
Aigorithmica (1989) 4:471-501 Algorithmica
�9 1989 Springer-Ver|ag New York Inc.

Algorithms for Multicommodity Flows
in Planar Graphs

Hitoshi Suzuki, ~ Takao Nishizeki, ~ and Nobuji Saito 1

Abstract. This paper gives efficient algorithms for the multicommodity flow problem for two classes
Ct2 and Co~ of planar undirected graphs. Every graph in Ct2 has two face boundaries B t and B 2
such that each of the source-sink pairs lies on B 1 or B 2. On the other hand, every graph in Cot has
a face boundary B t such that some of the source-sink pairs lie on B 1 and all the other pairs share a
common sink lying on B t. The algorithms run in O(kn + nT(n)) time if a graph has n vertices and
k source-sink pairs and T(n) is the time required for finding the single-source shortest paths in a
planar graph of n vertices.

Key Words. Algorithm, Cut condition, Multicommodity flow, Network, Planar graph, Shortest path.

1. Introduction. The network flow problem and its variants have been extensively
studied. It is well known that the Max Flow-Min Cut theorem holds for single-
and two-commodity flows. There are efficient algorithms for finding a maximum
single-commodity flow [14]. It is also known that the maximum two-commodity
flows in an undirected graph can be found by using an algorithm for a single-
commodity flow [13]. The situation is different with regard to flows of more than
two commodities. No simple polynomial-time algorithm is known for the multi-
commodity flow problem on general graphs. Very recently Tardos reported a
strongly polynomial algorithm to solve combinatorial linear programs including
the multicommodity flow problem [19]. However, it employs a polynomial linear
programming algorithm, does not have a polynomial time bound of lower order,
nor is easy to implement. Therefore simple efficient algorithms are useful in
practice even if they are valid for restricted classes of graphs [2], [5], [7], [8], [12].

In the multicommodity flow problem, we would like to (1) test the feasibility,
that is, decide whether a given graph G has multicommodity flows, each from a
source to a sink and of a specified demand, and (2) then actually find them if G
does have them. The problem can be applied to many practical problems such
as traffic control, design o f communication networks, and routing of VLSI [9],
[16].

This paper deals with the multicommodity flow problem for two classes C12
and C01 o f planar undirected graphs. Every planar graph in the first class C12
has two specified face boundaries B 1 and B2 such that each of the source-sink
pairs lies on B1 or B2. On the other hand, every planar graph in the second class

Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980,
Japan.

Received January 30, 1987; revised November 9, 1987. Communicated by Tatsuo Ohtsuki.

472 H. Suzuki, T. Nishizeki, and N. Saito

C01 has one specified face boundary B 1 such that some of the source-sink pairs
lie on B~ and all the other pairs share a common sink located on B1. Figure 1
depicts two planar graphs belonging to C12 or Col. The Max Flow-Min Cut
theorem is known to hold for graphs in C12 or Cm [10]. We show that the
multicommodity flow problem for an undirected graph G in C~2 (resp. Col) can
be reduced to the shortest path problem for an undirected (resp. a directed) graph

8 2 s+ 3 2 t3

,+./ \,+ � 8 8
/ o +,

~? / ~ \ 5/d,=P. d~=5
\ / / o \ / d+=+ ++=+

" ~ +] / 4 v5 \ / ++ = +
~ - " -- d+= 4

s+ t 2

(a)

s 5 4 5 v+=t I =t+ =t+ =t+

?

81

5 ~

1
\ 3/ o\ ~/ d~=a d~=2 \ / ~\ / d~=+ d~=~

R \ / A \/ d~=i _ 8 V 4 _wt, ?~=4

(b)
Fig. l . (a) A network in C12 and (b) a network in Cot. (s+ is a source, t+ is a sink, and d+ is a demand.)

Algorithms for Multicommodity Flows in Planar Graphs 473

obtained from the dual of G. The reduction yields simple polynomial-time
algorithms for the two classes of planar graphs. More precisely, we can find
multicommodity flows in a graph belonging to C~2 or Co~ by solving the single-
source shortest path problem O(n) times, where n is the number of vertices in
a graph. Furthermore, we can find half-integral flows for C12 and Co~ if the
capacities of edges and the demands of source-sink pairs are all integers. However,
our algorithms do not work for directed graphs. A preliminary version of this
paper appeared as [17].

2. Preliminaries. In this section we first define some terms, and then present
known results.

A flow network N = ((3, P, c) is a triplet, where:

(1) G = (V, E) is a finite undirected simple connected graph with vertex set V
and edge set E.

(2) P is the set of source-sink pairs (s , h), where source s~ and sink t~ are
distinguished vertices in V. Both source and sink are often called terminals.

(3) c: E ~ R § is the capacity function. (R (or R § denotes the set of (nonnegative)
real numbers.)

A network N = (G, P, c) is planar if G is planar. In what follows, we assume
�9 that G has n vertices and P contains k source-sink pairs, i.e., I vl -- n and tPI = k.

Each source-sink pair (s , t~) of N is associated with a positive demand d~.
Although G is undirected, we orient the edges of G arbitrarily so that the sign
of a value of a flow function can indicate the real direction of the flow through
an edge. A set of functions { f b f z , . . . , f k } with each f : E ~ R is k-commodity
flows of demands dl, d2 , . . . , dk if it satisfies:

(a) For each e ~ E

k

Z If(e)t<-c(e).
i = 1

(b) Each f satisfies

I N (f , v)= OUT(f , v)

for each v ~ V-{s~, t~}, and

OUT(f , s ~) - I N (f , s,) = I N (f , ti) - O U T (f , t~) = d~,

where I N (f , v) is the total amount of flow f of commodity i entering v, and
OUT(f , v) is the total amount of flow f emanating from v.

Classes C1, CtE, and Cm of planar networks N = (G, P, c) are formally defined
as follows:

(1) Class (71. One face boundary of G is specified, and all the source-sink pairs
are located on it.

474 H. Suzuki, T. Nishizeki, and N. Saito

(2) Class C12. Two face boundaries Bi and B2 of G are specified, and each of
the source-sink pairs lies on Bl or B E. That is, the set P is partitioned into
P1 and P2 so that

and

if (s . t ,)~P1 then s , , t ~ B l

if (si, ti)~P2 then si, ti~l?2.

(3) Class Col. One face boundary Bl together with a vertex vc on Bl is specified,
and some of the source-sink pairs are located o n B1, while the sinks of all
the other pairs must lie on v~ but their sources can lie anywhere in G. That
is, the set P is partitioned into Po and P1 so that

if (si, ti)~Po then ti=vc

and

if (si, t~)~P1 then si, ti~B1.

Note that Cl is a subclass of Cl2 and of Col. For the network of C12 depicted
in Figure l(a) P1 = {(Sl, tl), �9 �9 �9 (s4, t4)} and P2 = {(ss, ts), (s6, t6)}. For the network
of Col depicted in Figure l(b) Po = {(Sl, t l) , . . . , (s4, t4)} and P1 = {(ss, ts), (s6, t6)}.

We have already given a polynomial-time algorithm MULTIFLOW which
finds multicommodity flows in a network belonging to class C1 and runs in
O(n(k+ T+(n))) time [7]. Throughout the paper T+(n) denotes the time required
for finding the single-source shortest paths in a planar graph with nonnegative
edge weights having n vertices, while T_(n) denotes the time for a planar directed
graph with edge weights of real numbers.

We may assume without loss of generality that B1 is the boundary of the outer
face of a given plane graph G. The face boundaries B1 and B2 are not always
simple cycles, but are closed walks (that is, some vertices or edges may appear
twice or more). We denote by bl (resp. b2) the number of edges on B1 (resp. BE),
and denote by B 1 (resp. BE) the set of vertices and also the set of edges o n B 1
(resp. B2). Let Vo, v l , . . . , Vb,-1 be the sequence of vertices appearing on B1 in
clockwise order, and let e~ = (v, v ,) , i=0 , 1 , . . . , b~- l , where vb, = Vo. Let
v~, v~, . . . , v~2_l be the vertices on B2 appearing in clockwise order, and let
e~= (vl, v~+l), i=0, 1 , . . . , b2-1, where v~,2= v~.

We denote by E(X, Y) the set of edges with one end in X c V and the other
in y c V. If X c V, then E(X)=E(X, V - X) is called a cut. E(X) is called a
cutset if the graph G - E (X) obtained from G by deleting the edges in E(X)
has one more connected components than G. Define

and

c(X, Y) =~ (c(e)le ~ E(X, Y)}

c(X) = c (x , v - x) .

Algorithms for Multicommodity Flows in Planar Graphs 475

Denote by D(X, Y) the set of source-sink pairs with one terminal in X and the
other in Y. Define

and

D(X) = D(X, V-X) ,

d(X, Y)=E {dil(s,, ti)~ D(X, Y)},

d(X)=d(X, V-X) ,

m (X) = c(X) - d (X) (the margin of a cut).

We say that a network N satisfies the cut condition for given demands if
m(X)>_O for every X c V. The cut condition is necessary for the existence of
k-commodity flows of given demands in a network, but not necessarily sufficient.
However, Okamura [10] has proved the following theorem.

