and hence X n B1 = 0 .  Let Q+ = 
{e+leeQi} and QC,={e-leeQ~}, and let q+= lZ~nQ+l  and qr,=lZ~nQ[ I. 
Clearly, q7 - q+ = 0 or 1, and q T -  q+ = 1 if and only if (st, ti) ~ D(X)  (see Figure 
10). Since in leng(Zc) each d~ is subtracted (q~-- q+) times from c(X), we have 

leng(Zc) = c(X) - ~  {(q~- - q +)dil(si, t,) ~ Po) 

= c ( X ) - d ( X )  = m(X).  

Similarly, for the counterclockwise cycle Zcc, we have 

leng(Z~) = c(X) + d (X)  = m(X)  + 2d (X). [] 
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Fig. 10. Illustration for the proof of Lemma 10 (Q~ is drawn in thick lines, q~- =2 and q+= 1). 

As in Section 3, we may assume that b~ <-2k. Theorem 1 and Lemma 1 imply 
that we can test the feasibility by checking whether re(X)>-0 for every cutset 
E(X) such that IE(X) n Bll =0,  1, or 2. We now show how to compute margins, 
separating two cases. 

Case 1. E(X) n Bt = 0 .  We can verify the following lemma using Lemma 10. 

LEMMA 11. Every cutset E(X) with E ( X ) n B t = Q  has a nonnegative margin 
in network N if and only if G* contains no negative directed cycle. 

PROOF. If  network N has a cutset E(X) such that E ( X ) n B ~ = O  and 
m(X) <0 ,  then by Lemma 10 G* contains a negative clockwise cycle. 

Suppose conversely that G* contains a t negative directed cycle. Then there 
must exist a simple negative cycle Z in G*. I f  Z = {e +, e-} for an edge e ~ E, 
then l eng (Z)=2c (e ) ->0 ,  a contradiction. Thus the cycle Z of  G* corresponds 
to a cutset E(X) of  G. I f  Z is clockwise, then by Lemma 10 re(X)= l e n g ( Z ) <  0. 
I f  Z is counterclockwise, m(X)=leng(Z)-2d(X)<O. In either case 
m(X)<O. [] 

We can detect a negative cycle in G* by applying a shortest-path algorithm 
to G* [6]. Thus the cut condition for these cutsets can be checked in O(T_(n))  
time. Note that some edges of  G* may have negative length. 

Case 2. ]E(X)nB11 = 1 or 2. Define dl(eg, eh) and ml(eg, eh) for edges eg and 
eh on B~ as in Section 3. Then we can verify as in Lemma 10, 

m~(e,, eh)= MIN{dist(u~, Uh), dist(uh, us)}-d~(eg, eh), 

where dist(x, y) denotes the length of  the shortest directed path going from x to 
y in G*. Therefore we can compute MIN{mt(eg, eh)[eg, eh C B1} in O(btT_(n)) 
time simply by applying bl times a single source shortest-path algorithm to G*, 
choosing vertices in Us as the starting point. However, a standard technique of  
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shortest-path computat ion [20, p. 94] can improve the bound: once computat ion 
of  shortest paths from a starting point is done for digraph G* with negative 
edges, all the remaining computat ions can be done for a digraph with nonnegative 
edges. Thus we have: 

THEOREM 4. The feasibility for a network in Col can be tested in 
O(T_(n)+blT+(n))  time. 

6. Finding Flows for Col. In this section we first give an algorithm MFLOW01 
which finds mult icommodity flows in a network N e C01 satisfying the cut condi- 
tion, and then show that MFLOW01 runs in O(kn + nT+(n)) time. 

6.1. Algorithm MFLOWO1. A network N satisfying the cut condition is minimal 
if for every edge e with c(e)> 0 there is a cutset E ( X )  such that e e E ( X )  and 
m (X)  = 0. Clearly, a minimal network has no edge of surplus capacity: multicom- 
modity flows { f l , f2 , . . .  ,fk} in N must satisfy 

k 

E I~(e)[=c(e) 
i = 1  

for each e e E. Furthermore,  we have: 

LEMMA 12. I f  a minimal network has multicommodity flows, then each of the flows 
is acyclic, that is, the edges through which a single flow passes induce an acyclic 
digraph. 

