Algorithms for Multicommodity Flows in Planar Graphs

Hitoshi Suzuki, ${ }^{1}$ Takao Nishizeki, ${ }^{1}$ and Nobuji Saito ${ }^{1}$

Abstract

This paper gives efficient algorithms for the multicommodity flow problem for two classes C_{12} and C_{01} of planar undirected graphs. Every graph in C_{12} has two face boundaries B_{1} and B_{2} such that each of the source-sink pairs lies on B_{1} or B_{2}. On the other hand, every graph in C_{01} has a face boundary B_{1} such that some of the source-sink pairs lie on B_{1} and all the other pairs share a common sink lying on B_{1}. The algorithms run in $O(k n+n T(n))$ time if a graph has n vertices and k source-sink pairs and $T(n)$ is the time required for finding the single-source shortest paths in a planar graph of n vertices.

Key Words. Algorithm, Cut condition, Multicommodity flow, Network, Planar graph, Shortest path.

1. Introduction. The network flow problem and its variants have been extensively studied. It is well known that the Max Flow-Min Cut theorem holds for singleand two-commodity flows. There are efficient algorithms for finding a maximum single-commodity flow [14]. It is also known that the maximum two-commodity flows in an undirected graph can be found by using an algorithm for a singlecommodity flow [13]. The situation is different with regard to flows of more than two commodities. No simple polynomial-time algorithm is known for the multicommodity flow problem on general graphs. Very recently Tardos reported a strongly polynomial algorithm to solve combinatorial linear programs including the multicommodity flow problem [19]. However, it employs a polynomial linear programming algorithm, does not have a polynomial time bound of lower order, nor is easy to implement. Therefore simple efficient algorithms are useful in practice even if they are valid for restricted classes of graphs [2], [5], [7], [8], [12].

In the multicommodity flow problem, we would like to (1) test the feasibility, that is, decide whether a given graph G has multicommodity flows, each from a source to a sink and of a specified demand, and (2) then actually find them if G does have them. The problem can be applied to many practical problems such as traffic control, design of communication networks, and routing of VLSI [9], [16].

This paper deals with the multicommodity flow problem for two classes C_{12} and C_{01} of planar undirected graphs. Every planar graph in the first class C_{12} has two specified face boundaries B_{1} and B_{2} such that each of the source-sink pairs lies on B_{1} or B_{2}. On the other hand, every planar graph in the second class

[^0]C_{01} has one specified face boundary B_{1} such that some of the source-sink pairs lie on B_{1} and all the other pairs share a common sink located on B_{1}. Figure 1 depicts two planar graphs belonging to C_{12} or C_{01}. The Max Flow-Min Cut theorem is known to hold for graphs in C_{12} or C_{01} [10]. We show that the multicommodity flow problem for an undirected graph G in C_{12} (resp. C_{01}) can be reduced to the shortest path problem for an undirected (resp. a directed) graph

Fig. 1. (a) A network in C_{12} and (b) a network in C_{01}. (s_{i} is a source, t_{i} is a sink, and d_{i} is a demand.)
obtained from the dual of G. The reduction yields simple polynomial-time algorithms for the two classes of planar graphs. More precisely, we can find multicommodity flows in a graph belonging to C_{12} or C_{01} by solving the singlesource shortest path problem $O(n)$ times, where n is the number of vertices in a graph. Furthermore, we can find half-integral flows for C_{12} and C_{01} if the capacities of edges and the demands of source-sink pairs are all integers. However, our algorithms do not work for directed graphs. A preliminary version of this paper appeared as [17].
2. Preliminaries. In this section we first define some terms, and then present known results.

A flow network $N=(G, P, c)$ is a triplet, where:
(1) $G=(V, E)$ is a finite undirected simple connected graph with vertex set V and edge set E.
(2) P is the set of source-sink pairs (s_{i}, t_{i}), where source s_{i} and $\sin k t_{i}$ are distinguished vertices in V. Both source and sink are often called terminals.
(3) $c: E \rightarrow R^{+}$is the capacity function. (R (or R^{+}) denotes the set of (nonnegative) real numbers.)

A network $N=(G, P, c)$ is planar if G is planar. In what follows, we assume that G has n vertices and P contains k source-sink pairs, i.e., $|V|=n$ and $|P|=k$. Each source-sink pair (s_{i}, t_{i}) of N is associated with a positive demand d_{i}. Although G is undirected, we orient the edges of G arbitrarily so that the sign of a value of a flow function can indicate the real direction of the flow through an edge. A set of functions $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ with each $f_{i}: E \rightarrow R$ is k-commodity flows of demands $d_{1}, d_{2}, \ldots, d_{k}$ if it satisfies:
(a) For each $e \in E$

$$
\sum_{i=1}^{k}\left|f_{i}(e)\right| \leq c(e) .
$$

(b) Each f_{i} satisfies

$$
\operatorname{IN}\left(f_{i}, v\right)=\operatorname{OUT}\left(f_{i}, v\right)
$$

for each $v \in V-\left\{s_{i}, t_{i}\right\}$, and

$$
\operatorname{OUT}\left(f_{i}, s_{i}\right)-\operatorname{IN}\left(f_{i}, s_{i}\right)=\operatorname{IN}\left(f_{i}, t_{i}\right)-\operatorname{OUT}\left(f_{i}, t_{i}\right)=d_{i},
$$

where $\mathrm{IN}\left(f_{i}, v\right)$ is the total amount of flow f_{i} of commodity i entering v, and $\operatorname{OUT}\left(f_{i}, v\right)$ is the total amount of flow f_{i} emanating from v.
Classes C_{1}, C_{12}, and C_{01} of planar networks $N=(G, P, c)$ are formally defined as follows:
(1) Class C_{1}. One face boundary of G is specified, and all the source-sink pairs are located on it.
(2) Class C_{12}. Two face boundaries B_{1} and B_{2} of G are specified, and each of the source-sink pairs lies on B_{1} or B_{2}. That is, the set P is partitioned into P_{1} and P_{2} so that

$$
\text { if } \quad\left(s_{i}, t_{i}\right) \in P_{1} \text { then } s_{i}, t_{i} \in B_{1}
$$

and

$$
\text { if } \quad\left(s_{i}, t_{i}\right) \in P_{2} \text { then } s_{i}, t_{i} \in B_{2} .
$$

(3) Class C_{01}. One face boundary B_{1} together with a vertex v_{c} on B_{1} is specified, and some of the source-sink pairs are located on B_{1}, while the sinks of all the other pairs must lie on v_{c} but their sources can lie anywhere in G. That is, the set P is partitioned into P_{0} and P_{1} so that

$$
\text { if } \quad\left(s_{i}, t_{i}\right) \in P_{0} \quad \text { then } \quad t_{i}=v_{c}
$$

and

$$
\text { if }\left(s_{i}, t_{i}\right) \in P_{1} \quad \text { then } s_{i}, t_{i} \in B_{1} .
$$

Note that C_{1} is a subclass of C_{12} and of C_{01}. For the network of C_{12} depicted in Figure 1(a) $P_{1}=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{4}, t_{4}\right)\right\}$ and $P_{2}=\left\{\left(s_{5}, t_{5}\right),\left(s_{6}, t_{6}\right)\right\}$. For the network of C_{01} depicted in Figure $1\left(\right.$ b) $P_{0}=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{4}, t_{4}\right)\right\}$ and $P_{1}=\left\{\left(s_{5}, t_{5}\right),\left(s_{6}, t_{6}\right)\right\}$.

We have already given a polynomial-time algorithm MULTIFLOW which finds multicommodity flows in a network belonging to class C_{1} and runs in $O\left(n\left(k+T_{+}(n)\right)\right)$ time [7]. Throughout the paper $T_{+}(n)$ denotes the time required for finding the single-source shortest paths in a planar graph with nonnegative edge weights having n vertices, while $T_{-}(n)$ denotes the time for a planar directed graph with edge weights of real numbers.

We may assume without loss of generality that B_{1} is the boundary of the outer face of a given plane graph G. The face boundaries B_{1} and B_{2} are not always simple cycles, but are closed walks (that is, some vertices or edges may appear twice or more). We denote by b_{1} (resp. b_{2}) the number of edges on B_{1} (resp. B_{2}), and denote by B_{1} (resp. B_{2}) the set of vertices and also the set of edges on B_{1} (resp. B_{2}). Let $v_{0}, v_{1}, \ldots, v_{b_{1}-1}$ be the sequence of vertices appearing on B_{1} in clockwise order, and let $e_{i}=\left(v_{i}, v_{i+1}\right), i=0,1, \ldots, b_{1}-1$, where $v_{b_{1}}=v_{0}$. Let $v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{b_{2}-1}^{\prime}$ be the vertices on B_{2} appearing in clockwise order, and let $e_{i}^{\prime}=\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right), i=0,1, \ldots, b_{2}-1$, where $v_{b_{2}}^{\prime}=v_{0}^{\prime}$.

We denote by $E(X, Y)$ the set of edges with one end in $X \subset V$ and the other in $Y \subset V$. If $X \subset V$, then $E(X)=E(X, V-X)$ is called a cut. $E(X)$ is called a cutset if the graph $G-E(X)$ obtained from G by deleting the edges in $E(X)$ has one more connected components than G. Define

$$
c(X, Y)=\sum\{c(e) \mid e \in E(X, Y)\}
$$

and

$$
c(X)=c(X, V-X)
$$

Denote by $D(X, Y)$ the set of source-sink pairs with one terminal in X and the other in Y. Define

$$
\begin{aligned}
D(X) & =D(X, V-X), \\
d(X, Y) & =\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in D(X, Y)\right\}, \\
d(X) & =d(X, V-X),
\end{aligned}
$$

and

$$
m(X)=c(X)-d(X) \quad \text { (the margin of a cut). }
$$

We say that a network N satisfies the cut condition for given demands if $m(X) \geq 0$ for every $X \subset V$. The cut condition is necessary for the existence of k-commodity flows of given demands in a network, but not necessarily sufficient. However, Okamura [10] has proved the following theorem.

Theorem 1 [10]. Let $N=(G, P, c)$ be a planar network in class C_{12} or C_{01}. Then N has multicommodity flows of given demands if and only if N satisfies the cut condition.