THEOREM 1 [10]. Let N = (G, P, c) be a planar network in class C12 o r Col. Then
N has multicommodity flows of given demands if and only if N satisfies the cut
condition.

Our algorithms are based on Theorem 1. The Max Flow-Min Cut theorem
does not always hold for general undirected planar networks having source-sink
pairs on three or more face boundaries or for directed planar networks [7], [10].
Therefore our algorithms do not work for these networks.

The following lemmas have been known.

LEMMA 1 [7], [11]. A network N = (G, P, c) satisfies the cut condition if and only
if re(X) >- 0 for every cutset E (X).

LEMMA 2 [10], [11]. Let N = ((3, P, c) be a network satisfying the cut condition.
I f m (X) = m (Y) = 0 and d (X - Y; Y - X) = 0 for X, y c V, then m (X n Y) =
m (X w Y)=0 a n d c (X - Y; Y - X) = 0 .

PROOF.

and

By simple counting we have the following two equations:

c(X) + c (Y) = c (X u Y) + c (X c~ Y) + 2c(X - Y; Y - X)

d (X) + d(Y) = d (X u Y)+ d (X n Y)+ 2 d (X - Y; Y - X) .

Subtracting the latter from the former we have

m (X) + m (Y) - - m (X w Y) + m (X n Y)

+ 2 c (X - Y; Y - X) - 2 d (X - Y; Y - X) .

The claim follows immediately from the above equation. []

476 H. Suzuki, T. Nishizeki, and N. Saito

//1
~) e 1

u14 d ~ "~

Ul 3 u12

Fig. 2. Graph G in C~2 and its G*.

3. Testing Feasibility for Class C12. In this section we give an algorithm to test
the feasibility of a given network N = (G, P, c) belonging to class C12, that is, to
determine whether there are multicommodity flows in N. A new graph G* is
constructed from G as follows (see Figure 2):

(1) Replace each edge e~ B l u B 2 of G with two multiple edges (if either
e ~ B~ n B2 or e is a bridge (i.e., a cutset of a single edge) then replace e with
three edges).

(2) Construct a dual of the resulting (multi)graph.
(3) Remove from the dual the two vertices corresponding to B1 and B2.

Figure 2 illustrates a plane graph G in C~2 and the corresponding G*, where
G is drawn by solid lines and G* by dashed lines. Let ui' be the vertex of G*
corresponding to edge ei o n B1, i = 0, 1 , . . . , b I - 1, and let U 1 = { u 0 , U l , . . . , U b l _ l } .

Similarly define ul, ,i = 0, 1, . . . , b 2 - 1 , and U2 with respect to B 2, Each edge of
G* has length equal to the capacity of the corresponding edge of G.

We may assume that bl, b 2 - < 2k: otherwise, new edges of capacity zero can be
added to G to yield bl, bE<-2k, as discussed in [5] and [7]. Theorem 1 and
Lemma 1 together imply that we can test the feasibility by verifying whether
m(X) >- 0 for every cutset E(X) . Since G is planar, IE(X) n Bll = 0, 1, or 2 and
I E (X) n BEI = 0, 1, or 2 for every cutset E(X) . Therefore the cutsets are classified
into four types:

(0) E (X) n B ~ = O and E (X) n B 2 = (~ ;
(1) IE(X) n B~ I = 1, 2 and E (X) c~ BE = 0;
(2) E (X) n B I = O and tE (X)nB2[=I , 2; or
(3) IE(X) n B] I = 1, 2 and IE(X) n B21 = 1, 2.

We now show how to compute margins of cutsets, separating these four types.

Type (0). Since every terminal lies on B1 or B2, D(X) = O for any cutset E(X)

Algorithms for Multicommodity Flows in Planar Graphs 477

of type (0). Thus all cutsets of type (0) have nonnegative margins, and con-
sequently i t i s not necessary to compute them.

Type (1). I f two edges eg, eh ~ B~ are fixed, then all cutsets E (X) with E (X) n
B1 = {eg, eh} have the same D (X) n P1; let d~(eg, eh) = Y. {dil(si, ti) ~ D (X) n P1}.
Define the following terms:

c l (e g , eh) = M I N { c (X) I E (X) is a cutset of G, E (X) n BI = {eg, eh},

E (X) n B2 = 0 }

and

m~(eg, eh) = c~(eg, eh) - d~(eg, eh).

For a fixed edge eg ~ B~ and all edges eh ~ B~ we can compute the values
dl(eg, eh) in O(b~ + k) time. These values can be updated for the edge eg+l s B~
clockwise next to eg on B~ in O(b~) time. Thus we can compute dl(eg, eh) for all
edges eg, eh C B1 in O(b 2) time [5].

On the other hand, we compute c~(eg, eh) as follows. Clearly, the cutset of G
attaining the value cl(eg, eh) corresponds to the shortest path between vertices
u s and Uh in G*. Therefore, applying a single-source shortest path algorithm to
G* once, choosing ug as the starting point, we can compute in O(T§ time
cl(eg, eh) for a fixed edge eg ~ B 1 and all edges e h c B~.

Repeating the computation for each eg ~ B~, we can find the minimum of
m~(eg, eh) over all eg, ehCB1 in O(biT+(n)) time. Thus we can check the cut
condition for cutsets of type (1) in O(biT+(n)) time.

Type (2). If two edges e~, eq ~ B2 are fixed, then all cutsets E (X) with E (X) n
B 2 = {ep, eq} have the same D (X) n P2; let d2(e~, e~) = ~ {d,l(s,, t,) ~ D (X) n P2}.
Define

c2(e'p, e~) = M I N { c (X) I E (X) is a cutset of G,

E (X) n B1 = Q, E (X) n Bz= {e~, e~}}

and

m2(e;, e'q) = c2(e;, e'q) - d2(e'p, e'q).

As in the case of type (1) above, we can check the cut condition for cutsets of
type (2) in O(b2T+(n)) time.

Type (3). I f four edges eg, eh ~ BI and e~, eq s B2 are fixed, then d (X) is constant
_ _ ! for all outsets E (X) such that E (X) n B1 = {eg, eh} and E (X) n B2 - {ep, e~}; the

constant is denoted by dl2(eg, eh; e~, eq). (See Figure 3.) Then we can easily verify

d12(e~, eh; e'p, e'q) = dl(es, eh) + d2(e'p, e'q).

478 H. Suzuki, T. Nishizeki, and N. Saito

,7

Fig. 3. Illustration for cl2(eg, eh ; e~, e~).

We now define

c12(eg, eh; ep, e'q) = M I N (c (X) I E (X) is a cutset of G,

E (X) n B~ = {eg, eh}, E (X) n B2 = {ep, el} }

and

mlE(e s, eh; ep, el) = c12(es, eh; ep, eq)-d12(es, eh; ep, eq).

Clearly, c12 is equal to the length of a shortest pair of vertex-disjoint paths,
' ' Such a pair can be found by the sophisticated each from u s or Uh to Up or Uq.

algorithm of Suurballe and Tarjan [15]. However, we can check more efficiently
the cut condition for cutsets of type (3) simply by applying an ordinary shortest-
path algorithm. The key point to notice is that we need not compute
m12(e s, eh ; ep, el) itself. Instead we compute m~2(es, eh ; ep, e i) defined as
follows:

m~2(e s, eh; ep, eq)= dist(ug, Up)+ dist(uh, u'q)- d~2(eg, eh; ep, e'q),

where dist(u, u') denotes the distance between vertices u and u' in G*, i.e., the
length of the shortest path from u to u'. Although the two paths of length
dist(ug, up) and dist(uh, Uq) in G* may not be disjoint, the following lemma holds.

LEMMA 3. A network N in C12 satisfies the cut condition if and only if ml(es, eh) >>-
O, m2(ep, e'~) >-- O, and m~2(eg, eh; ep, e'q) >--- 0 for all eg, eh ~ B1 and ep, e'q ~ B2.

PROOF. Clearly, MIN{m~2(eg, eh; e/o, e,;), m~2(eh, eg; e; , e~)}----- mlz(eg, eh; e;, e~)
for all eg, eh ~ BI and ep, e i ~ B:. Thus the " i f " part is trivial, and we shall prove
the "only i f " part. Assume that N satisfies the cut condition. Then ml(eg, eh)>--0,

' ' > ' el) -- 0 for all es, eh~B~andep , e i~B2 .Thus m2(el,, eq) --0, and mlu(e s, eh; ep,
we shall verify m~2(e s, eh; ep, e~)>-O for all es, en ~ B~ and ep, e ~ B2. Let Rsp
be a shortest path from u s to up in G*, and let Rhq be a shortest path from uh

Algorithms for Multicommodity Flows in Planar Graphs 479

to u~ in G*. If paths R~p and Rhq are vertex-disjoint, then there exists a cutset
of G which consists of the edges corresponding to those of Rsp and Rhq. Therefore

m~2(e~, eh; e;, e'q)>-m12(e,, eh; e'p, e'o)>--O.