First we reduce a given network N satisfying the cut condition into a minimal 
one by the following procedure: 

procedure M I N ( N ) ;  
begin 

for each edge e e E do 
begin { reduce surplus capacity } 

m(e) = M I N { m ( X ) I X  c V, e ~ E(X)} ;  
c( e) := c( e) - MIN{c(e) ,  m(e)} 

end 
end; 

Next we decide the direction of  flows of  P1 in edges of  the resulting minimal 
network N. By Lemma 12 each of  the mult icommodity flows is acyclic in N. Let 
e ~ E be any edge with c(e) > 0 in N. Then there exists X c V such that m ( X )  = 0 
and e e  E(X) .  We may assume that vc~ X. The cut E ( X )  is "saturated"  by the 
demands of  pairs in D ( X ) ,  and all terminals of  Po lying in X are sources. 
Therefore if  v is the end of  e in X and w the other, then we know that no flow 
for Po passes through e in a direction from w to v. Thus for each edge e e E we 
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can determine its direction in which flows for P0 can pass through e. A digraph 
Gacy indicating these directions is constructed from a minimal network N = 
(G, P, c) by the following procedure: 

procedure ACYCLIC(N); 
begin 

let Gacy be the digraph obtained from G by replacing each edge 
by two multiple directed edges, one in each direction; 
for each edge e of G do 

begin 
if c(e)=0 then remove from Gacy the two directed edges 

corresponding to e 
else { c ( e ) > 0 a n d m ( e ) = 0 }  

begin 
find a cutset E(X) such that m(X)=0,  e~E(X) ,  and 
vc~X; 
for each edge e 's  E(X) do 

begin 
let v and w be the ends of e' such that v ~ X  and 
w~X;  
remove directed edge (w, v) from Gaoy 

end 
end 

end 
end; 

LEMMA 13. I f  N is a minimal network, then procedure ACYCLIC(N) produces 
an acyclic digraph G~cy. 

PROOF. Let Z be an arbitrary undirected cycle in G. When the outer for statement 
of procedure ACYCLIC is executed for an edge e of Z, at least one forward 
edge and one backward edge in the clockwise direction of Z are deleted. Thus 
in Gaey there is no directed cycle corresponding to Z. [] 

Since Gacy is acyclic, the vertices can be numbered in topological order. The 
following algorithm MFLOW01 first finds all the flows for Po by repeatedly 
applying procedure PUSH for each of the vertices in that order, and then finds 
the flows for P1 by applying MULTIFLOW once for the resulting network 
belonging to class C1. 

procedure M FLOW01 (N); 
begin 

for. each edge e and i ( 1 - / -<k )  do f~(e):= 0; 
for each i(1 -< i - k) do commodity(i) := i; 
MIN(N); { reduce N to a minimal network } 
ACYCLIC(N); { construct Gacy } 



Algorithms for Multieommodity Flows in Planar Graphs 495 

for each vertex w~ of Gacy in the topological order do 
for each edge e of Gacy emanating from wi do PUSH(N, Po, e); 

{ flows for P0 have been realized, and N belongs to C~ } 
MULTIFLOW(N) 

end; 

We now verify the correctness of algorithm MFLOW01. Throughout the execu- 
tion of MFLOW01(N), network N continues to satisfy the cut condition and 
belongs to Co~. Thus we show that the realization of flows for Po is completed 
when the two nested for statements in MFLOW01 terminate. This is a direct 
consequence of the following lemma. 

LEMMA 14. NO terminal of Po remains on wi c V just after PUSH(N, Po, e) is 
executed for all edges emanating from w~. Furthermore, no terminal of Po is moved 
to w~ thereafter. 

PROOF. Suppose that a terminal sj remains on w~ just after the executions of 
PUSH for all edges emanating from w~. Since the network satisfies the cut 
condition and belongs to Col, Theorem 1 implies that there exist multicommodity 
flows, including flow fj of pair (sj, tj). The flow f~ must pass through edges 
emanating from w~. Let e be one of these edges. Then, just after PUSH(N, Po, e) 
is executed, either c(e)--O or there exists a "blocking" cutset E ( X )  such that 
e ~ E(X) ,  re(X) = 0, and s], tj ~ X. Since the margin of any cut does not increase 
during the execution of M FLOW01, re(X) remains zero thereafter. Thus fj cannot 
pass through e, a contradiction. 

Since MFLOW01 repeats pushing flows from vertices in the topological order, 
no terminal of Po is moved to w~ thereafter. []  

6.2. Complexity of MFLOWO1. In this subsection we show that MFLOW01 
runs in O(kn + nT§ time. It has been known that MULTIFLOW runs in that 
time [7]. Therefore we shall show that the remaining part of MFLOW01 terminates 
in that time. 

Since PUSH is executed at most once for each edge and G is planar, PUSH 
is executed O(n) times in total. Since one execution of PUSH introduces at most 
one new pair, there exist O (n) pairs of Po throughout the execution of MFLOW01. 