Our algorithms are based on Theorem 1. The Max Flow-Min Cut theorem does not always hold for general undirected planar networks having source-sink pairs on three or more face boundaries or for directed planar networks [7], [10]. Therefore our algorithms do not work for these networks.

The following lemmas have been known.
Lemma 1 [7], [11]. A network $N=(G, P, c)$ satisfies the cut condition if and only if $m(X) \geq 0$ for every cutset $E(X)$.

Lemma 2 [10], [11]. Let $N=(G, P, c)$ be a network satisfying the cut condition. If $m(X)=m(Y)=0$ and $d(X-Y ; Y-X)=0$ for $X, Y \subset V$, then $m(X \cap Y)=$ $m(X \cup Y)=0$ and $c(X-Y ; Y-X)=0$.

Proof. By simple counting we have the following two equations:

$$
c(X)+c(Y)=c(X \cup Y)+c(X \cap Y)+2 c(X-Y ; Y-X)
$$

and

$$
d(X)+d(Y)=d(X \cup Y)+d(X \cap Y)+2 d(X-Y ; Y-X) .
$$

Subtracting the latter from the former we have

$$
\begin{aligned}
m(X)+m(Y)= & m(X \cup Y)+m(X \cap Y) \\
& +2 c(X-Y ; Y-X)-2 d(X-Y ; Y-X) .
\end{aligned}
$$

The claim follows immediately from the above equation.

Fig. 2. Graph G in C_{12} and its G^{*}.
3. Testing Feasibility for Class \boldsymbol{C}_{12}. In this section we give an algorithm to test the feasibility of a given network $N=(G, P, c)$ belonging to class C_{12}, that is, to determine whether there are multicommodity flows in N. A new graph G^{*} is constructed from G as follows (see Figure 2):
(1) Replace each edge $e \in B_{1} \cup B_{2}$ of G with two multiple edges (if either $e \in B_{1} \cap B_{2}$ or e is a bridge (i.e., a cutset of a single edge) then replace e with three edges).
(2) Construct a dual of the resulting (multi)graph.
(3) Remove from the dual the two vertices corresponding to B_{1} and B_{2}.

Figure 2 illustrates a plane graph G in C_{12} and the corresponding G^{*}, where G is drawn by solid lines and G^{*} by dashed lines. Let u_{i} be the vertex of G^{*} corresponding to edge e_{i} on $B_{1}, i=0,1, \ldots, b_{1}-1$, and let $U_{1}=\left\{u_{0}, u_{1}, \ldots, u_{b_{1}-1}\right\}$. Similarly define $u_{i}^{\prime}, i=0,1, \ldots, b_{2}-1$, and U_{2} with respect to B_{2}. Each edge of G^{*} has length equal to the capacity of the corresponding edge of G.

We may assume that $b_{1}, b_{2} \leq 2 k$: otherwise, new edges of capacity zero can be added to G to yield $b_{1}, b_{2} \leq 2 k$, as discussed in [5] and [7]. Theorem 1 and Lemma 1 together imply that we can test the feasibility by verifying whether $m(X) \geq 0$ for every cutset $E(X)$. Since G is planar, $\left|E(X) \cap B_{1}\right|=0$, 1 , or 2 and $\left|E(X) \cap B_{2}\right|=0,1$, or 2 for every cutset $E(X)$. Therefore the cutsets are classified into four types:
(0) $E(X) \cap B_{1}=\varnothing$ and $E(X) \cap B_{2}=\varnothing$;
(1) $\left|E(X) \cap B_{1}\right|=1,2$ and $E(X) \cap B_{2}=\varnothing$;
(2) $E(X) \cap B_{1}=\varnothing$ and $\left|E(X) \cap B_{2}\right|=1,2$; or
(3) $\left|E(X) \cap B_{1}\right|=1,2$ and $\left|E(X) \cap B_{2}\right|=1,2$.

We now show how to compute margins of cutsets, separating these four types.
Type (0). Since every terminal lies on B_{1} or $B_{2}, D(X)=\varnothing$ for any cutset $E(X)$
of type (0). Thus all cutsets of type (0) have nonnegative margins, and consequently it is not necessary to compute them.

Type (1). If two edges $e_{g}, e_{h} \in B_{1}$ are fixed, then all cutsets $E(X)$ with $E(X) \cap$ $B_{1}=\left\{e_{g}, e_{h}\right\}$ have the same $D(X) \cap P_{1}$; let $d_{1}\left(e_{g}, e_{h}\right)=\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in D(X) \cap P_{1}\right\}$. Define the following terms:

$$
\begin{gathered}
c_{1}\left(e_{g}, e_{h}\right)=\operatorname{MIN}\left\{c(X) \mid E(X) \text { is a cutset of } G, E(X) \cap B_{1}=\left\{e_{g}, e_{h}\right\},\right. \\
\left.E(X) \cap B_{2}=\varnothing\right\}
\end{gathered}
$$

and

$$
m_{1}\left(e_{g}, e_{h}\right)=c_{1}\left(e_{g}, e_{h}\right)-d_{1}\left(e_{g}, e_{h}\right) .
$$

For a fixed edge $e_{g} \in B_{1}$ and all edges $e_{h} \in B_{1}$ we can compute the values $d_{1}\left(e_{g}, e_{h}\right)$ in $O\left(b_{1}+k\right)$ time. These values can be updated for the edge $e_{g+1} \in B_{1}$ clockwise next to e_{g} on B_{1} in $O\left(b_{1}\right)$ time. Thus we can compute $d_{1}\left(e_{g}, e_{h}\right)$ for all edges $e_{g}, e_{h} \in B_{1}$ in $O\left(b_{1}^{2}\right)$ time [5].
On the other hand, we compute $c_{1}\left(e_{g}, e_{h}\right)$ as follows. Clearly, the cutset of G attaining the value $c_{1}\left(e_{g}, e_{h}\right)$ corresponds to the shortest path between vertices u_{g} and u_{h} in G^{*}. Therefore, applying a single-source shortest path algorithm to G^{*} once, choosing u_{g} as the starting point, we can compute in $O\left(T_{+}(n)\right)$ time $c_{1}\left(e_{g}, e_{h}\right)$ for a fixed edge $e_{g} \in B_{1}$ and all edges $e_{h} \in B_{1}$.
Repeating the computation for each $e_{g} \in B_{1}$, we can find the minimum of $m_{1}\left(e_{g}, e_{h}\right)$ over all $e_{g}, e_{h} \in B_{1}$ in $O\left(b_{1} T_{+}(n)\right)$ time. Thus we can check the cut condition for cutsets of type (1) in $O\left(b_{1} T_{+}(n)\right)$ time.

Type (2). If two edges $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$ are fixed, then all cutsets $E(X)$ with $E(X) \cap$ $B_{2}=\left\{e_{p}^{\prime}, e_{q}^{\prime}\right\}$ have the same $D(X) \cap P_{2} ;$ let $d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)=\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in D(X) \cap P_{2}\right\}$. Define

$$
\begin{aligned}
& c_{2}\left(e_{p}^{\prime}, e_{1}^{\prime}\right)=\operatorname{MIN}\{c(X) \mid E(X) \text { is a cutset of } G, \\
& \left.E(X) \cap B_{1}=\varnothing, E(X) \cap B_{2}=\left\{e_{p}^{\prime}, e_{q}^{\prime}\right\}\right\}
\end{aligned}
$$

and

$$
m_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)=c_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) .
$$

As in the case of type (1) above, we can check the cut condition for cutsets of type (2) in $O\left(b_{2} T_{+}(n)\right)$ time.

Type (3). If four edges $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$ are fixed, then $d(X)$ is constant for all cutsets $E(X)$ such that $E(X) \cap B_{1}=\left\{e_{g}, e_{h}\right\}$ and $E(X) \cap B_{2}=\left\{e_{p}^{\prime}, e_{q}^{\prime}\right\}$; the constant is denoted by $d_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)$. (See Figure 3.) Then we can easily verify

$$
d_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)=d_{1}\left(e_{g}, e_{h}\right)+d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)
$$

Fig. 3. Illustration for $c_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)$.

We now define

$$
\begin{aligned}
& c_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)=\operatorname{MIN}\{c(X) \mid E(X) \text { is a cutset of } G \\
& \left.E(X) \cap B_{1}=\left\{e_{g}, e_{h}\right\}, E(X) \cap B_{2}=\left\{e_{p}^{\prime}, e_{q}^{\prime}\right\}\right\}
\end{aligned}
$$

and

$$
m_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)=c_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)-d_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)
$$

Clearly, c_{12} is equal to the length of a shortest pair of vertex-disjoint paths, each from u_{g} or u_{h} to u_{p}^{\prime} or u_{q}^{\prime}. Such a pair can be found by the sophisticated algorithm of Suurballe and Tarjan [15]. However, we can check more efficiently the cut condition for cutsets of type (3) simply by applying an ordinary shortestpath algorithm. The key point to notice is that we need not compute $m_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)$ itself. Instead we compute $m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)$ defined as follows:

$$
m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)=\operatorname{dist}\left(u_{g}, u_{p}^{\prime}\right)+\operatorname{dist}\left(u_{h}, u_{q}^{\prime}\right)-d_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)
$$

where $\operatorname{dist}\left(u, u^{\prime}\right)$ denotes the distance between vertices u and u^{\prime} in G^{*}, i.e., the length of the shortest path from u to u^{\prime}. Although the two paths of length $\operatorname{dist}\left(u_{g}, u_{p}^{\prime}\right)$ and $\operatorname{dist}\left(u_{h}, u_{q}^{\prime}\right)$ in G^{*} may not be disjoint, the following lemma holds.

Lemma 3. A network N in C_{12} satisfies the cut condition if and only if $m_{1}\left(e_{g}, e_{h}\right) \geq$ $0, m_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$, and $m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$.