Thus we may assume that R,p and Rhq a r e not vertex-disjoint. Then Rsp + Rhq

contains two edge-disjoint paths: a path Q~h between ug and Uh and a path Qpq
between u~, and u~. Let E (X) and E (Y) be the cutsets of G corresponding to
Qgh and Qpq, respectively. Then we have

m (X) = leng(Qgh) - dl(eg, eh) >- m~(eg, eh)

and

! ! ! r m(Y) = leng(Qm) - d2(e. eq) >- m2(ep, eq),

where leng(Q) is the length of path Q in G*. Clearly,

leng(Qsh) + leng(Qpq) - leng(R,p) + leng(Rhq).

Therefore

m~2(eg, eh; e~, e~) = leng(Rgp) +leng(Rhq) - d12(eg , eh; e'p, e'q)

>-ml(es, eh) + m2(e'p, e'q) >- O. []

Thus it suffices to check whether m~2(e~, eh; e'p, e'q) >- 0 for all eg, eh e B~ and
e~,, e~ r B2. The checking can be done as follows. First compute for each eg e B~
and eq e B2

and

m*2(e,, e;) = MIN{-d , (e , , eh) + dist(uh, U'q)leh e nl}

m*l(es, eq) = MIN{dist(ug, Up) - dl(e'p, e;)lep s B2}.

Note that for e~ s B1 and eq e B2

m*2(e~, ' * ' ' eq) + m21(eg, e~) = MIN{m~2(eg, eh; ep, e'o)leh e B1, ep s B2}.

Then compute

A=MIN{mI*2(e~, ' * ' ' eq) + m21(eg, eq)leg s B1, eq e B2}.

Clearly, A->-> 0 if and only if m~:(%, eh; e~, e~) > 0 for all es, eh e B~ and e~, e~e B2.

480 H. Suzuki, T. Nishizeki, and N. Saito

We now show that the computation above can be done in O((b~ + b2)T+(n))
time. We can compute ml*2(eg, eq) for a fixed eg ~ B1 and all eq ~ B2 in O(T§
time: construct a planar graph from G* by adding a new vertex v and edges
(v, Uh) of length L - d l (e g , eh) for all Uh C U1- Ug, and find shortest paths from v
to all Uq~ U2, where L is a sufficiently large positive number. Thus we can
compute all ml*2 in O(blT+(n)) time. Similarly we can compute all m2"1 in
O(bET+(n)) time. From these m*2 and re*l, value A can be computed in time
O(bl b2) < - O((b~ + b2) T+ (n)).

From the discussions in (0), (1), (2), and (3) above, we can conclude:

THEOREM 2. The feasibility of a network N in C12 can be tested in
O((bl+b2)T+(n)) time if N, B1, and B2 have n vertices, bl edges, and b2 edges,
respectively.

4. Finding Flows for Clz. In this section we give an algorithm MFLOW12 which
finds multicommodity flows in a network N belonging to C12 and satisfying the
cut condition. The algorithm spends O(kn+ nT+(n)) time. In this section we
assume that all edges of capacity zero are deleted and consequently all edges
have positive capacities.

4.1. Basic Procedure PUSH. In this subsection we present a basic procedure
PUSH which our algorithms repeatedly use to find flows in a network in C12
and Col.

For an edge e = (v, w) ~ E and set Pt (1 = 0, 1, 2), procedure PUSH(N, Pl, e)
repeats the following operation for each pair (si, t~) ~ Pt having a terminal, si say,
on v:

(a) Push an appropriate unit D of flow f~ through e.
(b) Decrease the capacity of e by D.
(c) Split the single demand d~ o f f into two, demand D of a new pair (w, t~)

and the residual demand d ~ - D of pair (s~, t~). (Two flows realizing split
demands will be superimposed to realize the original single flow f~.)

We choose D so that the resulting network N ' satisfies the cut condition.
Furthermore, we choose e so that N ' also belongs to C12 (resp. Col) if N belongs
to C12 (resp. Co~). Our algorithm repeatedly applies procedure PUSH until the
network is eventually transformed into one belonging to C~.

We now present the details of procedure PUSH. Of course, D cannot exceed
di or c(e), but we wish to choose D as large as the resulting network will allow
before violating the cut condition. If pushing D units o f f changes the margin
m(X) of a cutset E(X) , then e s E(X) , st, ti ~ X, and m(X) is decreased by 2D.
Therefore D cannot exceed one-half of the minimum margin of these cutsets.
Thus we choose D as follows:

D = MIN{c(e), di, m(e, (si, ti))/2},

where

m(e, (si, t i))=MIN{m(X)IE(X) is a cutset of G, ec E(X) , s~, t ~ X}.

Algorithms for Multicommodity Flows in Planar Graphs 481

To keep track of the origin we assign to each pair (s~, t~) a commodity number
commodity(i); deafly, commodity(i) = i if i - k; and commodity(i) =
commodity(j) if i > k and (s~, t~) raises from (st, t~). Then the superimposition
in operation (c) above can be done mechanically using this numbering. We now
describe procedure PUSH in pidgin ALGOL.

procedure PUSH(N, Pt, e);
begin

{ l=O, 1 or 2. edge e=(v , w) is suitably chosen}
for each terminal s~ (not necessarily source) on v belonging to Pt do

begin
D:=MIN{c(e) , di, m(e, (si, t~))/2};
{ push D units of flow through e }
if D > 0 then

begin
j := commodity(i);
f~(e):=f)(e)+ D;

{l--<j--- k }
{ the sign + depend on the orientation

of e and whether si is a source or
sink }

c(e) := c (e) - D; { residual capacity }
if D = d~ then { flow of (s~, t~) has been entirely pushed

through e }
begin

s~ := w; { move terminal s~ from v to w }
if s,=ti then Pt:=Pt-(s~,t~) {flow of (si, t~) has

been realized }

end
else { D<di , flow of (s~, t,) has been partly pushed

through e }
begin

di :--- d i - D; { residual demand }
if t~ ~ w then
{ add a surrogate (Sk+l, tk§ of pair (si, t~) }

begin
Sk+ 1 : : W;

tk+ l : = ti ;
Pt : = Ptu{(sk+~, tk+O};
commodity(k + 1) := j ;
dk+~ := D; { split demand }
k : = k + l

end
end

end
end

end;

482 H. Suzuki, T. Nishizeki, and N. Saito

h

i/" 1181 -.. .~
.s2 | (s2 t~___~_ x\ -.,.\

' \ , v,",...4 z x' x ",

~ "I I /I

\ v U / , d; :5

t2 d 7 = 1 s4 t7

Fig. 4. The network after the execution of-PUSH(N, P1, Co).

EXAMPLE. Suppose that PUSH(N, P1, e) is executed for a network N in Figure
l(a) , choosing an edge eo = (Vo, vx) on Ba as e. In this case there are two terminals
sl and s2 on Vo. We can verify that m(eo, (sl, h)) = m(X) = 8 with X = {Vl, v2, w2}.
Therefore D = MIN{3, 2, 8/2} = 2 for sl. Since D = d~, terminal s~ is moved to
Vl and c(eo) is reduced to 3 - D - - 1 when D units o f fx are pushed through e.
Then we know that m(eo, (s2, t2))=m(Y)=2 with Y={va, rE, v3, w2, w3, v~}.
Therefore D = MIN{1, 3, 2/2} = 1 for s2. Since D < d2, a surrogate (ST, t7) of pair
(S2, t2) is introduced with s7 on v~ and t7 on the same vertex as t 2 when D units
off2 are pushed through e. Note that c(e) becomes zero. Thus network N becomes
as shown in Figure 4 when PUSH terminates.

4.2. Algorithm MFLOWI2. Algorithm MFLOW12 first realizes the flows
between source-sink pairs in P1, and then realizes all the remaining flows in the
resulting network belonging to C1 simply by using the known algorithm MULTI-
FLOW [7].

MFLOW12 realizes flows of/)1 by repeating the following: choose an appropri-
ate edge e on the outer boundary B1 and push flows of Pa through e by procedure
PUSH(N, P1, e). The algorithm initially chooses as e an arbitrary edge (v, w) on
B1, and pushes flows of P1 having terminals on v through e in the clockwise
direction by PUSH(N, / '1 , e), where w is the vertex clockwise next to v on B~.
Then the algorithm chooses as a new e the edge on BI clockwise next to e, and
repeats the same operation. When the capacity e(e) of e is decreased to zero,
MFLOW12 deletes edge e from the graph G and chooses as a new e an edge
on the new boundary B~ of G. When a connected graph G is disconnected into

Algorithms for Multieommodity Flows in Planar Graphs 483

two components, the algorithm recurses to each subnetwork. Since only edges
on B~ are chosen as e, the network always belongs to C12 during the execution
of MFLOWl2.