We show below that both re(e) and m(e,(si ,  ti)) can be computed in 
O(k+ T_(n)) time. Let u be the tail o f e  § of G*, and let u' be the head (see 
Figure 9). In what follows, shortest paths are computed in graph G*-{e  § e-}. 

(a) Computation of m(e). Define 

and 

mo(e) = MIN(m(X)Ie  ~ E(X) ,  E (X)  n B1 = 0 ,  E (X)  is a cutset} 

ml(e) = MIN{m(x) ie  ~ E(X), E ( X )  n B1 ~ 0 ,  E ( X )  is a cutset}. 
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Then m(e)=MIN{mo(e),  ml(e)}. These mo(e) and m~(e) are computed as 
follows. 

(al) mo(e). Lemma 10 implies that mo(e) is equal to the length of the 
minimum directed cycle in G* passing through e § or e-. Let 

mo(e-) = dist(u, u') + leng(e-) 

and 

mo(e +) = dist(u', u) +leng(e§ 

where dist(x, y) denotes the length of a shortest directed path from x to y in 
G* - { e  § e-}. Then mo(e) = MIN{mo(e-), too(e§ Thus mo(e) can be computed 
by solving twice the single source shortest-path problem in G * - { e  +, e-}. 

(a2) m~(e). The cutset E ( X )  of margin m~(e) corresponds to a path in G* 
connecting two vertices of U1 through e § or e-. Define 

ml(e +) = MIN{dist(ug, u ) + leng( e +) + dist( u ', Uh) - dl( eg, eh)leg, eh ~ BI} 

and 

ml(e-)  = MIN(dist(ug, u') + leng(e-) + dist(u, Uh) -- d~(eg, eh)leg, eh ~ B1}. 

Although the two paths of lengths dist(Ug, u) and dist(u', Uh) (or dist(ug, u') and 
dist(u, Uh)) may not be vertex-disjoint, we can use m~(e) = MIN{ml(e+), ml(e-)} 
instead of ml(e) to compute re(e), as the next lemma claims. 

LEMMA 15. l f  a network N satisfies the cut condition, then 

re(e) = MIN{mo(e), m~(e)}. 

PROOF. Clearly, m~(e) ~- ml(e ). Therefore we shall show that m~(e) < ml(e) 
implies mo(e)<-m~(e). Suppose that m~(e)<ml(e). We may assume that 
ml(e +) ~-ml(e-) and hence m~(e)= ml(e+). Let path Q from ug to Uh through 
edge e + in G* have length ml(e +) + dl(eg, eh). Since m~(e)< m~(e), Q is not a 
simple path, but Q is an edge-disjoint union of a simple path Qs from ug to Uh 
not passing through edge e + and some simple cycles. One of these cycles, say Z, 
passes through edge e + and, clearly, leng(Z) -> too(e). Since the cut condition is 
satisfied, each of the other cycles has a nonnegative length and the length of path 
Qs satisfies leng(Qs) - dl(eg, eh) ~--O. Therefore 

ml( e +) >-- leng(Z) + leng(Q~) - dl( eg, eh ) >- mo( e ). [] 
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We can compute m~(e +) as follows. First solve twice the single source shortest- 
path problem, once from u' in G * ' { e  § e-} and once from u in the graph 
obtained from G * - { e  § e-} by reversing the direction of all the edges. Then 
from the found distances we can compute ml(e § in O(b~) time by a straightfor- 
ward method. Using the variable priority queue in the Appendix, we can compute 
in O(k+ bl) time. Thus m~(e § can be computed in O(k+ T_(n)) time. Similarly 
m~(e-) can be computed in that time. 

Since m(e) can be computed immediately from mo(e) and m[(e), the computa- 
tion of re(e) spends O(k+ T_(n)) time. 

(b) Computation ofm(e, (si, t~)). Procedure PUSH always pushes D units of a 
flow f~ through an edge e where D = MIN{dl, c(e), m(e, (s~, t~))/2}. We compute 
D without explicitly computing m(e, (si, t~)). Instead we compute m'(e, (s~, t~)) 
defined as follows: if edge e is oriented to emanate from s~, then 

(1) m'(e, (s,, t~)) = MIN{mo(e-), m~(e-)}; 

otherwise, 

m'( e, (si, ti) ) = MIN{mo(e§ ml(e+)}. 

The following lemma justifies it. 

LEMMA 16. D = MIN{d/, c(e), m'(e, (si, ti))/2}. 