Proof. Clearly, $\operatorname{MIN}\left\{m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right), m_{12}^{\prime}\left(e_{h}, e_{g} ; e_{p}^{\prime}, e_{q}^{\prime}\right)\right\} \leq m_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right)$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$. Thus the "if" part is trivial, and we shall prove the "only if"' part. Assume that N satisfies the cut condition. Then $m_{1}\left(e_{g}, e_{h}\right) \geq 0$, $m_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$, and $m_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$. Thus we shall verify $m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$. Let $R_{g p}$ be a shortest path from u_{g} to u_{p}^{\prime} in G^{*}, and let $R_{h q}$ be a shortest path from u_{h}
to u_{q}^{\prime} in G^{*}. If paths $R_{g p}$ and $R_{h q}$ are vertex-disjoint, then there exists a cutset of G which consists of the edges corresponding to those of $R_{g p}$ and $R_{h q}$. Therefore

$$
m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq m_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0
$$

Thus we may assume that $R_{g p}$ and $R_{h q}$ are not vertex-disjoint. Then $R_{g p}+R_{h q}$ contains two edge-disjoint paths: a path $Q_{g h}$ between u_{g} and u_{h} and a path $Q_{p q}$ between u_{p}^{\prime} and u_{q}^{\prime}. Let $E(X)$ and $E(Y)$ be the cutsets of G corresponding to $Q_{g h}$ and $Q_{p q}$, respectively. Then we have

$$
m(X)=\operatorname{leng}\left(Q_{g h}\right)-d_{1}\left(e_{g}, e_{h}\right) \geq m_{1}\left(e_{g}, e_{h}\right)
$$

and

$$
m(Y)=\operatorname{leng}\left(Q_{p q}\right)-d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \geq m_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)
$$

where leng (Q) is the length of path Q in G^{*}. Clearly,

$$
\operatorname{leng}\left(Q_{g h}\right)+\operatorname{leng}\left(Q_{p q}\right) \leq \operatorname{leng}\left(R_{g p}\right)+\operatorname{leng}\left(R_{h q}\right)
$$

Therefore

$$
\begin{aligned}
m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) & =\operatorname{leng}\left(R_{g p}\right)+\operatorname{leng}\left(R_{h q}\right)-d_{12}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \\
& \geq m_{1}\left(e_{g}, e_{h}\right)+m_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0
\end{aligned}
$$

Thus it suffices to check whether $m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$. The checking can be done as follows. First compute for each $e_{g} \in B_{1}$ and $e_{q}^{\prime} \in B_{2}$

$$
m_{12}^{*}\left(e_{g}, e_{q}^{\prime}\right)=\operatorname{MIN}\left\{-d_{1}\left(e_{g}, e_{h}\right)+\operatorname{dist}\left(u_{h}, u_{q}^{\prime}\right) \mid e_{h} \in B_{1}\right\}
$$

and

$$
m_{21}^{*}\left(e_{g}, e_{q}^{\prime}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{g}, u_{p}^{\prime}\right)-d_{1}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \mid e_{p}^{\prime} \in B_{2}\right\}
$$

Note that for $e_{g} \in B_{1}$ and $e_{q}^{\prime} \in B_{2}$

$$
m_{12}^{*}\left(e_{g}, e_{q}^{\prime}\right)+m_{21}^{*}\left(e_{g}, e_{q}^{\prime}\right)=\operatorname{MIN}\left\{m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \mid e_{h} \in B_{1}, e_{p}^{\prime} \in B_{2}\right\}
$$

Then compute

$$
A=\operatorname{MIN}\left\{m_{12}^{*}\left(e_{g}, e_{q}^{\prime}\right)+m_{21}^{*}\left(e_{g}, e_{q}^{\prime}\right) \mid e_{g} \in B_{1}, e_{q}^{\prime} \in B_{2}\right\}
$$

Clearly, $A \geq 0$ if and only if $m_{12}^{\prime}\left(e_{g}, e_{h} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \geq 0$ for all $e_{g}, e_{h} \in B_{1}$ and $e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}$.

We now show that the computation above can be done in $O\left(\left(b_{1}+b_{2}\right) T_{+}(n)\right)$ time. We can compute $m_{12}^{*}\left(e_{g}, e_{q}^{\prime}\right)$ for a fixed $e_{g} \in B_{1}$ and all $e_{q}^{\prime} \in B_{2}$ in $O\left(T_{+}(n)\right)$ time: construct a planar graph from G^{*} by adding a new vertex v and edges (v, u_{h}) of length $L-d_{1}\left(e_{g}, e_{h}\right)$ for all $u_{h} \in U_{1}-u_{g}$, and find shortest paths from v to all $u_{q}^{\prime} \in U_{2}$, where L is a sufficiently large positive number. Thus we can compute all m_{12}^{*} in $O\left(b_{1} T_{+}(n)\right)$ time. Similarly we can compute all m_{21}^{*} in $O\left(b_{2} T_{+}(n)\right)$ time. From these m_{12}^{*} and m_{21}^{*}, value A can be computed in time $O\left(b_{1} b_{2}\right) \leq O\left(\left(b_{1}+b_{2}\right) T_{+}(n)\right)$.

From the discussions in (0), (1), (2), and (3) above, we can conclude:
Theorem 2. The feasibility of a network N in C_{12} can be tested in $O\left(\left(b_{1}+b_{2}\right) T_{+}(n)\right)$ time if N, B_{1}, and B_{2} have n vertices, b_{1} edges, and b_{2} edges, respectively.
4. Finding Flows for $\boldsymbol{C}_{\mathbf{1 2}}$. In this section we give an algorithm MFLOW12 which finds multicommodity flows in a network N belonging to C_{12} and satisfying the cut condition. The algorithm spends $O\left(k n+n T_{+}(n)\right)$ time. In this section we assume that all edges of capacity zero are deleted and consequently all edges have positive capacities.
4.1. Basic Procedure PUSH. In this subsection we present a basic procedure PUSH which our algorithms repeatedly use to find flows in a network in C_{12} and C_{01}.

For an edge $e=(v, w) \in E$ and set $P_{l}(l=0,1,2)$, $\operatorname{procedure~} \operatorname{PUSH}\left(N, P_{l}, e\right)$ repeats the following operation for each pair $\left(s_{i}, t_{i}\right) \in P_{I}$ having a terminal, s_{i} say, on v :
(a) Push an appropriate unit D of flow f_{i} through e.
(b) Decrease the capacity of e by D.
(c) Split the single demand d_{i} of f_{i} into two, demand D of a new pair (w, t_{i}) and the residual demand $d_{i}-D$ of pair $\left(s_{i}, t_{i}\right)$. (Two flows realizing split demands will be superimposed to realize the original single flow f_{i})

We choose D so that the resulting network N^{\prime} satisfies the cut condition. Furthermore, we choose e so that N^{\prime} also belongs to C_{12} (resp. C_{01}) if N belongs to C_{12} (resp. C_{01}). Our algorithm repeatedly applies procedure PUSH until the network is eventually transformed into one belonging to C_{1}.

We now present the details of procedure PUSH. Of course, D cannot exceed d_{i} or $c(e)$, but we wish to choose D as large as the resulting network will allow before violating the cut condition. If pushing D units of f_{i} changes the margin $m(X)$ of a cutset $E(X)$, then $e \in E(X), s_{i}, t_{i} \notin X$, and $m(X)$ is decreased by $2 D$. Therefore D cannot exceed one-half of the minimum margin of these cutsets. Thus we choose D as follows:

$$
D=\operatorname{MIN}\left\{c(e), d_{i}, m\left(e,\left(s_{i}, t_{i}\right)\right) / 2\right\},
$$

where

$$
m\left(e,\left(s_{i}, t_{i}\right)\right)=\operatorname{MIN}\left\{m(X) \mid E(X) \text { is a cutset of } G, e \in E(X), s_{i}, t_{i} \notin X\right\} .
$$

To keep track of the origin we assign to each pair (s_{i}, t_{i}) a commodity number commodity (i); clearly, commodity $(i)=i$ if $i \leq k$; and commodity $(i)=$ commodity (j) if $i>k$ and (s_{i}, t_{i}) raises from (s_{j}, t_{j}). Then the superimposition in operation (c) above can be done mechanically using this numbering. We now describe procedure PUSH in pidgin ALGOL.

```
procedure \(\operatorname{PUSH}\left(N, P_{l}, e\right)\);
    begin
        \(\{l=0,1\) or 2 . edge \(e=(v, w)\) is suitably chosen \(\}\)
        for each terminal \(s_{i}\) (not necessarily source) on \(v\) belonging to \(P_{i}\) do
            begin
                \(D:=\operatorname{MIN}\left\{c(e), d_{i}, m\left(e,\left(s_{i}, t_{i}\right)\right) / 2\right\} ;\)
                \{ push \(D\) units of flow through \(e\) \}
                if \(D>0\) then
                    begin
                    \(j:=\operatorname{commodity}(i) ; \quad\{1 \leq j \leq k\}\)
                    \(f_{j}(e):=f_{j}(e) \pm D ; \quad\{\) the sign \(\pm\) depend on the orientation
                                    of \(e\) and whether \(s_{i}\) is a source or
                                    sink \(\}\)
                                    \(c(e):=c(e)-D ; \quad\{\) residual capacity \(\}\)
                                    if \(D=d_{i}\) then \(\left\{\right.\) flow of \(\left(s_{i}, t_{i}\right)\) has been entirely pushed
                                    through \(e\) \}
                                    begin
                            \(s_{i}:=w ; \quad\left\{\right.\) move terminal \(s_{i}\) from \(v\) to \(\left.w\right\}\)
                                    if \(s_{i}=t_{i}\) then \(P_{i}:=P_{i}-\left(s_{i}, t_{i}\right) \quad\) \{ low of \(\left(s_{i}, t_{i}\right)\) has
                                    been realized \}
                    end
                else \(\left\{D<d_{i}\right.\), flow of \(\left(s_{i}, t_{i}\right)\) has been partly pushed
                                    through \(e\) \}
                    begin
                                \(d_{i}=d_{i}-D ; \quad\{\) residual demand \(\}\)
                                if \(t_{i} \neq w\) then
                                \(\left\{\right.\) add a surrogate \(\left(s_{k+1}, t_{k+1}\right)\) of pair \(\left.\left(s_{i}, t_{i}\right)\right\}\)
                                begin
                                    \(s_{k+1}:=w ;\)
                                    \(t_{k+1}:=t_{i}\);
                                    \(P_{i}:=P_{I} \cup\left\{\left(s_{k+1}, t_{k+1}\right)\right\} ;\)
                                    commodity \((k+1):=j\);
                                    \(d_{k+1}:=D ; \quad\{\) split demand \(\}\)
                                    \(k:=k+1\)
                                    end
                        end
            end
        end
```

 end;

Fig. 4. The network after the execution of $\operatorname{PUSH}\left(N, P_{1}, e_{0}\right)$.