The algorithm is formally described as follows:

procedure MFLOW12(N) ;
begin

for each edge e ~ E and i (1 - i x k) do j~(e):= 0;
for each i (1 -< i - < k) do commodity(i) := i;
e:= an arbitrary edge on B~; { e = (v, w) }
ROTATE(N, e)

end;

{ initialization }

procedure ROTATE(N, e);
begin

i f N c C~ then M U L T I F L O W (N) { M ULTIFLOW is given in [7] }
else { N~C12-C1}

begin
PUSH(N, P1, e); { c(e) may be decreased }
e ' :=the edge clockwise next to e on B~;
e" := the edge clockwise next to e around v among the edges
incident with v; (see Figure 5)
{ either e' or e" is chosen as new e below }
if c(e)> 0 then ROTATE(N, e') { proceed to e '}
else { c (e) = 0 }

begin
G : = G - e ; { delete edge e}
if G is connected then ROTATE(N, e") { proceed to e" }
else { e was a bridge, and new G is disconnected }

begin
let G~ and Gb be the two connected components in G;
let ?Ca and Nb be the subnetworks of N with graphs
Ga and Gb, respectively;
{ either Na or Nb belongs to C 1 }
assume that v is in Ga and w in Gb;
ROTATE(N~, e");
ROTATE(Nb, e')

end
end

end
end;

EXAMPLE. Figure 6 illustrates a partial traversal of variable e in the network
N of Figure l(a). The deleted edges are drawn in dashed lines. Number i in a
circle and an arrow next to an edge indicate that MFLOW12(N) assigns the edge

484 H. Suzuki, T. Nishizcki, and N. Saito

V e W

Fig. 5. Edges e, e', and e".

to variable e for the orientation of the arrow in the ith execution of PUSH. The
edge (Vl, w2) has been assigned to e once for each of the two orientations.

For simplicity MFLOW12 above uses the known procedure MULTIFLOW [7]
when a network is reduced to one in C~. However, MFLOW12 itself can substitute
for MULTIFLOW. Note that the computation of margins for networks in C1 is
easier than for C12.

4.3. Polynomial Boundedness. In this subsection we show that MFLOW12 cor-
rectly finds multicommodity flows in polynomial time. Since the time required
by PUSH is dominating in the running time, we bound the number of times
PUSH is executed, that is, the number of edges variable e traverses. We claim
the following Lemma 4.

LEMMA 4. PUSH is executed O(n) times during one execution of MFLOW12.

In order to prove Lemma 4 we need some terms and lemmas. Let st ~ BI be a
terminal of PI, and let ej be an edge joining s~ and a clockwise next vertex on

t~,

�9 81

| . g'3

de=2
\ J / . ~> \ / 6 :5

4 ~5 ~J't 2 d4=4
s 4 t 7 d 7 =1

t e do=0.5

Fig. 6. The network after eight executions of PUSH.

Algorithms for Multicoramodity Flows in Planar Graphs 485

B~. (Note that there exist two or more such edges if s~ is a cutvertex of G.) Edge
ej blocks terminal s~ if there exists a cutset E (X) such that re(X)=0, ej~ E(X) ,
and (ss, ti) ~ D(X) . Clearly, only the flows of pairs in D(X) can pass through
edges in such a outset E(X) , and hence flow f~ cannot pass through edge ej.
Terminal s~ is blocked if there is such an edge blocking s~. When the execution
of PUSH(N, P1, (v, w)) does not reduce the capacity of edge (v, w) to zero, each
of the terminals of P~ remaining on v is blocked. The following two lemmas
hold.

LEMMA 5. I f a network N = (G, P, c) in C~2 satisfies the cut condition, then there
exists no cut E (X) satisfying the following conditions:

(5a) IE(X) n Bll = 1 o r 2;
(5b) X contains no terminal of P2;
(5c) r e (X) = 0 ; and
(5d) every terminal of P~ in X is blocked.

PROOF. Suppose that a cut E (X) satisfies conditions (5a)-(5d), and that [X n B~[
is minimum among such cuts. We may assume that (Vb~-l, VO) ~ E (X) ca B~ and
Vo ~ X. Furthermore, interchanging the roles of sources and sinks if necessary,
we may assume that every source of P~ precedes the corresponding sink o n B 1

clockwise going from Vo to vb,-l. Clearly, D (X) ~ f~ because c (X) > 0 and
re(X) =0. Let (s , t~) be a pair in D(X) such that sink t~ appears first on Bt
clockwise going from vo. Since source si lies in X, s~ is blocked by an edge ej
joining s~ and a clockwise next vertex on B~. Thus #.here is a cutset E (Y) such
that s~, t~ ~ Y, m(Y) = 0, and ej c E(Y). Condition (Sb) and the selection o f (s , ti)
imply that there is no source-sink pair having one terminal in X - Y and
the other in Y - X , and hence d (X - Y ; Y - X) = 0 . Thus Lemma 2 implies
m (X n Y) = O and c (X - Y ; Y - X) = 0 . If (X n Y) n B ~ f ~ , then the cut
E (X c a r) satisfies conditions (5a)-(5d) and [(XnY)nBII<-[XCaB~I-1 ,
contradicting the minimality of [X n B~[. If (X n Y) n B~ = O, then ej
E (X - Y; Y - X) , contrary to c (X - Y; Y - X) = 0 . []

LEMMA 6. I f network N = (G~ P~ c) in C12 satisfies the cut condition and P~ ~ f~,
then at least one terminal of P~ is unblocked.

PROOF. Suppose for a contradiction that every terminal of P1 is blocked. Then
a source si of P1 is blocked by an edge ej ~ BI, that is, there is a cutset E (X)
such that s~, tle~X, m(X)=O, and e j s E (X) . The sink ti is also blocked by an
edge es e BI, that is, there is a cutset E(Y) such that s~, t~ ~ Y, m(Y) = 0, and
el ~ E(Y) . Since every terminal of P~ is blocked, Lemma 5 implies that X n B2 # O
and Y n B2 # O. Since m(X) = m(Y) = 0 and (s, t~) ~ D(X) u D(Y), all the edges
in E (X) u E (Y) are occupied by flows other than f . Furthermore, terminals s~
and t~ lie in distinct components in G - E (X) u E (Y) (see Figure 7). Therefore
flow f~ cannot exist. However, since N satisfies the cut condition, by Theorem 1
N has multicommodity flows, a contradiction. []

486 H. Suzuki, T. Nishizeki, and N. Saito

B 1

y~

Fig. 7. Two saturated cutsets E(X) and E(Y) .

Lemma 6 implies that MFLOW12 pushes a positive amount of a flow through
at least one edge on B~ while variable e traverses edges on BI once. Thus
MFLOWl2 correctly finds flows if it terminates finitely.

Intuitively we claim that variable e traverses each edge of G no more than
twice. We may assume that edge eo is initially chosen as variable e. As shown
later in Lemma 9, if an edge is deleted before e proceeds to the last edge eb,-~
on B~, then the claim can be rather easily verified. Otherwise, all the unblocked
terminals of P~ lie on vertex vb,-l, and there must exist a "saturated" cutset
intersecting with B~ and B2. More precisely we have the following lemma.

LEMMA 7. Let network N = (G, P, c) in C~2 satisfy the cut condition. I f all the
unblocked terminals of P1 lie on vb,-l, then there is a cutset E (X) satisfying the
following conditions:

(7a) E (X) n BI # 0;
(7b) X c~ B2 ~ Q;
(7c) m(X)=O;
(7d) vb~-l, v o ~ X ;
(7e) X induces a connected subgraph; and
(7f) X contains no terminal of P1.

PROOF. Suppose that all the unblocked terminals of P1 lie on Vb,-1. We may
assume that every sink of PI precedes the corresponding source on B1 counter-
clockwise going from Vb,-1 to Vo. Let si be the source that first appears on B1
counterclockwise going from Vb,-~ to V0. Since s~. is not on vb~-l, si is blocked by
an edge ejc B1 and hence there is a cutset E (X) such that si, t ~ X , re (X) =0 ,
ej ~ E (X) , and vb~-l, Vo~ X. Since every terminal of P~ in X is blocked, by Lemma
5 X contains a terminal of P2 and hence X n B2 ~ •. Clearly, E (X) satisfies
conditions (7a)-(7e). Thus it remains to show that E (X) satisfies condition (7f).

Suppose there is a terminal of P~ in X. Such a terminal must be a sink. Let
(st, tt) be the pair in D (X) n P~ such that source sl first appears on BI clockwise
going from Vo. Since h e X, ts is not on Vbl-1. Therefore sink h is blocked by an

Algorithms for Multieommodity Flows in Planar Graphs 487

edge ep, and hence there is a cutset E (Y) such that sl, t ~ Y, e p ~ E (Y) , and
m(Y) = O. We consider the following two cases:

Case I: Y n B2 = O. In this case clearly D (X - Y; Y - X) n P2 = 0 . Further-
more, D (X - Y; Y - X) c~ Pa = 0 , due to the selection of pairs (si, ti) and (st, h).
Therefore d (X - Y; Y - X) = 0 and, consequently, Lemma 2 implies m (X c~ Y) =
0 and c (X - Y ; Y - X) = 0 . If X n Y # O , then the cut E (X n Y) satisfies
conditions (5a)-(5d), a contradiction. I f X n Y = 0 , then ep s E (X - Y; Y - X) ,
contradicting c (X - Y; Y - X) = O.