PROOF. We verify the equation only for the case e is oriented to emanate from 
si because the other case can be treated similarly. By definition re(e, (si, t~)) is 
the minimum m(X) over all the cutsets E(X)  such that X c  V, s~, t~c~X, and 
e ~ E(X).  Let m(X') be minimum among all these cutsets with E ( X ' ) n  B1 = 0 ,  
while let m (X") be minimum among these with E (X") n B1 ~ Q. Thus 

(2) re(e, (s~, t/)) = MIN{m(X') ,  m(X")}. 

Since e is oriented to emanate from s~, cutset E(X')  of G corresponds to a 
minimum clockwise cycle through e - i n  G*. Since too(e-)= dist(u, u ' )+leng(e-) ,  
too(e-) < - m(X'). Let Q be the shortest path (of length dist(u, u')) from u to u' 
in G* - {e +, e-}, then the cycle Q' = Q u {e-} in G* corresponds to a outset E(Y)  
of (2. We may assume ti ~ Y; otherwise replace Y with the complement V -  Y. 
By Lemma 10, if cycle Q' is clockwise, then 

m(Y) = too(e-) = m( X'). 

On the other hand, if Q' is counterclockwise, then s~ ~ Y, d~-< d(Y)  and hence 

2d~ --- m(Y) +2d (Y)  = mo(e-) <- m(X'). 

Thus either 

(3) mo(e-) = m(X') 
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uhB1//~~ u~ 
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", \ h /.,' 

(a) (b) 

Fig. 11. (a) Clockwise cycle R' and (b) counterclockwise cycle R'. 

o r  

(4) 2di <- too(e-) < m( X'). 

Let  E(X")nB~={eg, eh}. E(X") corresponds to a path R in G* through e- 
either from ug to Uh or from Uh to Ug. We may assume that path R is from ug to 
uh. Add edge (uh, ug) to R so that vc lies outside the resulting plane directed 
cycle R' = R u (Uh, Ug). Then the cycle R' must be clockwise; otherwise, X" would 
contain s~. (See Figure 11.) Remember rn~(e-) is defined as 

mt(e-) = MIN{dist(up, u')+leng(e-)+dist(.u, uq)- d~(ep, eq)te., eq ~ B~}. 

Clearly, ml(e-)<-m(X"). Let R m be the path in G* from up to uq through e- 
of length ml(e-)+dl(ep, eq). First consider the case Rpq is a simple path. Add 
edge (uq, up) to Rpq so that vc lies outside the resulting plane cycle R'pq = Rpq u 
(uq, up). If cycle R~q is clockwise, then rn~(e-) = re(X"). Otherwise, 2d~ - m~(e-). 
Next consider the case path Rpq is not simple. Then Rpq contains a cycle Z 
through e- in G*. If Z is clockwise, then too(e-)<--leng(Z)-< ml(e-). Otherwise, 
2d~-< leng(Z)<-rn~(e-). Thus in either case we have either 

(5) ml(e-) = m(X") 

or  

(6) MIN{2d~, too(e-)} ~ rnl( e-) ~ re(X"). 

Equations (1)-(6) imply that either 

or  

m'(e, (s,, t,)) = re(e, (s,, t,)) 

2d, <<- m'(e, (s,, ti)) < m(e, (s,, t~)). 
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This immediately implies the claimed equation 

D = MIN{di, c(e), m'(e, (s,, ti))/2}. [] 

We can compute m'(e, (si, ti)) in O(k+ T_(n)) time. The computation occurs 
O(n) times, and so spends O(kn + nT_(n)) time in total. The other tasks can be 
done in O(kn + nT§ time as in Section 4.4. Thus algorithm MFLOW01 runs 
in O(kn+nT_(n)) time. Edge weights of G* may be negative and, to make 
matters worse, edge weights may decrease during the execution of MFLOW01. 
However, using the same standard technique as in Section 5, we may compute 
the shortest paths in graphs without negative edges except the first computation. 
Thus we can conclude: 

THEOREM 5. Algorithm MFLOW01 finds multicommodity flows for networks 
belonging to Col in O(kn + nT+(n)) time. 

7. Conclusion. We have presented simple efficient algorithms for the multicom- 
modity flow problems for two classes C12 and (7ol of planar undirected networks. 
C12 consists of networks in which every source-sink pair lies on one of the two 
specified face boundaries B1 and B 2. Col consists of networks in which some 
pairs lie on the specified boundary B 1 and all other pairs share a common sink 
on B~. The feasibility can be checked by solving the single-source shortest-path 
p r o b l e m  O(bl+b2) times for C12 and bl times for Col , where bl and b E are the 
number of edges on B1 and B2, respectively. On the other hand, multicommodity 
flows can be found by solving the shortest-path problem O(n) times for C~2 and 
Col. More precisely the feasibility can be checked in O((bl + bE)T+(n)) time for 
C12 and in O(T_(n)+blT+(n)) time for Col, while k-commodity flows can be 
found in O(kn+nT+(n)) time for C12 and Col. 