Example. Suppose that $\operatorname{PUSH}\left(N, P_{1}, e\right)$ is executed for a network N in Figure 1 (a), choosing an edge $e_{0}=\left(v_{0}, v_{1}\right)$ on B_{1} as e. In this case there are two terminals s_{1} and s_{2} on v_{0}. We can verify that $m\left(e_{0},\left(s_{1}, t_{1}\right)\right)=m(X)=8$ with $X=\left\{v_{1}, v_{2}, w_{2}\right\}$. Therefore $D=\operatorname{MIN}\{3,2,8 / 2\}=2$ for s_{1}. Since $D=d_{1}$, terminal s_{1} is moved to v_{1} and $c\left(e_{0}\right)$ is reduced to $3-D=1$ when D units of f_{1} are pushed through e. Then we know that $m\left(e_{0},\left(s_{2}, t_{2}\right)\right)=m(Y)=2$ with $Y=\left\{v_{1}, v_{2}, v_{3}, w_{2}, w_{3}, v_{2}^{\prime}\right\}$. Therefore $D=\operatorname{MIN}\{1,3,2 / 2\}=1$ for s_{2}. Since $D<d_{2}$, a surrogate (s_{7}, t_{7}) of pair (s_{2}, t_{2}) is introduced with s_{7} on v_{1} and t_{7} on the same vertex as t_{2} when D units of f_{2} are pushed through e. Note that $c(e)$ becomes zero. Thus network N becomes as shown in Figure 4 when PUSH terminates.
4.2. Algorithm MFLOW12. Algorithm MFLOW12 first realizes the flows between source-sink pairs in P_{1}, and then realizes all the remaining flows in the resulting network belonging to C_{1} simply by using the known algorithm MULTIFLOW [7].

MFLOW12 realizes flows of P_{1} by repeating the following: choose an appropriate edge e on the outer boundary B_{1} and push flows of P_{1} through e by procedure $\operatorname{PUSH}\left(N, P_{1}, e\right)$. The algorithm initially chooses as e an arbitrary edge ($\left.v, w\right)$ on B_{1}, and pushes flows of P_{1} having terminals on v through e in the clockwise direction by $\operatorname{PUSH}\left(N, P_{1}, e\right)$, where w is the vertex clockwise next to v on B_{1}. Then the algorithm chooses as a new e the edge on B_{1} clockwise next to e, and repeats the same operation. When the capacity $c(e)$ of e is decreased to zero, MFLOW12 deletes edge e from the graph G and chooses as a new e an edge on the new boundary B_{1} of G. When a connected graph G is disconnected into
two components, the algorithm recurses to each subnetwork. Since only edges on B_{1} are chosen as e, the network always belongs to C_{12} during the execution of MFLOW12.

The algorithm is formally described as follows:

```
procedure MFLOW12( \(N\) );
    begin
        for each edge \(e \in E\) and \(i(1 \leq i \leq k)\) do \(f_{i}(e):=0 ; \quad\{\) initialization \}
        for each \(i(1 \leq i \leq k)\) do commodity \((i):=i\);
        \(e:=\) an arbitrary edge on \(B_{1} ; \quad\{e=(v, w)\}\)
        ROTATE \((N, e)\)
    end;
procedure \(\operatorname{ROTATE}(N, e)\);
    begin
        if \(N \in C_{1}\) then \(\operatorname{MULTIFLOW}(N)\) \{MULTIFLOW is given in [7]\}
        else \(\left\{N \in C_{12}-C_{1}\right\}\)
            begin
                \(\operatorname{PUSH}\left(N, P_{1}, e\right) ; \quad\{c(e)\) may be decreased \(\}\)
                \(e^{\prime}:=\) the edge clockwise next to \(e\) on \(B_{1}\);
                \(e^{\prime \prime}:=\) the edge clockwise next to \(e\) around \(v\) among the edges
                incident with \(v\); (see Figure 5)
                \{ either \(e^{\prime}\) or \(e^{\prime \prime}\) is chosen as new \(e\) below \}
                if \(c(e)>0\) then \(\operatorname{ROTATE}\left(N, e^{\prime}\right) \quad\left\{\right.\) proceed to \(\left.e^{\prime}\right\}\)
                else \(\{c(e)=0\}\)
                    begin
                        \(G:=G-e ; \quad\{\) delete edge \(e\}\)
                        if \(G\) is connected then ROTATE \(\left(N, e^{\prime \prime}\right) \quad\left\{\right.\) proceed to \(\left.e^{\prime \prime}\right\}\)
                        else \{ \(e\) was a bridge, and new \(G\) is disconnected \}
                        begin
                        let \(G_{a}\) and \(G_{b}\) be the two connected components in \(G\);
                        let \(N_{a}\) and \(N_{b}\) be the subnetworks of \(N\) with graphs
                                \(G_{a}\) and \(G_{b}\), respectively;
                                \(\left\{\right.\) either \(N_{a}\) or \(N_{b}\) belongs to \(C_{1}\) \}
                        assume that \(v\) is in \(G_{a}\) and \(w\) in \(G_{b}\);
                        ROTATE \(\left(N_{a}, e^{\prime \prime}\right)\);
                                    ROTATE \(\left(N_{b}, e^{\prime}\right)\)
                            end
                end
            end
    end;
```

Example. Figure 6 illustrates a partial traversal of variable e in the network N of Figure 1(a). The deleted edges are drawn in dashed lines. Number i in a circle and an arrow next to an edge indicate that MFLOW12(N) assigns the edge

Fig. 5. Edges e, e^{\prime}, and $e^{\prime \prime}$.
to variable e for the orientation of the arrow in the i th execution of PUSH. The edge (v_{1}, w_{2}) has been assigned to e once for each of the two orientations.

For simplicity MFLOW12 above uses the known procedure MULTIFLOW [7] when a network is reduced to one in C_{1}. However, MFLOW12 itself can substitute for MULTIFLOW. Note that the computation of margins for networks in C_{1} is easier than for C_{12}.
4.3. Polynomial Boundedness. In this subsection we show that MFLOW12 correctly finds multicommodity flows in polynomial time. Since the time required by PUSH is dominating in the running time, we bound the number of times PUSH is executed, that is, the number of edges variable e traverses. We claim the following Lemma 4.

Lemma 4. PUSH is executed $O(n)$ times during one execution of MFLOW12.
In order to prove Lemma 4 we need some terms and lemmas. Let $s_{i} \in B_{1}$ be a terminal of P_{1}, and let e_{j} be an edge joining s_{i} and a clockwise next vertex on

Fig. 6. The network after eight executions of PUSH.
B_{1}. (Note that there exist two or more such edges if s_{i} is a cutvertex of G.) Edge e_{j} blocks terminal s_{i} if there exists a cutset $E(X)$ such that $m(X)=0, e_{j} \in E(X)$, and $\left(s_{i}, t_{i}\right) \notin D(X)$. Clearly, only the flows of pairs in $D(X)$ can pass through edges in such a cutset $E(X)$, and hence flow f_{i} cannot pass through edge e_{j}. Terminal s_{i} is blocked if there is such an edge blocking s_{i}. When the execution of $\operatorname{PUSH}\left(N, P_{1},(v, w)\right)$ does not reduce the capacity of edge (v, w) to zero, each of the terminals of P_{1} remaining on v is blocked. The following two lemmas hold.

Lemma 5. If a network $N=(G, P, c)$ in C_{12} satisfies the cut condition, then there exists no cut $E(X)$ satisfying the following conditions:
(5a) $\left|E(X) \cap B_{1}\right|=1$ or 2 ;
(5b) X contains no terminal of P_{2};
(5c) $m(X)=0$; and
(5d) every terminal of P_{1} in X is blocked.

Proof. Suppose that a cut $E(X)$ satisfies conditions (5a)-(5d), and that $\left|X \cap B_{1}\right|$ is minimum among such cuts. We may assume that ($\left.v_{b_{1}-1}, v_{0}\right) \in E(X) \cap B_{1}$ and $v_{0} \in X$. Furthermore, interchanging the roles of sources and sinks if necessary, we may assume that every source of P_{1} precedes the corresponding sink on B_{1} clockwise going from v_{0} to $v_{b_{1}-1}$. Clearly, $D(X) \neq \varnothing$ because $c(X)>0$ and $m(X)=0$. Let $\left(s_{i}, t_{i}\right)$ be a pair in $D(X)$ such that $\operatorname{sink} t_{i}$ appears first on B_{1} clockwise going from v_{0}. Since source s_{i} lies in X, s_{i} is blocked by an edge e_{j} joining s_{i} and a clockwise next vertex on B_{1}. Thus there is a cutset $E(Y)$ such that $s_{i}, t_{i} \notin Y, m(Y)=0$, and $e_{j} \in E(Y)$. Condition (5 b) and the selection of $\left(s_{i}, t_{i}\right)$ imply that there is no source-sink pair having one terminal in $X-Y$ and the other in $Y-X$, and hence $d(X-Y ; Y-X)=0$. Thus Lemma 2 implies $m(X \cap Y)=0$ and $c(X-Y ; Y-X)=0$. If $(X \cap Y) \cap B_{1} \neq \varnothing$, then the cut $E(X \cap Y)$ satisfies conditions (5a)-(5d) and $\left|(X \cap Y) \cap B_{1}\right| \leq\left|X \cap B_{1}\right|-1$, contradicting the minimality of $\left|X \cap B_{1}\right|$. If $(X \cap Y) \cap B_{1}=\varnothing$, then $e_{j} \in$ $E(X-Y ; Y-X)$, contrary to $c(X-Y ; Y-X)=0$.