Case 2: Y n B2 ~ 0 . An edge eq ~ B~ blocks st, and hence there is a cutset E (X')
such that st, tt~ X ' , eq ~ E (X ') , and m (X ') = 0 . Since every terminal in X ' is
blocked, X ' n B: ~ O by Lemma 5. Thus a contradiction can be easily derived
with respect to X' , Y, and (su tt) as in the proof of Lemma 6. []

If there exists a "saturated" cutset satisfying conditions (7a)-(7f), then variable
e will traverse each edge no more than once, as we claim in the following lemma.

LEMMA 8. Assume that:

(1) Network N = (G, P, c) ~ C12 satisfies the cut condition.
(2) A cut E (X) satisfies conditions (7a)-(7f).
(3) For two distinct vertices Vh ~ B~ and vg c X n B~, all the unblocked terminals

of P~ lie only on the vertices Vh, Vh+l , , Vg.

I f MFLOW12(N) is executed with choosing edge eh as initial e, then a single edge
is not assigned to the variable e more than once for each of its two orientations and
none of edges e~, eg+l,.. . , eh-1 is assigned to e for the orientation from vi to vi+~,
g <- i <- h - 1, before N is reduced to subnetworks all belonging to C~. (See Figure 8.)

PROOF. Assume that N = (G, P, c) is a network for which the lemma is not true,
and that G has a minimum number of edges among such networks; clearly, the
number is positive. Since X contains no terminal of P~, procedure PUSH(N, PI, e)

(// %'

Fig. 8. Illustration for proof of Lemma 8.

488 H. Suzuki, T. Nishizeki, and N. Saito

does not push flows through any edge incident with a vertex in X. Therefore the
cut E (X) continues to satisfy conditions (7a)-(7f) before N is reduced to
subnetworks all belonging to C1.

An edge must be deleted before edge eg is assigned to e. Otherwise, just before
the algorithm assigns edge eg to the variable e, every terminal of P1 is blocked,
contrary to Lemma 6.

Let e~ be the first edge deleted from the graph G. Assume that network N
results in N ' = (G', P', c') when procedure PUSH for the edge ei finishes, where
G' = G - e~. Note that MFLOW12(N) has assigned each of edges eh, eh+~ , ei
to the variable e once so far. Furthermore, in N ' all the unblocked terminals of
P1 lie on v~, v~+~,..., vg. We consider the following two cases:

Case I: G ' is Connected. Let e" be the edge clockwise next to ei around v~
among the edges incident with v~. (See Figure 8.) Since G' has fewer edges than
G, MFLOW12(N') , choosing e" as initial e, assigns no single edge of G' to e
more than once for each of its two orientations and assigns none of edges eg,
eg+~,.. . , eh-1,. �9 ei-~ to e for the orientation before N ' is reduced to subnet-
works all belonging to C~. The behavior of MFLOW12(N) after edge (v~, v;+~)
is deleted is identical with that of MFLOW12(N') . Hence the lemma must hold
for N, a contradiction.

Case 2: G ' is Disconnected. Let Ga and Gb be the two connected components
of G', and let Na and Nb be the corresponding networks. We may assume that
G~ contains B2, and hence N~ ~ C~2-C~ and N b E C1. Thus we consider the
behavior of MFLOW12(Na). The cut E (X) is in N~ because E (X) satisfies
conditions (7b) and (7e). Since G~ has fewer edges than G, we can derive a
contradiction as in Case 1. []

We are now ready to prove the following lemma.

LEMMA 9. Algorithm MFLOW12(N) assigns no single edge to the variable e
more than twice for each of its two orientations before network N is reduced to
subnetworks all belonging to CI.

PROOF. Assume that N = (G, P, c) is a network for which the lemma is not true,
and that G has a minimum number of edges among such networks. We may
assume without loss of generality that edge eo = (Vo, vl) is first assigned to e.

If at least one edge ei other than the last edge eba_ 1 o n B 1 is deleted on the
first traversal of B1, then we can derive a contradiction as in the proof of Lemma
8. (Note: If only the edge ebl-1 is deleted on the first traversal of B1, then there
may appear an unblocked terminal on Vo, and consequently an argument such
as the one in the proof of Lemma 8 does not work.)

Thus we may assume that no edge is deleted before the algorithm assigns edge
eb,-~ to the variable e. Assume that network N results in N ' = (G', P', c') when
procedure PUSH for edge eb,-2 finishes. Since all the unblocked terminals of P1
lie on Vb,-1, by Lemma 7 network N ' has a cutset satisfying conditions (7a)-(7f).

Algorithms for Muiticommodity Flows in Planar Graphs 489

Then Lemma 8 implies that, after assigning eb,-~ to e, the algorithm assigns no
single edge to e more than once for each of its two orientations. Thus
MFLOW12(N) , choosing eo as initial e, assigns no single edge to the variable eo
more than twice for each of its two orientations, contrary to the
assumption. []

Flows in subnetworks belonging to C1 can be found by procedure MULTI-
FLOW [7]. Like MFLOWl2, MULTIFLOW repeats pushing flows through edges
on a face boundary in clockwise order by using procedure PUSH. It has been
shown that MULTIFLOW assigns no single edge to the variable e more than
once for each of its two orientations (Lemma 6 of [7]). Combining this result
with Lemma 9, we can conclude that the PUSH is executed at most six times the
number of edges of G. Thus we have Lemma 4 because G is planar and has
O(n) edges.

4.4. Complexity of MFLOW12. In this subsection we show that we can imple-
ment MFLOWl2 to run in O(kn + nT§ time. The running time of MFLOWl2
is dominated by the time for PUSH, and PUSH is executed O(n) times. Therefore
we bound the time for one execution of PUSH.

The execution time of PUSH(N, P~, e) is dominated by the time for computing
m(e, (si, t~)) for all pairs having a terminal on v. We claim that the computations
can be done in O(k+ T§ time. We may assume that e=eo . Assume that
exactly l terminals of P1 lie on Vo. Since one execution of PUSH introduces at
most one new source-sink pair, the number of source-sink pairs is at most k + O(n)
throughout the execution of MFLOW12. Therefore l = O(k + n). We may assume
that (s~, t l) , ($2, t 2) , . . . , ($1, tl)sP~, all sources s~, l<-i<-l, lie on Vo, and
tl, t 2 , . . . , h appear in that order on B1 clockwise going from Vo. For each edge
eg e B1 - eo, define

m(eg) = MIN{m(X)IE(X) is a cutset of G, eo, eg e E(X)}.

If sink ti, l<-i<-l, lies o n Z)hEB], then m(eo, (s,, ti))=MIN{m(eg)ll<_g<h}.
Moreover, i f D units of flowf~ are pushed through eo, then all m(eg) with 1 - g < h
decrease by the same units 2D and the remaining m(eg) do not change. Therefore,
once all m(eg) have been computed before flows are pushed through eo, the
values m(eg) can be effectively updated if the flows f~, f 2 , . . . ,ft are pushed in
that order. The update can be done in O(l+bl) time. Thus it suffices to show
that we can compute m(eg) for all ege B~-eo in O(k+ T+(n)) time.

As in the proof of Lemma 3, we have

m(ee,) = MIN{ml(eo, eg), mi2(eo, eg)},

= �9 ' ' ' ' B2} .As in Sect ion3 we can where m~2(eo, eg) MIN{m~2(eo, eg, ep, eq)lep, eq e
compute ml(eo, eg) for all eg e B1 -eo in O(k+ T§ time. On the other hand,
we compute m~2(eo, eg) for all eg e B I - eo in O(k+ T§ time as follows:

Step 1. Compute dist(uo, up) for all u~ e U2.

490 H. Suzuki, T. Nishizeki, and N. Saito

Step 2. Compute m*l(eo, e~) = MIN{dist(Uo, Up)-d2(e'p, e~)le~ B2} for all
e~ ~ B2.

Step 3. Compute C*l(eo, eg)= MIN{m*l(eo, e~)+dist(u~, u~)le' q ~ B2} for all e~
BI - Co.

Step 4. Compute m~2(eo, es) = Cl*(eo, e s) - dl(eo, e~) for all eg ~ B1 - Co.

Clearly, step 1 can be done in O(T+(n)) time. Using an appropriate data
structure, we can execute step 2 in O(k+n) time, as shown in the Appendix.
Step 3 can be done in O(T+(n)) time as in the computation of m*12 in Section 3.
Clearly, step 4 can be done in O(k+ n) time.

Thus one execution of PUSH can be done in O(k+ T+(n)) time. The other
steps in M FLOW12, such as the initialization of flows, can be done in O (n (k + n))
time. Thus we can conclude:

THEOREM 3. I f a network N ~ C12 has n vertices and k source-sink pairs, then
Algorithm MFLOW12 finds flows in O(kn + nT+(n)) time.

5. Testing the Feasibility for Class Col. In this section we give an algorithm for
testing the feasibility of a network in class Cox. We first construct a planar digraph
G* from a given planar undirected graph G as follows:

(1) Replace each edge of G on B1 by two multiple edges (replace each bridge
on B1 by three multiple edges).