If the usual Dijkstra's algorithm [1], [20] is used, then T+(n)= O(n log n). 
Frederickson [3] shows that if a planar separator algorithm is used then T§ = 
O(n) assuming the preprocessing is done in O(n log n) time. It is well known 
that T_(n) = O(n 2) [1], [20] if an ordinary shortest-path algorithm is used, while 
T_(n) -- O(n 3/2) if a planar separator algorithm is used [6]. 

If  the capacities and demands are all integers, then our algorithms find half- 
integral flows for C12 and Col. Note that m(X) is an integer for any X ~ V and 
D is always a half-integer throughout the execution of algorithms. A network is 
even if the capacities and demands are all integers and for each vertex v the 
capacities of edges incident with v and the demands of terminals lying on v total 
to an even integer. MFLOW12 finds integral flows for an even network in C12. 
This is not the case for MFLOW01 because procedure MIN may reduce an even 
network to a minimal one which is not even. However, we can modify MFLOW01 
so that it finds integral flows for an even network in Col (the details are left to 
the reader). Thus our algorithms can be used to find edge-disjoint paths in plane 
grids [16], and are expected to be useful for VLSI routing problems. 
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Appendix. Detail of Step 2. We now show that we can execute step 2 (in Section 
4.4) in O ( k + n )  time. Clearly, we can compute ~ e~) for a single edge 
eq ~ B2 in O(k + n) time. The key point to notice is that m*l(eo, e~) can be updated 
from m*21(eo, e'q-1). In order to perform the update efficiently, we need a data 
structure called a variable priority queue Q [18]. Q is a sequence of elements 
ordered from left to right, and each element e in Q is associated with a real 
number key(e). The following instructions are permitted: 

1. INJECT(Q, e, key(e)): insert a new element e with key(e) into Q as the 
rightmost element. 

2. POP(Q): delete the leftmost element in Q. 
3. DECREASE(Q, e, D): given an element e in Q together with a nonnegative 

number D, decrease by D all the keys of element e and those on e's right. 
4. UPDATE(Q, D): add some real number D to all the keys of elements in Q. 
5. MIN(Q): return the minimum key in Q. 

_ _  l ? Let Rp -{vq+l,  Vq+2,..., Vp}, then 

t t .[_ -d2(ep, eq) = -d2(ep, eq-1) E {di[(s,, ti) ~ P2 n D({v~})} 

- 2  Y. {di[(si, ti) ~ P2 n D({vq}, R.)}. 

Therefore, using the queue Q, we can compute m*l (eo, eq) for all eq ~ B2 as follows: 

procedure M21"; 
begin 

prepare an empty queue Q; 
for each edge ep, p = 1, 2 , . . . ,  b 2 - 1  do 

INJECT(Q, G, dist(uo, up)- d2(ep, e~)); 
{ the key of edge ep in Q is dist(uo, up)-d2(ep, e~) } 
m*l( eo, e~) := MIN(Q); 
for each q, q = 1, 2 , . . . ,  b2- 1, do 

begin 
{ Q contains edges ep, p = q, q + 1 , . . ,  q - 2, having keys 

dist(uo, Up) - d2(ep, e'q_~) } 
POP(Q); { delete e~ from Q } 

t ! . INJECT(Q, eq-l, dist(uo, uq_l)), 
l ! / { Q contains eq+, eq+2,...,  eq-1 } 

UPDATE(Q, E {d,l(s,, t,) ~ P2c~ D({v~})}); 
for each pair (si, ti)~ P2 n D({v~}) do 

begin 
" let ' be the edge clockwise assume that st lies on Vq, ep 

incident with ti on B2; 
DECREASE(Q, ep, 2d,) 

end; " 
{ each edge ep in Q has key dist(uo, up) - d2(ep, e'q) } 
m*l(eo, e'q) := MIN(Q) 

end 
end; 
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Thus during the execution of procedure M21" instructions 1- 5 o ccur O ( k + n) 
times in total. If the queue Q is realized by a 2-3 tree [1], then each instruc- 
tion is executed in O(log n) time, and hence the execution of M21* spends 
O((k+ n) log n) time. Using a disjoint set union algorithm [4], we can realize Q 
in a more sophisticated way so that M21* runs in time linear in the number of 
instructions [18]. Therefore step 2 can be done in O(k+ n) time. 
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