Lemma 6. If network $N=(G, P, c)$ in C_{12} satisfies the cut condition and $P_{1} \neq \varnothing$, then at least one terminal of P_{1} is unblocked.

Proof. Suppose for a contradiction that every terminal of P_{1} is blocked. Then a source s_{i} of P_{1} is blocked by an edge $e_{j} \in B_{1}$, that is, there is a cutset $E(X)$ such that $s_{i}, t_{i} \notin X, m(X)=0$, and $e_{j} \in E(X)$. The sink t_{i} is also blocked by an edge $e_{l} \in B_{1}$, that is, there is a cutset $E(Y)$ such that $s_{i}, t_{i} \notin Y, m(Y)=0$, and $e_{1} \in E(Y)$. Since every terminal of P_{1} is blocked, Lemma 5 implies that $X \cap B_{2} \neq \varnothing$ and $Y \cap B_{2} \neq \varnothing$. Since $m(X)=m(Y)=0$ and $\left(s_{i}, t_{i}\right) \notin D(X) \cup D(Y)$, all the edges in $E(X) \cup E(Y)$ are occupied by flows other than f_{i}. Furthermore, terminals s_{i} and t_{i} lie in distinct components in $G-E(X) \cup E(Y)$ (see Figure 7). Therefore flow f_{i} cannot exist. However, since N satisfies the cut condition, by Theorem 1 N has multicommodity flows, a contradiction.

Fig. 7. Two saturated cutsets $E(X)$ and $E(Y)$.

Lemma 6 implies that MFLOW12 pushes a positive amount of a flow through at least one edge on B_{1} while variable e traverses edges on B_{1} once. Thus MFLOW12 correctly finds flows if it terminates finitely.

Intuitively we claim that variable e traverses each edge of G no more than twice. We may assume that edge e_{0} is initially chosen as variable e. As shown later in Lemma 9, if an edge is deleted before e proceeds to the last edge $e_{b_{1}-1}$ on B_{1}, then the claim can be rather easily verified. Otherwise, all the unblocked terminals of P_{1} lie on vertex $v_{b_{1}-1}$, and there must exist a "saturated" cutset intersecting with B_{1} and B_{2}. More precisely we have the following lemma.

Lemma 7. Let network $N=(G, P, c)$ in C_{12} satisfy the cut condition. If all the unblocked terminals of P_{1} lie on $v_{b_{1}-1}$, then there is a cutset $E(X)$ satisfying the following conditions:
$E(X) \cap B_{1} \neq \varnothing$
(7b) $X \cap B_{2} \neq \varnothing$;
(7c) $m(X)=0$;
(7d) $v_{b_{1}-1}, v_{0} \notin X$;
(7e) X induces a connected subgraph; and
(7f) X contains no terminal of P_{1}.

Proof. Suppose that all the unblocked terminals of P_{1} lie on $v_{b_{1}-1}$. We may assume that every sink of P_{1} precedes the corresponding source on B_{1} counterclockwise going from $v_{b_{1}-1}$ to v_{0}. Let s_{i} be the source that first appears on B_{1} counterclockwise going from $v_{b_{1}-1}$ to v_{0}. Since s_{i} is not on $v_{b_{1}-1}, s_{i}$ is blocked by an edge $e_{j} \in B_{1}$ and hence there is a cutset $E(X)$ such that $s_{i}, t_{i} \notin X, m(X)=0$, $e_{j} \in E(X)$, and $v_{b_{1}-1}, v_{0} \notin X$. Since every terminal of P_{1} in X is blocked, by Lemma $5 X$ contains a terminal of P_{2} and hence $X \cap B_{2} \neq \varnothing$. Clearly, $E(X)$ satisfies conditions (7a)-(7e). Thus it remains to show that $E(X)$ satisfies condition (7f).

Suppose there is a terminal of P_{1} in X. Such a terminal must be a sink. Let (s_{l}, t_{l}) be the pair in $D(X) \cap P_{1}$ such that source s_{l} first appears on B_{1} clockwise going from v_{0}. Since $t_{l} \in X, t_{l}$ is not on $v_{b_{1}-1}$. Therefore sink t_{l} is blocked by an
edge e_{p}, and hence there is a cutset $E(Y)$ such that $s_{l}, t_{l} \notin Y, e_{p} \in E(Y)$, and $m(Y)=0$. We consider the following two cases:

Case 1: $Y \cap B_{2}=\varnothing$. In this case clearly $D(X-Y ; Y-X) \cap P_{2}=\varnothing$. Furthermore, $D(X-Y ; Y-X) \cap P_{1}=\varnothing$, due to the selection of pairs $\left(s_{i}, t_{i}\right)$ and $\left(s_{i}, t_{i}\right)$. Therefore $d(X-Y ; Y-X)=0$ and, consequently, Lemma 2 implies $m(X \cap Y)=$ 0 and $c(X-Y ; Y-X)=0$. If $X \cap Y \neq \varnothing$, then the cut $E(X \cap Y)$ satisfies conditions (5a)-(5d), a contradiction. If $X \cap Y=\varnothing$, then $e_{p} \in E(X-Y ; Y-X)$, contradicting $c(X-Y ; Y-X)=0$.

Case 2: $Y \cap B_{2} \neq \varnothing$. An edge $e_{q} \in B_{1}$ blocks s_{l}, and hence there is a cutset $E\left(X^{\prime}\right)$ such that $s_{l}, t_{l} \notin X^{\prime}, e_{q} \in E\left(X^{\prime}\right)$, and $m\left(X^{\prime}\right)=0$. Since every terminal in X^{\prime} is blocked, $X^{\prime} \cap B_{2} \neq \varnothing$ by Lemma 5 . Thus a contradiction can be easily derived with respect to X^{\prime}, Y, and $\left(s_{l}, t_{l}\right)$ as in the proof of Lemma 6.

If there exists a "saturated" cutset satisfying conditions (7a)-(7f), then variable e will traverse each edge no more than once, as we claim in the following lemma.

Lemma 8. Assume that:
(1) Network $N=(G, P, c) \in C_{12}$ satisfies the cut condition.
(2) A cut $E(X)$ satisfies conditions (7a)-(7f).
(3) For two distinct vertices $v_{h} \in B_{1}$ and $v_{g} \in X \cap B_{1}$, all the unblocked terminals of P_{1} lie only on the vertices $v_{h}, v_{h+1}, \ldots, v_{g}$.

If MFLOW12 (N) is executed with choosing edge e_{h} as initial e, then a single edge is not assigned to the variable e more than once for each of its two orientations and none of edges $e_{g}, e_{g+1}, \ldots, e_{h-1}$ is assigned to e for the orientation from v_{i} to v_{i+1}, $g \leq i \leq h-1$, before N is reduced to subnetworks all belonging to C_{1}. (See Figure 8.)

Proof. Assume that $N=(G, P, c)$ is a network for which the lemma is not true, and that G has a minimum number of edges among such networks; clearly, the number is positive. Since X contains no terminal of P_{1}, procedure $\operatorname{PUSH}\left(N, P_{1}, e\right)$

Fig. 8. Illustration for proof of Lemma 8.
does not push flows through any edge incident with a vertex in X. Therefore the cut $E(X)$ continues to satisfy conditions (7a)-(7f) before N is reduced to subnetworks all belonging to C_{1}.

An edge must be deleted before edge e_{g} is assigned to e. Otherwise, just before the algorithm assigns edge e_{g} to the variable e, every terminal of P_{1} is blocked, contrary to Lemma 6.

Let e_{i} be the first edge deleted from the graph G. Assume that network N results in $N^{\prime}=\left(G^{\prime}, P^{\prime}, c^{\prime}\right)$ when procedure PUSH for the edge e_{i} finishes, where $G^{\prime}=G-e_{i}$. Note that MFLOW12(N) has assigned each of edges $e_{h}, e_{h+1}, \ldots, e_{i}$ to the variable e once so far. Furthermore, in N^{\prime} all the unblocked terminals of P_{1} lie on $v_{i}, v_{i+1}, \ldots, v_{g}$. We consider the following two cases:

Case 1: G^{\prime} is Connected. Let $e^{\prime \prime}$ be the edge clockwise next to e_{i} around v_{i} among the edges incident with v_{i}. (See Figure 8.) Since G^{\prime} has fewer edges than G, MFLOW12 (N^{\prime}), choosing $e^{\prime \prime}$ as initial e, assigns no single edge of G^{\prime} to e more than once for each of its two orientations and assigns none of edges e_{g}, $e_{g+1}, \ldots, e_{h-1}, \ldots, e_{i-1}$ to e for the orientation before N^{\prime} is reduced to subnetworks all belonging to C_{1}. The behavior of $\operatorname{MFLOW12(N)}$ after edge (v_{i}, v_{i+1}) is deleted is identical with that of MFLOW12 $\left(N^{\prime}\right)$. Hence the lemma must hold for N, a contradiction.

Case 2: G^{\prime} is Disconnected. Let G_{a} and G_{b} be the two connected components of G^{\prime}, and let N_{a} and N_{b} be the corresponding networks. We may assume that G_{a} contains B_{2}, and hence $N_{a} \in C_{12}-C_{1}$ and $N_{b} \in C_{1}$. Thus we consider the behavior of MFLOW12 $\left(N_{a}\right)$. The cut $E(X)$ is in N_{a} because $E(X)$ satisfies conditions (7b) and (7e). Since G_{a} has fewer edges than G, we can derive a contradiction as in Case 1.

We are now ready to prove the following lemma.
Lemma 9. Algorithm MFLOW12(N) assigns no single edge to the variable e more than twice for each of its two orientations before network N is reduced to subnetworks all belonging to C_{1}.

Proof. Assume that $N=(G, P, c)$ is a network for which the lemma is not true, and that G has a minimum number of edges among such networks. We may assume without loss of generality that edge $e_{0}=\left(v_{0}, v_{1}\right)$ is first assigned to e.

If at least one edge e_{i} other than the last edge $e_{b_{1}-1}$ on B_{1} is deleted on the first traversal of B_{1}, then we can derive a contradiction as in the proof of Lemma 8. (Note: If only the edge $e_{b_{1}-1}$ is deleted on the first traversal of B_{1}, then there may appear an unblocked terminal on v_{0}, and consequently an argument such as the one in the proof of Lemma 8 does not work.)