(2) Construct the dual of the resulting graph.
(3) Remove the vertex corresponding to B1 from the dual.
(4) Replace each edge e of the resulting graph with two directed edges, e + and

e- , one in each direction.

Figure 9 illustrates a pair G and G*, where G is drawn in solid lines and G*
in dashed lines. Let U1 = {u0, u~, . . . , Ubl-~} be the set of vertices in G* correspond-
ing to edges in B~.

Choose an arbitrary spanning tree T of G, and regard T as a rooted tree with
root vc. Remember that vc is the vertex on B~ on which all sinks of Po lie. In
Figure 9 T is drawn by thick lines. In this section we orient the edges in T in
the direction going from root v~ to leaves, and orient the other edges of G
arbitrarily, as illustrated in Figure 9. Denote by e + and e- the two directed edges
of G* corresponding to e of G assuming that the arrowhead of the oriented e
first touches the arrowhead of e + and then e- when e is rotated clockwise in the
plane. One example is illustrated in Figure 9. The lengths of edges e + and e-
corresponding to an oriented edge e = (u, v) are defined as follows:

(1) If e ~ T, then leng(e § = l eng(e -)= c(e).
(2) If e ~ T, then

leng(e +) = c(e)+Y, {dil(si, ti)~ Po, and si is a descendant of v in T}

and

leng(e-) = c(e) - • {di[(s. t~) e Po, and st is a descendant of v in T}.

Algorithms for Multicommodity Flows in Planar Graphs 491

ss'
s i-. Ul 0

]
6

85 / ~ ul.~x v c=tl =t2 =t3 _

. 4.;
~ - ~ l - - - . f . " - . ~ ' ' �9 t

I ! \ ' , ; I I ~e . - - - - - / ~ O

/ ~ , , / I X " ~ _ - ~ ' - !', _1~

145 U't

Fig. 9. Graph G and G* of a network in Coy

We now have the following lemma.

LEMMA 10. Let E (X) be a cutset of G with E (X) n BI = 0 , Iet Zc be the clockwise
cycle in digraph G* corresponding to E(X) , and let Zcc be the counterclockwise
cycle. Then the lengths leng(Zc) and leng(Z~) of Z~ and Z~ satisfy

leng(Z~) = m(X) , and

leng(Z~) = m(X) + 2d(X) .

PROOF. For (si, t~)e Po let Qi be the unique path in tree T from sink t~ (=v c)
to source s~. We may assume that vc~ X and hence X n B1 = 0 . Let Q+ =
{e+leeQi} and QC,={e-leeQ~}, and let q+= lZ~nQ+l and qr,=lZ~nQ[I.
Clearly, q7 - q+ = 0 or 1, and q T - q+ = 1 if and only if (st, ti) ~ D(X) (see Figure
10). Since in leng(Zc) each d~ is subtracted (q~-- q+) times from c(X), we have

leng(Zc) = c(X) - ~ {(q~- - q +)dil(si, t,) ~ Po)

= c (X) - d (X) = m(X).

Similarly, for the counterclockwise cycle Zcc, we have

leng(Z~) = c(X) + d (X) = m(X) + 2d (X). []

492 H. Suzuki, T. Nishizeld, and N. Saito

Fig. 10. Illustration for the proof of Lemma 10 (Q~ is drawn in thick lines, q~- =2 and q+= 1).

As in Section 3, we may assume that b~ <-2k. Theorem 1 and Lemma 1 imply
that we can test the feasibility by checking whether re(X)>-0 for every cutset
E(X) such that IE(X) n Bll =0, 1, or 2. We now show how to compute margins,
separating two cases.

Case 1. E(X) n Bt = 0 . We can verify the following lemma using Lemma 10.

LEMMA 11. Every cutset E(X) with E (X) n B t = Q has a nonnegative margin
in network N if and only if G* contains no negative directed cycle.

PROOF. If network N has a cutset E(X) such that E (X) n B ~ = O and
m(X) <0 , then by Lemma 10 G* contains a negative clockwise cycle.

Suppose conversely that G* contains a t negative directed cycle. Then there
must exist a simple negative cycle Z in G*. I f Z = {e +, e-} for an edge e ~ E,
then l eng (Z)=2c (e) ->0 , a contradiction. Thus the cycle Z of G* corresponds
to a cutset E(X) of G. I f Z is clockwise, then by Lemma 10 re(X)= l e n g (Z) < 0.
I f Z is counterclockwise, m(X)=leng(Z)-2d(X)<O. In either case
m(X)<O. []

We can detect a negative cycle in G* by applying a shortest-path algorithm
to G* [6]. Thus the cut condition for these cutsets can be checked in O(T_(n))
time. Note that some edges of G* may have negative length.

Case 2.]E(X)nB11 = 1 or 2. Define dl(eg, eh) and ml(eg, eh) for edges eg and
eh on B~ as in Section 3. Then we can verify as in Lemma 10,

m~(e,, eh)= MIN{dist(u~, Uh), dist(uh, us)}-d~(eg, eh),

where dist(x, y) denotes the length of the shortest directed path going from x to
y in G*. Therefore we can compute MIN{mt(eg, eh)[eg, eh C B1} in O(btT_(n))
time simply by applying bl times a single source shortest-path algorithm to G*,
choosing vertices in Us as the starting point. However, a standard technique of

Algorithms for Multicommodity Flows in Planar Graphs 493

shortest-path computat ion [20, p. 94] can improve the bound: once computat ion
of shortest paths from a starting point is done for digraph G* with negative
edges, all the remaining computat ions can be done for a digraph with nonnegative
edges. Thus we have:

THEOREM 4. The feasibility for a network in Col can be tested in
O(T_(n)+blT+(n)) time.

6. Finding Flows for Col. In this section we first give an algorithm MFLOW01
which finds mult icommodity flows in a network N e C01 satisfying the cut condi-
tion, and then show that MFLOW01 runs in O(kn + nT+(n)) time.

6.1. Algorithm MFLOWO1. A network N satisfying the cut condition is minimal
if for every edge e with c(e)> 0 there is a cutset E (X) such that e e E (X) and
m (X) = 0. Clearly, a minimal network has no edge of surplus capacity: multicom-
modity flows { f l , f2 , . . . ,fk} in N must satisfy

k

E I~(e)[=c(e)
i = 1

for each e e E. Furthermore, we have:

LEMMA 12. I f a minimal network has multicommodity flows, then each of the flows
is acyclic, that is, the edges through which a single flow passes induce an acyclic
digraph.

First we reduce a given network N satisfying the cut condition into a minimal
one by the following procedure:

procedure M I N (N) ;
begin

for each edge e e E do
begin { reduce surplus capacity }

m(e) = M I N { m (X) I X c V, e ~ E(X)} ;
c(e) := c(e) - MIN{c(e) , m(e)}

end
end;

Next we decide the direction of flows of P1 in edges of the resulting minimal
network N. By Lemma 12 each of the mult icommodity flows is acyclic in N. Let
e ~ E be any edge with c(e) > 0 in N. Then there exists X c V such that m (X) = 0
and e e E(X) . We may assume that vc~ X. The cut E (X) is "saturated" by the
demands of pairs in D (X) , and all terminals of Po lying in X are sources.
Therefore if v is the end of e in X and w the other, then we know that no flow
for Po passes through e in a direction from w to v. Thus for each edge e e E we

494 H. Suzuki, T. Nishizeki, and N. Saito

can determine its direction in which flows for P0 can pass through e. A digraph
Gacy indicating these directions is constructed from a minimal network N =
(G, P, c) by the following procedure:

procedure ACYCLIC(N);
begin

let Gacy be the digraph obtained from G by replacing each edge
by two multiple directed edges, one in each direction;
for each edge e of G do

begin
if c(e)=0 then remove from Gacy the two directed edges

corresponding to e
else { c (e) > 0 a n d m (e) = 0 }

begin
find a cutset E(X) such that m(X)=0, e~E(X) , and
vc~X;
for each edge e 's E(X) do

begin
let v and w be the ends of e' such that v ~ X and
w~X;
remove directed edge (w, v) from Gaoy

end
end

end
end;

LEMMA 13. I f N is a minimal network, then procedure ACYCLIC(N) produces
an acyclic digraph G~cy.

PROOF. Let Z be an arbitrary undirected cycle in G. When the outer for statement
of procedure ACYCLIC is executed for an edge e of Z, at least one forward
edge and one backward edge in the clockwise direction of Z are deleted. Thus
in Gaey there is no directed cycle corresponding to Z. []

Since Gacy is acyclic, the vertices can be numbered in topological order. The
following algorithm MFLOW01 first finds all the flows for Po by repeatedly
applying procedure PUSH for each of the vertices in that order, and then finds
the flows for P1 by applying MULTIFLOW once for the resulting network
belonging to class C1.

procedure M FLOW01 (N);
begin

for. each edge e and i (1 - / -<k) do f~(e):= 0;
for each i(1 -< i - k) do commodity(i) := i;
MIN(N); { reduce N to a minimal network }
ACYCLIC(N); { construct Gacy }

Algorithms for Multieommodity Flows in Planar Graphs 495

for each vertex w~ of Gacy in the topological order do
for each edge e of Gacy emanating from wi do PUSH(N, Po, e);

{ flows for P0 have been realized, and N belongs to C~ }
MULTIFLOW(N)

end;

We now verify the correctness of algorithm MFLOW01. Throughout the execu-
tion of MFLOW01(N), network N continues to satisfy the cut condition and
belongs to Co~. Thus we show that the realization of flows for Po is completed
when the two nested for statements in MFLOW01 terminate. This is a direct
consequence of the following lemma.