Thus we may assume that no edge is deleted before the algorithm assigns edge $e_{b_{1}-1}$ to the variable e. Assume that network N results in $N^{\prime}=\left(G^{\prime}, P^{\prime}, c^{\prime}\right)$ when procedure PUSH for edge $e_{b_{1}-2}$ finishes. Since all the unblocked terminals of P_{1} lie on $v_{b_{1}-1}$, by Lemma 7 network N^{\prime} has a cutset satisfying conditions (7a)-(7f).

Then Lemma 8 implies that, after assigning $e_{b_{1}-1}$ to e, the algorithm assigns no single edge to e more than once for each of its two orientations. Thus MFLOW12(N), choosing e_{0} as initial e, assigns no single edge to the variable e_{0} more than twice for each of its two orientations, contrary to the assumption.

Flows in subnetworks belonging to C_{1} can be found by procedure MULTIFLOW [7]. Like MFLOW12, MULTIFLOW repeats pushing flows through edges on a face boundary in clockwise order by using procedure PUSH. It has been shown that MULTIFLOW assigns no single edge to the variable e more than once for each of its two orientations (Lemma 6 of [7]). Combining this result with Lemma 9, we can conclude that the PUSH is executed at most six times the number of edges of G. Thus we have Lemma 4 because G is planar and has $O(n)$ edges.
4.4. Complexity of MFLOW12. In this subsection we show that we can implement MFLOW12 to run in $O\left(k n+n T_{+}(n)\right)$ time. The running time of MFLOW12 is dominated by the time for PUSH, and PUSH is executed $O(n)$ times. Therefore we bound the time for one execution of PUSH.

The execution time of $\operatorname{PUSH}\left(N, P_{1}, e\right)$ is dominated by the time for computing $m\left(e,\left(s_{i}, t_{i}\right)\right)$ for all pairs having a terminal on v. We claim that the computations can be done in $O\left(k+T_{+}(n)\right)$ time. We may assume that $e=e_{0}$. Assume that exactly l terminals of P_{1} lie on v_{0}. Since one execution of PUSH introduces at most one new source-sink pair, the number of source-sink pairs is at most $k+O(n)$ throughout the execution of MFLOW12. Therefore $l=O(k+n)$. We may assume that $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{l}, t_{i}\right) \in P_{1}$, all sources $s_{i}, 1 \leq i \leq l$, lie on v_{0}, and $t_{1}, t_{2}, \ldots, t_{l}$ appear in that order on B_{1} clockwise going from v_{0}. For each edge $e_{g} \in B_{1}-e_{0}$, define

$$
m\left(e_{g}\right)=\operatorname{MIN}\left\{m(X) \mid E(X) \text { is a cutset of } G, e_{0}, e_{g} \in E(X)\right\} .
$$

If sink $t_{i}, 1 \leq i \leq l$, lies on $v_{h} \in B_{1}$, then $m\left(e_{0},\left(s_{i}, t_{i}\right)\right)=\operatorname{MIN}\left\{m\left(e_{g}\right) \mid 1 \leq g<h\right\}$. Moreover, if D units of flow f_{i} are pushed through e_{0}, then all $m\left(e_{g}\right)$ with $1 \leq g<h$ decrease by the same units $2 D$ and the remaining $m\left(e_{g}\right)$ do not change. Therefore, once all $m\left(e_{g}\right)$ have been computed before flows are pushed through e_{0}, the values $m\left(e_{g}\right)$ can be effectively updated if the flows $f_{1}, f_{2}, \ldots, f_{l}$ are pushed in that order. The update can be done in $O\left(l+b_{1}\right)$ time. Thus it suffices to show that we can compute $m\left(e_{g}\right)$ for all $e_{g} \in B_{1}-e_{0}$ in $O\left(k+T_{+}(n)\right)$ time.

As in the proof of Lemma 3, we have

$$
m\left(e_{g}\right)=\operatorname{MIN}\left\{m_{1}\left(e_{0}, e_{g}\right), m_{12}^{\prime}\left(e_{0}, e_{g}\right)\right\},
$$

where $m_{12}^{\prime}\left(e_{0}, e_{g}\right)=\operatorname{MIN}\left\{m_{12}^{\prime}\left(e_{0}, e_{g} ; e_{p}^{\prime}, e_{q}^{\prime}\right) \mid e_{p}^{\prime}, e_{q}^{\prime} \in B_{2}\right\}$. As in Section 3 we can compute $m_{1}\left(e_{0}, e_{g}\right)$ for all $e_{g} \in B_{1}-e_{0}$ in $O\left(k+T_{+}(n)\right)$ time. On the other hand, we compute $m_{12}^{\prime}\left(e_{0}, e_{g}\right)$ for all $e_{g} \in B_{1}-e_{0}$ in $O\left(k+T_{+}(n)\right)$ time as follows:
Step 1. Compute $\operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)$ for all $u_{p}^{\prime} \in U_{2}$.

Step 2. Compute $m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right) \mid e_{p}^{\prime} \in B_{2}\right\} \quad$ for all $e_{q}^{\prime} \in B_{2}$.
Step 3. Compute $c_{1}^{*}\left(e_{0}, e_{g}\right)=\operatorname{MIN}\left\{m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right)+\operatorname{dist}\left(u_{q}^{\prime}, u_{g}\right) \mid e_{q}^{\prime} \in B_{2}\right\}$ for all $e_{g} \in$ $B_{1}-e_{0}$.
Step 4. Compute $m_{12}^{\prime}\left(e_{0}, e_{g}\right)=c_{1}^{*}\left(e_{0}, e_{g}\right)-d_{1}\left(e_{0}, e_{g}\right)$ for all $e_{g} \in B_{1}-e_{0}$.
Clearly, step 1 can be done in $O\left(T_{+}(n)\right)$ time. Using an appropriate data structure, we can execute step 2 in $O(k+n)$ time, as shown in the Appendix. Step 3 can be done in $O\left(T_{+}(n)\right)$ time as in the computation of m_{12}^{*} in Section 3. Clearly, step 4 can be done in $O(k+n)$ time.

Thus one execution of PUSH can be done in $O\left(k+T_{+}(n)\right)$ time. The other steps in MFLOW12, such as the initialization of flows, can be done in $O(n(k+n))$ time. Thus we can conclude:

Theorem 3. If a network $N \in C_{12}$ has n vertices and k source-sink pairs, then Algorithm MFLOW12 finds flows in $O\left(k n+n T_{+}(n)\right)$ time.
5. Testing the Feasibility for Class $\boldsymbol{C}_{\mathbf{0 1}}$. In this section we give an algorithm for testing the feasibility of a network in class C_{01}. We first construct a planar digraph G^{*} from a given planar undirected graph G as follows:
(1) Replace each edge of G on B_{1} by two multiple edges (replace each bridge on B_{1} by three multiple edges).
(2) Construct the dual of the resulting graph.
(3) Remove the vertex corresponding to B_{1} from the dual.
(4) Replace each edge e of the resulting graph with two directed edges, e^{+}and e^{-}, one in each direction.
Figure 9 illustrates a pair G and G^{*}, where G is drawn in solid lines and G^{*} in dashed lines. Let $U_{1}=\left\{u_{0}, u_{1}, \ldots, u_{b_{1}-1}\right\}$ be the set of vertices in G^{*} corresponding to edges in B_{1}.

Choose an arbitrary spanning tree T of G, and regard T as a rooted tree with root v_{c}. Remember that v_{c} is the vertex on B_{1} on which all sinks of P_{0} lie. In Figure $9 T$ is drawn by thick lines. In this section we orient the edges in T in the direction going from root v_{c} to leaves, and orient the other edges of G arbitrarily, as illustrated in Figure 9. Denote by e^{+}and e^{-}the two directed edges of G^{*} corresponding to e of G assuming that the arrowhead of the oriented e first touches the arrowhead of e^{+}and then e^{-}when e is rotated clockwise in the plane. One example is illustrated in Figure 9. The lengths of edges e^{+}and e^{-} corresponding to an oriented edge $e=(u, v)$ are defined as follows:
(1) If $e \notin T$, then leng $\left(e^{+}\right)=\operatorname{leng}\left(e^{-}\right)=c(e)$.
(2) If $e \in T$, then

$$
\text { leng }\left(e^{+}\right)=c(e)+\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{0}, \text { and } s_{i} \text { is a descendant of } v \text { in } T\right\}
$$

and

$$
\text { leng }\left(e^{-}\right)=c(e)-\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{0}, \text { and } s_{i} \text { is a descendant of } v \text { in } T\right\}
$$

Fig. 9. Graph G and G^{*} of a network in C_{01}.

We now have the following lemma.

Lemma 10. Let $E(X)$ be a cutset of G with $E(X) \cap B_{1}=\varnothing$, let Z_{c} be the clockwise cycle in digraph G^{*} corresponding to $E(X)$, and let Z_{cc} be the counterclockwise cycle. Then the lengths leng $\left(Z_{\mathrm{c}}\right)$ and leng $\left(Z_{\mathrm{cc}}\right)$ of Z_{c} and Z_{cc} satisfy

$$
\begin{aligned}
& \operatorname{leng}\left(Z_{\mathrm{c}}\right)=m(X), \text { and } \\
& \operatorname{leng}\left(Z_{\mathrm{cc}}\right)=m(X)+2 d(X)
\end{aligned}
$$

Proof. For $\left(s_{i}, t_{i}\right) \in P_{0}$ let Q_{i} be the unique path in tree T from $\operatorname{sink} t_{i}\left(=v_{c}\right)$ to source s_{i}. We may assume that $v_{c} \notin X$ and hence $X \cap B_{1}=\varnothing$. Let $Q_{i}^{+}=$ $\left\{e^{+} \mid e \in Q_{i}\right\}$ and $Q_{i}^{-}=\left\{e^{-} \mid e \in Q_{i}\right\}$, and let $q_{i}^{+}=\left|Z_{\mathrm{c}} \cap Q_{i}^{+}\right|$and $q_{i}^{-}=\left|Z_{\mathrm{c}} \cap Q_{i}^{-}\right|$. Clearly, $q_{i}^{-}-q_{i}^{+}=0$ or 1 , and $q_{i}^{-}-q_{i}^{+}=1$ if and only if $\left(s_{i}, t_{i}\right) \in D(X)$ (see Figure 10). Since in leng $\left(Z_{c}\right)$ each d_{i} is subtracted ($q_{i}^{-}-q_{i}^{+}$) times from $c(X)$, we have

$$
\begin{aligned}
\operatorname{leng}\left(Z_{c}\right) & =c(X)-\sum\left\{\left(q_{i}^{-}-q_{i}^{+}\right) d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{0}\right\} \\
& =c(X)-d(X)=m(X)
\end{aligned}
$$

Similarly, for the counterclockwise cycle Z_{cc}, we have

$$
\operatorname{leng}\left(Z_{\mathrm{cc}}\right)=c(X)+d(X)=m(X)+2 d(X)
$$

Fig. 10. Illustration for the proof of Lemma $10\left(Q_{i}\right.$ is drawn in thick lines, $q_{i}^{-}=2$ and $q_{i}^{+}=1$).