LEMMA 14. NO terminal of Po remains on wi c V just after PUSH(N, Po, e) is
executed for all edges emanating from w~. Furthermore, no terminal of Po is moved
to w~ thereafter.

PROOF. Suppose that a terminal sj remains on w~ just after the executions of
PUSH for all edges emanating from w~. Since the network satisfies the cut
condition and belongs to Col, Theorem 1 implies that there exist multicommodity
flows, including flow fj of pair (sj, tj). The flow f~ must pass through edges
emanating from w~. Let e be one of these edges. Then, just after PUSH(N, Po, e)
is executed, either c(e)--O or there exists a "blocking" cutset E (X) such that
e ~ E(X) , re(X) = 0, and s], tj ~ X. Since the margin of any cut does not increase
during the execution of M FLOW01, re(X) remains zero thereafter. Thus fj cannot
pass through e, a contradiction.

Since MFLOW01 repeats pushing flows from vertices in the topological order,
no terminal of Po is moved to w~ thereafter. []

6.2. Complexity of MFLOWO1. In this subsection we show that MFLOW01
runs in O(kn + nT§ time. It has been known that MULTIFLOW runs in that
time [7]. Therefore we shall show that the remaining part of MFLOW01 terminates
in that time.

Since PUSH is executed at most once for each edge and G is planar, PUSH
is executed O(n) times in total. Since one execution of PUSH introduces at most
one new pair, there exist O (n) pairs of Po throughout the execution of MFLOW01.

We show below that both re(e) and m(e,(si , ti)) can be computed in
O(k+ T_(n)) time. Let u be the tail o f e § of G*, and let u' be the head (see
Figure 9). In what follows, shortest paths are computed in graph G*-{e § e-}.

(a) Computation of m(e). Define

and

mo(e) = MIN(m(X)Ie ~ E(X) , E (X) n B1 = 0 , E (X) is a cutset}

ml(e) = MIN{m(x) ie ~ E(X), E (X) n B1 ~ 0 , E (X) is a cutset}.

496 H. Suzuki, T. Nishizeki, and N. Saito

Then m(e)=MIN{mo(e), ml(e)}. These mo(e) and m~(e) are computed as
follows.

(al) mo(e). Lemma 10 implies that mo(e) is equal to the length of the
minimum directed cycle in G* passing through e § or e-. Let

mo(e-) = dist(u, u') + leng(e-)

and

mo(e +) = dist(u', u) +leng(e§

where dist(x, y) denotes the length of a shortest directed path from x to y in
G* - { e § e-}. Then mo(e) = MIN{mo(e-), too(e§ Thus mo(e) can be computed
by solving twice the single source shortest-path problem in G * - { e +, e-}.

(a2) m~(e). The cutset E (X) of margin m~(e) corresponds to a path in G*
connecting two vertices of U1 through e § or e-. Define

ml(e +) = MIN{dist(ug, u) + leng(e +) + dist(u ', Uh) - dl(eg, eh)leg, eh ~ BI}

and

ml(e-) = MIN(dist(ug, u') + leng(e-) + dist(u, Uh) -- d~(eg, eh)leg, eh ~ B1}.

Although the two paths of lengths dist(Ug, u) and dist(u', Uh) (or dist(ug, u') and
dist(u, Uh)) may not be vertex-disjoint, we can use m~(e) = MIN{ml(e+), ml(e-)}
instead of ml(e) to compute re(e), as the next lemma claims.

LEMMA 15. l f a network N satisfies the cut condition, then

re(e) = MIN{mo(e), m~(e)}.

PROOF. Clearly, m~(e) ~- ml(e). Therefore we shall show that m~(e) < ml(e)
implies mo(e)<-m~(e). Suppose that m~(e)<ml(e). We may assume that
ml(e +) ~-ml(e-) and hence m~(e)= ml(e+). Let path Q from ug to Uh through
edge e + in G* have length ml(e +) + dl(eg, eh). Since m~(e)< m~(e), Q is not a
simple path, but Q is an edge-disjoint union of a simple path Qs from ug to Uh
not passing through edge e + and some simple cycles. One of these cycles, say Z,
passes through edge e + and, clearly, leng(Z) -> too(e). Since the cut condition is
satisfied, each of the other cycles has a nonnegative length and the length of path
Qs satisfies leng(Qs) - dl(eg, eh) ~--O. Therefore

ml(e +) >-- leng(Z) + leng(Q~) - dl(eg, eh) >- mo(e). []

Algorithms for Multicommodity Flows in Planar Graphs 497

We can compute m~(e +) as follows. First solve twice the single source shortest-
path problem, once from u' in G * ' { e § e-} and once from u in the graph
obtained from G * - { e § e-} by reversing the direction of all the edges. Then
from the found distances we can compute ml(e § in O(b~) time by a straightfor-
ward method. Using the variable priority queue in the Appendix, we can compute
in O(k+ bl) time. Thus m~(e § can be computed in O(k+ T_(n)) time. Similarly
m~(e-) can be computed in that time.

Since m(e) can be computed immediately from mo(e) and m[(e), the computa-
tion of re(e) spends O(k+ T_(n)) time.

(b) Computation ofm(e, (si, t~)). Procedure PUSH always pushes D units of a
flow f~ through an edge e where D = MIN{dl, c(e), m(e, (s~, t~))/2}. We compute
D without explicitly computing m(e, (si, t~)). Instead we compute m'(e, (s~, t~))
defined as follows: if edge e is oriented to emanate from s~, then

(1) m'(e, (s,, t~)) = MIN{mo(e-), m~(e-)};

otherwise,

m'(e, (si, ti)) = MIN{mo(e§ ml(e+)}.

The following lemma justifies it.

LEMMA 16. D = MIN{d/, c(e), m'(e, (si, ti))/2}.

PROOF. We verify the equation only for the case e is oriented to emanate from
si because the other case can be treated similarly. By definition re(e, (si, t~)) is
the minimum m(X) over all the cutsets E(X) such that X c V, s~, t~c~X, and
e ~ E(X). Let m(X') be minimum among all these cutsets with E (X ') n B1 = 0 ,
while let m (X") be minimum among these with E (X") n B1 ~ Q. Thus

(2) re(e, (s~, t/)) = MIN{m(X') , m(X")}.

Since e is oriented to emanate from s~, cutset E(X') of G corresponds to a
minimum clockwise cycle through e - i n G*. Since too(e-)= dist(u, u ')+leng(e-) ,
too(e-) < - m(X'). Let Q be the shortest path (of length dist(u, u')) from u to u'
in G* - {e +, e-}, then the cycle Q' = Q u {e-} in G* corresponds to a outset E(Y)
of (2. We may assume ti ~ Y; otherwise replace Y with the complement V - Y.
By Lemma 10, if cycle Q' is clockwise, then

m(Y) = too(e-) = m(X').

On the other hand, if Q' is counterclockwise, then s~ ~ Y, d~-< d(Y) and hence

2d~ --- m(Y) +2d (Y) = mo(e-) <- m(X').

Thus either

(3) mo(e-) = m(X')

498 H. Suzuki, T. Nishizeki, and N. Saito

Uh g

B1 ~ _ 7 2 c

uhB1//~~ u~
;?-,., .

", \ h /.,'

(a) (b)

Fig. 11. (a) Clockwise cycle R' and (b) counterclockwise cycle R'.

o r

(4) 2di <- too(e-) < m(X').

Let E(X")nB~={eg, eh}. E(X") corresponds to a path R in G* through e-
either from ug to Uh or from Uh to Ug. We may assume that path R is from ug to
uh. Add edge (uh, ug) to R so that vc lies outside the resulting plane directed
cycle R' = R u (Uh, Ug). Then the cycle R' must be clockwise; otherwise, X" would
contain s~. (See Figure 11.) Remember rn~(e-) is defined as

mt(e-) = MIN{dist(up, u')+leng(e-)+dist(.u, uq)- d~(ep, eq)te., eq ~ B~}.

Clearly, ml(e-)<-m(X"). Let R m be the path in G* from up to uq through e-
of length ml(e-)+dl(ep, eq). First consider the case Rpq is a simple path. Add
edge (uq, up) to Rpq so that vc lies outside the resulting plane cycle R'pq = Rpq u
(uq, up). If cycle R~q is clockwise, then rn~(e-) = re(X"). Otherwise, 2d~ - m~(e-).
Next consider the case path Rpq is not simple. Then Rpq contains a cycle Z
through e- in G*. If Z is clockwise, then too(e-)<--leng(Z)-< ml(e-). Otherwise,
2d~-< leng(Z)<-rn~(e-). Thus in either case we have either

(5) ml(e-) = m(X")

or

(6) MIN{2d~, too(e-)} ~ rnl(e-) ~ re(X").

Equations (1)-(6) imply that either

or

m'(e, (s,, t,)) = re(e, (s,, t,))

2d, <<- m'(e, (s,, ti)) < m(e, (s,, t~)).

Algorithms for Multicommodity Flows in Planar Graphs 499

This immediately implies the claimed equation

D = MIN{di, c(e), m'(e, (s,, ti))/2}. []

We can compute m'(e, (si, ti)) in O(k+ T_(n)) time. The computation occurs
O(n) times, and so spends O(kn + nT_(n)) time in total. The other tasks can be
done in O(kn + nT§ time as in Section 4.4. Thus algorithm MFLOW01 runs
in O(kn+nT_(n)) time. Edge weights of G* may be negative and, to make
matters worse, edge weights may decrease during the execution of MFLOW01.
However, using the same standard technique as in Section 5, we may compute
the shortest paths in graphs without negative edges except the first computation.
Thus we can conclude:

THEOREM 5. Algorithm MFLOW01 finds multicommodity flows for networks
belonging to Col in O(kn + nT+(n)) time.

7. Conclusion. We have presented simple efficient algorithms for the multicom-
modity flow problems for two classes C12 and (7ol of planar undirected networks.
C12 consists of networks in which every source-sink pair lies on one of the two
specified face boundaries B1 and B 2. Col consists of networks in which some
pairs lie on the specified boundary B 1 and all other pairs share a common sink
on B~. The feasibility can be checked by solving the single-source shortest-path
p r o b l e m O(bl+b2) times for C12 and bl times for Col , where bl and b E are the
number of edges on B1 and B2, respectively. On the other hand, multicommodity
flows can be found by solving the shortest-path problem O(n) times for C~2 and
Col. More precisely the feasibility can be checked in O((bl + bE)T+(n)) time for
C12 and in O(T_(n)+blT+(n)) time for Col, while k-commodity flows can be
found in O(kn+nT+(n)) time for C12 and Col.

If the usual Dijkstra's algorithm [1], [20] is used, then T+(n)= O(n log n).
Frederickson [3] shows that if a planar separator algorithm is used then T§ =
O(n) assuming the preprocessing is done in O(n log n) time. It is well known
that T_(n) = O(n 2) [1], [20] if an ordinary shortest-path algorithm is used, while
T_(n) -- O(n 3/2) if a planar separator algorithm is used [6].

If the capacities and demands are all integers, then our algorithms find half-
integral flows for C12 and Col. Note that m(X) is an integer for any X ~ V and
D is always a half-integer throughout the execution of algorithms. A network is
even if the capacities and demands are all integers and for each vertex v the
capacities of edges incident with v and the demands of terminals lying on v total
to an even integer. MFLOW12 finds integral flows for an even network in C12.
This is not the case for MFLOW01 because procedure MIN may reduce an even
network to a minimal one which is not even. However, we can modify MFLOW01
so that it finds integral flows for an even network in Col (the details are left to
the reader). Thus our algorithms can be used to find edge-disjoint paths in plane
grids [16], and are expected to be useful for VLSI routing problems.

500 H. Suzuki, T. Nishizeki, and N. Saito

Appendix. Detail of Step 2. We now show that we can execute step 2 (in Section
4.4) in O (k + n) time. Clearly, we can compute ~ e~) for a single edge
eq ~ B2 in O(k + n) time. The key point to notice is that m*l(eo, e~) can be updated
from m*21(eo, e'q-1). In order to perform the update efficiently, we need a data
structure called a variable priority queue Q [18]. Q is a sequence of elements
ordered from left to right, and each element e in Q is associated with a real
number key(e). The following instructions are permitted:

1. INJECT(Q, e, key(e)): insert a new element e with key(e) into Q as the
rightmost element.

2. POP(Q): delete the leftmost element in Q.
3. DECREASE(Q, e, D): given an element e in Q together with a nonnegative

number D, decrease by D all the keys of element e and those on e's right.
4. UPDATE(Q, D): add some real number D to all the keys of elements in Q.
5. MIN(Q): return the minimum key in Q.

_ _ l ? Let Rp -{vq+l, Vq+2,..., Vp}, then

t t .[_ -d2(ep, eq) = -d2(ep, eq-1) E {di[(s,, ti) ~ P2 n D({v~})}

- 2 Y. {di[(si, ti) ~ P2 n D({vq}, R.)}.

Therefore, using the queue Q, we can compute m*l (eo, eq) for all eq ~ B2 as follows:

procedure M21";
begin

prepare an empty queue Q;
for each edge ep, p = 1, 2 , . . . , b 2 - 1 do

INJECT(Q, G, dist(uo, up)- d2(ep, e~));
{ the key of edge ep in Q is dist(uo, up)-d2(ep, e~) }
m*l(eo, e~) := MIN(Q);
for each q, q = 1, 2 , . . . , b2- 1, do

begin
{ Q contains edges ep, p = q, q + 1 , . . , q - 2, having keys

dist(uo, Up) - d2(ep, e'q_~) }
POP(Q); { delete e~ from Q }

t ! . INJECT(Q, eq-l, dist(uo, uq_l)),
l ! / { Q contains eq+, eq+2,..., eq-1 }

UPDATE(Q, E {d,l(s,, t,) ~ P2c~ D({v~})});
for each pair (si, ti)~ P2 n D({v~}) do

begin
" let ' be the edge clockwise assume that st lies on Vq, ep

incident with ti on B2;
DECREASE(Q, ep, 2d,)

end; "
{ each edge ep in Q has key dist(uo, up) - d2(ep, e'q) }
m*l(eo, e'q) := MIN(Q)

end
end;

Algorithms for Multicommodity Flows in Planar Graphs 501

Thus during the execution of procedure M21" instructions 1- 5 o ccur O (k + n)
times in total. If the queue Q is realized by a 2-3 tree [1], then each instruc-
tion is executed in O(log n) time, and hence the execution of M21* spends
O((k+ n) log n) time. Using a disjoint set union algorithm [4], we can realize Q
in a more sophisticated way so that M21* runs in time linear in the number of
instructions [18]. Therefore step 2 can be done in O(k+ n) time.

References

[1] A.V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] H. Diaz and G. de GheUinck, Multicommodity maximum flow in planar networks (the
D-algorithm approach), CORE Discussion Paper No. 7212, Center for Operations Research
and Econometrics, Louvain-la-Neuve, 1972.

[3] G. N. Frederickson, Shortest-path problems in planar graphs, Proc. 24th IEEE Symp. on
Foundations of Computer Science, Tucson, 1983, pp. 242-247.

[4] H. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,
J. Comput. System Sci., 30 (1985), pp. 209-221.

[5] R. Hassin, On multicommodity flows in planar graphs, Networks, 14 (1984), pp. 225-235.
[6] R.J . Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissectiofi, SIAM J. Numer.

AnaL, 16, 2 (1979), pp. 346-358.
[7] K. Matsumoto, T. Nishizeki, and N. Saito, An efficient algorithm for finding multicommodity

flows in planar networks, SIAMJ. Comput., 14, 2 (1985), pp. 289-302.
[8] K. Matsumoto, T. Nishizeki, and N. Saito, Planar multicommodity flows, maximum matchings,

and negative cycles, SIAM J. Comput., 15, 2 (1985), pp. 495-510.
[9] T. Nishizeki, N. Saito, and K. Suzuki, A linear-time routing algorithm for convex grids, IEEE

Trans. Computer-Aided Design, 4, 1 (1985), pp. 68-76.
[10] H. Okamura, Multicommodity flows in graphs, Discrete Appl. Math., 6 (1983), pp. 55-62.
[11] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory

Ser. B, 31 (1981), pp. 75-81.
[12] M. Sakarovitch, The Multicommodity Flow Problem, Doctoral Thesis, Operations Research

Center, University of California, Berkeley, 1966.
[13] M. Sakaroviteh, Two commodity network flows and linear programming, Math. Programming,

4 (1973), pp. 1-20.
[14] D.D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci., 26

(1983), pp. 362-390.
[15] J.W. Suurballe and R. E. Tarjan, A quick method for finding shortest pairs of disjoint paths,

Networks, 14 (1984), pp. 325-336.
[16] H. Suzuki, A. Ishiguro, and T. Nishizeki, Edge-disjoint paths in a region bounded by nested

rectangles, Technical Report AL85-28, Institute of Electrical and Communication Engineers
of Japan, 1985, pp. 13-22 (in Japanese).

[17] H. Suzuki, T. Nishizeki, and N. Saito, Multicommodity flows in planar undirected graphs and
shortest paths, Proc. 17th Annual ACM Symp. on Theory of Computing, 1985, pp. 195-204.

[18] H. Suzuki, T. Nishizeki, and N. Saito, A variable priority queue and its applications, Technical
Report CAS86-131, Institute of Electrical and Communication Engineers of Japan, 1986, pp.
23-33.

[19] I~. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Report
84360-OR, Institut Okonometrie und Operations Research, Rheinishe Friedrich-Wilhelms
Universit~it, Bonn.

[20] R.E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