As in Section 3, we may assume that $b_{1} \leq 2 k$. Theorem 1 and Lemma 1 imply that we can test the feasibility by checking whether $m(X) \geq 0$ for every cutset $E(X)$ such that $\left|E(X) \cap B_{1}\right|=0,1$, or 2 . We now show how to compute margins, separating two cases.

Case 1. $E(X) \cap B_{1}=\varnothing$. We can verify the following lemma using Lemma 10 .
Lemma 11. Every cutset $E(X)$ with $E(X) \cap B_{1}=\varnothing$ has a nonnegative margin in network N if and only if G^{*} contains no negative directed cycle.

Proof. If network N has a cutset $E(X)$ such that $E(X) \cap B_{1}=\varnothing$ and $m(X)<0$, then by Lemma $10 G^{*}$ contains a negative clockwise cycle.

Suppose conversely that G^{*} contains a negative directed cycle. Then there must exist a simple negative cycle Z in G^{*}. If $Z=\left\{e^{+}, e^{-}\right\}$for an edge $e \in E$, then leng $(Z)=2 c(e) \geq 0$, a contradiction. Thus the cycle Z of G^{*} corresponds to a cutset $E(X)$ of G. If Z is clockwise, then by Lemma $10 m(X)=\operatorname{leng}(Z)<0$. If Z is counterclockwise, $m(X)=$ leng $(Z)-2 d(X)<0$. In either case $m(X)<0$.

We can detect a negative cycle in G^{*} by applying a shortest-path algorithm to G^{*} [6]. Thus the cut condition for these cutsets can be checked in $O\left(T_{-}(n)\right)$ time. Note that some edges of G^{*} may have negative length.

Case 2. $\left|E(X) \cap B_{1}\right|=1$ or 2 . Define $d_{1}\left(e_{g}, e_{h}\right)$ and $m_{1}\left(e_{g}, e_{h}\right)$ for edges e_{g} and e_{h} on B_{1} as in Section 3. Then we can verify as in Lemma 10,

$$
m_{1}\left(e_{g}, e_{h}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{g}, u_{h}\right), \operatorname{dist}\left(u_{h}, u_{g}\right)\right\}-d_{1}\left(e_{g}, e_{h}\right),
$$

where $\operatorname{dist}(x, y)$ denotes the length of the shortest directed path going from x to y in G^{*}. Therefore we can compute MIN $\left\{m_{1}\left(e_{g}, e_{h}\right) \mid e_{g}, e_{h} \in B_{1}\right\}$ in $O\left(b_{1} T_{-}(n)\right)$ time simply by applying b_{1} times a single source shortest-path algorithm to G^{*}, choosing vertices in U_{1} as the starting point. However, a standard technique of
shortest-path computation [20, p. 94] can improve the bound: once computation of shortest paths from a starting point is done for digraph G^{*} with negative edges, all the remaining computations can be done for a digraph with nonnegative edges. Thus we have:

Theorem 4. The feasibility for a network in C_{01} can be tested in $O\left(T_{-}(n)+b_{1} T_{+}(n)\right)$ time.
6. Finding Flows for $\boldsymbol{C}_{\mathbf{0 1}}$. In this section we first give an algorithm MFLOW01 which finds multicommodity flows in a network $N \in C_{01}$ satisfying the cut condition, and then show that MFLOW01 runs in $O\left(k n+n T_{+}(n)\right)$ time.
6.1. Algorithm MFLOW01. A network N satisfying the cut condition is minimal if for every edge e with $c(e)>0$ there is a cutset $E(X)$ such that $e \in E(X)$ and $m(X)=0$. Clearly, a minimal network has no edge of surplus capacity: multicommodity flows $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ in N must satisfy

$$
\sum_{i=1}^{k}\left|f_{i}(e)\right|=c(e)
$$

for each $e \in E$. Furthermore, we have:
Lemma 12. If a minimal network has multicommodity flows, then each of the flows is acyclic, that is, the edges through which a single flow passes induce an acyclic digraph.

First we reduce a given network N satisfying the cut condition into a minimal one by the following procedure:

```
procedure \(\operatorname{MIN}(N)\);
    begin
        for each edge \(e \in E\) do
            begin \{reduce surplus capacity \}
                \(m(e)=\operatorname{MIN}\{m(X) \mid X \subset V, e \in E(X)\} ;\)
                \(c(e):=c(e)-\operatorname{MIN}\{c(e), m(e)\}\)
            end
    end;
```

Next we decide the direction of flows of P_{1} in edges of the resulting minimal network N. By Lemma 12 each of the multicommodity flows is acyclic in N. Let $e \in E$ be any edge with $c(e)>0$ in N. Then there exists $X \subset V$ such that $m(X)=0$ and $e \in E(X)$. We may assume that $v_{c} \notin X$. The cut $E(X)$ is "saturated" by the demands of pairs in $D(X)$, and all terminals of P_{0} lying in X are sources. Therefore if v is the end of e in X and w the other, then we know that no flow for P_{0} passes through e in a direction from w to v. Thus for each edge $e \in E$ we
can determine its direction in which flows for P_{0} can pass through e. A digraph $G_{\text {acy }}$ indicating these directions is constructed from a minimal network $N=$ (G, P, c) by the following procedure:

```
procedure \(\operatorname{ACYCLIC}(N)\);
    begin
        let \(G_{\text {acy }}\) be the digraph obtained from \(G\) by replacing each edge
        by two multiple directed edges, one in each direction;
        for each edge \(e\) of \(G\) do
            begin
                if \(c(e)=0\) then remove from \(G_{\text {acy }}\) the two directed edges
                    corresponding to \(e\)
            else \(\quad\{c(e)>0\) and \(m(e)=0\}\)
                begin
                find a cutset \(E(X)\) such that \(m(X)=0, e \in E(X)\), and
                \(v_{c} \notin X\);
                for each edge \(e^{\prime} \in E(X)\) do
                    begin
                        let \(v\) and \(w\) be the ends of \(e^{\prime}\) such that \(v \in X\) and
                        \(w \notin X\);
                        remove directed edge ( \(w, v\) ) from \(G_{\text {acy }}\)
                    end
            end
        end
    end;
```

Lemma 13. If N is a minimal network, then procedure $\operatorname{ACYCLIC(N)}$ produces an acyclic digraph G_{acy}.

Proof. Let Z be an arbitrary undirected cycle in G. When the outer for statement of procedure ACYCLIC is executed for an edge e of Z, at least one forward edge and one backward edge in the clockwise direction of Z are deleted. Thus in $G_{\text {acy }}$ there is no directed cycle corresponding to Z.

Since $G_{\text {acy }}$ is acyclic, the vertices can be numbered in topological order. The following algorithm MFLOW01 first finds all the flows for P_{0} by repeatedly applying procedure PUSH for each of the vertices in that order, and then finds the flows for P_{1} by applying MULTIFLOW once for the resulting network belonging to class C_{1}.

```
procedure MFLOW01(N);
    begin
        for each edge e and i(1\leqi\leqk) do }\mp@subsup{f}{i}{}(e):=0
        for each i(1\leqi\leqk) do commodity(i):= i;
        MIN(N); { reduce N to a minimal network }
        ACYCLIC(N); { construct Gacy }
```

```
    for each vertex \(w_{i}\) of \(G_{\text {acy }}\) in the topological order do
        for each edge \(e\) of \(G_{\text {acy }}\) emanating from \(w_{i}\) do \(\operatorname{PUSH}\left(N, P_{0}, e\right)\);
    \{ flows for \(P_{0}\) have been realized, and \(N\) belongs to \(C_{1}\) \}
    MULTIFLOW( \(N\) )
end;
```

We now verify the correctness of algorithm MFLOW01. Throughout the execution of MFLOW01 (N), network N continues to satisfy the cut condition and belongs to C_{01}. Thus we show that the realization of flows for P_{0} is completed when the two nested for statements in MFLOW01 terminate. This is a direct consequence of the following lemma.

Lemma 14. No terminal of P_{0} remains on $w_{i} \in V$ just after $\operatorname{PUSH}\left(N, P_{0}, e\right)$ is executed for all edges emanating from w_{i}. Furthermore, no terminal of P_{0} is moved to w_{i} thereafter.

Proof. Suppose that a terminal s_{j} remains on w_{i} just after the executions of PUSH for all edges emanating from w_{i}. Since the network satisfies the cut condition and belongs to C_{01}, Theorem 1 implies that there exist multicommodity flows, including flow f_{j} of pair $\left(s_{j}, t_{j}\right)$. The flow f_{j} must pass through edges emanating from w_{i}. Let e be one of these edges. Then, just after $\operatorname{PUSH}\left(N, P_{0}, e\right)$ is executed, either $c(e)=0$ or there exists a "blocking" cutset $E(X)$ such that $e \in E(X), m(X)=0$, and $s_{j}, t_{j} \notin X$. Since the margin of any cut does not increase during the execution of MFLOW01, $m(X)$ remains zero thereafter. Thus f_{j} cannot pass through e, a contradiction.

Since MFLOW01 repeats pushing flows from vertices in the topological order, no terminal of P_{0} is moved to w_{i} thereafter.
6.2. Complexity of MFLOW01. In this subsection we show that MFLOW01 runs in $O\left(k n+n T_{+}(n)\right)$ time. It has been known that MULTIFLOW runs in that time [7]. Therefore we shall show that the remaining part of MFLOW01 terminates in that time.

Since PUSH is executed at most once for each edge and G is planar, PUSH is executed $O(n)$ times in total. Since one execution of PUSH introduces at most one new pair, there exist $O(n)$ pairs of P_{0} throughout the execution of MFLOW01.

We show below that both $m(e)$ and $m\left(e,\left(s_{i}, t_{i}\right)\right.$) can be computed in $O\left(k+T_{-}(n)\right)$ time. Let u be the tail of e^{+}of G^{*}, and let u^{\prime} be the head (see Figure 9). In what follows, shortest paths are computed in graph $G^{*}-\left\{e^{+}, e^{-}\right\}$.
(a) Computation of $m(e)$. Define

$$
m_{0}(e)=\operatorname{MIN}\left\{m(X) \mid e \in E(X), E(X) \cap B_{1}=\varnothing, E(X) \text { is a cutset }\right\}
$$

and

$$
m_{1}(e)=\operatorname{MIN}\left\{m(X) \mid e \in E(X), E(X) \cap B_{1} \neq \varnothing, E(X) \text { is a cutset }\right\}
$$

Then $m(e)=\operatorname{MIN}\left\{m_{0}(e), m_{1}(e)\right\}$. These $m_{0}(e)$ and $m_{1}(e)$ are computed as follows.
(a1) $m_{0}(e)$. Lemma 10 implies that $m_{0}(e)$ is equal to the length of the minimum directed cycle in G^{*} passing through e^{+}or e^{-}. Let

$$
m_{0}\left(e^{-}\right)=\operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{leng}\left(e^{-}\right)
$$

and

$$
m_{0}\left(e^{+}\right)=\operatorname{dist}\left(u^{\prime}, u\right)+\operatorname{leng}\left(e^{+}\right)
$$

where $\operatorname{dist}(x, y)$ denotes the length of a shortest directed path from x to y in $G^{*}-\left\{e^{+}, e^{-}\right\}$. Then $m_{0}(e)=\operatorname{MIN}\left\{m_{0}\left(e^{-}\right), m_{0}\left(e^{+}\right)\right\}$. Thus $m_{0}(e)$ can be computed by solving twice the single source shortest-path problem in $G^{*}-\left\{e^{+}, e^{-}\right\}$.
(a2) $m_{1}(e)$. The cutset $E(X)$ of margin $m_{1}(e)$ corresponds to a path in G^{*} connecting two vertices of U_{1} through e^{+}or e^{-}. Define

$$
m_{1}\left(e^{+}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{g}, u\right)+\operatorname{leng}\left(e^{+}\right)+\operatorname{dist}\left(u^{\prime}, u_{h}\right)-d_{1}\left(e_{g}, e_{h}\right) \mid e_{g}, e_{h} \in B_{1}\right\}
$$

and

$$
m_{1}\left(e^{-}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{g}, u^{\prime}\right)+\operatorname{leng}\left(e^{-}\right)+\operatorname{dist}\left(u, u_{h}\right)-d_{1}\left(e_{g}, e_{h}\right) \mid e_{g}, e_{h} \in B_{1}\right\}
$$

Although the two paths of lengths $\operatorname{dist}\left(u_{g}, u\right)$ and $\operatorname{dist}\left(u^{\prime}, u_{h}\right)$ (or $\operatorname{dist}\left(u_{g}, u^{\prime}\right)$ and $\operatorname{dist}\left(u, u_{h}\right)$) may not be vertex-disjoint, we can use $m_{1}^{\prime}(e)=\operatorname{MIN}\left\{m_{1}\left(e^{+}\right), m_{1}\left(e^{-}\right)\right\}$ instead of $m_{1}(e)$ to compute $m(e)$, as the next lemma claims.

Lemma 15. If a network N satisfies the cut condition, then

$$
m(e)=\operatorname{MIN}\left\{m_{0}(e), m_{1}^{\prime}(e)\right\}
$$

Proof. Clearly, $m_{1}^{\prime}(e) \leq m_{1}(e)$. Therefore we shall show that $m_{1}^{\prime}(e)<m_{1}(e)$ implies $m_{0}(e) \leq m_{1}^{\prime}(e)$. Suppose that $m_{1}^{\prime}(e)<m_{1}(e)$. We may assume that $m_{1}\left(e^{+}\right) \leq m_{1}\left(e^{-}\right)$and hence $m_{1}^{\prime}(e)=m_{1}\left(e^{+}\right)$. Let path Q from u_{g} to u_{h} through edge e^{+}in G^{*} have length $m_{1}\left(e^{+}\right)+d_{1}\left(e_{g}, e_{h}\right)$. Since $m_{1}^{\prime}(e)<m_{1}(e), Q$ is not a simple path, but Q is an edge-disjoint union of a simple path Q_{s} from u_{g} to u_{h} not passing through edge e^{+}and some simple cycles. One of these cycles, say Z, passes through edge e^{+}and, clearly, leng $(Z) \geq m_{0}(e)$. Since the cut condition is satisfied, each of the other cycles has a nonnegative length and the length of path Q_{s} satisfies leng $\left(Q_{s}\right)-d_{1}\left(e_{g}, e_{h}\right) \geq 0$. Therefore

$$
m_{1}\left(e^{+}\right) \geq \operatorname{leng}(Z)+\operatorname{leng}\left(Q_{s}\right)-d_{1}\left(e_{g}, e_{h}\right) \geq m_{0}(e)
$$

We can compute $m_{1}\left(e^{+}\right)$as follows. First solve twice the single source shortestpath problem, once from u^{\prime} in $G^{*}-\left\{e^{+}, e^{-}\right\}$and once from u in the graph obtained from $G^{*}-\left\{e^{+}, e^{-}\right\}$by reversing the direction of all the edges. Then from the found distances we can compute $m_{1}\left(e^{+}\right)$in $O\left(b_{1}^{2}\right)$ time by a straightforward method. Using the variable priority queue in the Appendix, we can compute in $O\left(k+b_{1}\right)$ time. Thus $m_{1}\left(e^{+}\right)$can be computed in $O\left(k+T_{-}(n)\right)$ time. Similarly $m_{1}\left(e^{-}\right)$can be computed in that time.

Since $m(e)$ can be computed immediately from $m_{0}(e)$ and $m_{1}^{\prime}(e)$, the computation of $m(e)$ spends $O\left(k+T_{-}(n)\right)$ time.
(b) Computation of $m\left(e,\left(s_{i}, t_{i}\right)\right)$. Procedure PUSH always pushes D units of a flow f_{i} through an edge e where $D=\operatorname{MIN}\left\{d_{i}, c(e), m\left(e,\left(s_{i}, t_{i}\right)\right) / 2\right\}$. We compute D without explicitly computing $m\left(e,\left(s_{i}, t_{i}\right)\right)$. Instead we compute $m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)$ defined as follows: if edge e is oriented to emanate from s_{i}, then

$$
\begin{equation*}
m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)=\operatorname{MIN}\left\{m_{0}\left(e^{-}\right), m_{1}\left(e^{-}\right)\right\} \tag{1}
\end{equation*}
$$

otherwise,

$$
m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)=\operatorname{MIN}\left\{m_{0}\left(e^{+}\right), m_{1}\left(e^{+}\right)\right\}
$$

The following lemma justifies it.
Lemma 16. $D=\operatorname{MIN}\left\{d_{i}, c(e), m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right) / 2\right\}$.
Proof. We verify the equation only for the case e is oriented to emanate from s_{i} because the other case can be treated similarly. By definition $m\left(e,\left(s_{i}, t_{i}\right)\right)$ is the minimum $m(X)$ over all the cutsets $E(X)$ such that $X \subset V, s_{i}, t_{i} \notin X$, and $e \in E(X)$. Let $m\left(X^{\prime}\right)$ be minimum among all these cutsets with $E\left(X^{\prime}\right) \cap B_{1}=\varnothing$, while let $m\left(X^{\prime \prime}\right)$ be minimum among these with $E\left(X^{\prime \prime}\right) \cap B_{1} \neq \varnothing$. Thus

$$
\begin{equation*}
m\left(e,\left(s_{i}, t_{i}\right)\right)=\operatorname{MIN}\left\{m\left(X^{\prime}\right), m\left(X^{\prime \prime}\right)\right\} \tag{2}
\end{equation*}
$$

Since e is oriented to emanate from s_{i}, cutset $E\left(X^{\prime}\right)$ of G corresponds to a minimum clockwise cycle through e^{-}in G^{*}. Since $m_{0}\left(e^{-}\right)=\operatorname{dist}\left(u, u^{\prime}\right)+\operatorname{leng}\left(e^{-}\right)$, $m_{0}\left(e^{-}\right) \leq m\left(X^{\prime}\right)$. Let Q be the shortest path (of length dist $\left(u, u^{\prime}\right)$) from u to u^{\prime} in $G^{*}-\left\{e^{+}, e^{-}\right\}$, then the cycle $Q^{\prime}=Q \cup\left\{e^{-}\right\}$in G^{*} corresponds to a cutset $E(Y)$ of G. We may assume $t_{i} \notin Y$; otherwise replace Y with the complement $V-Y$. By Lemma 10, if cycle Q^{\prime} is clockwise, then

$$
m(Y)=m_{0}\left(e^{-}\right)=m\left(X^{\prime}\right)
$$

On the other hand, if Q^{\prime} is counterclockwise, then $s_{i} \in Y, d_{i} \leq d(Y)$ and hence

$$
2 d_{i} \leq m(Y)+2 d(Y)=m_{0}\left(e^{-}\right) \leq m\left(X^{\prime}\right)
$$

Thus either

$$
\begin{equation*}
m_{0}\left(e^{-}\right)=m\left(X^{\prime}\right) \tag{3}
\end{equation*}
$$

Fig. 11. (a) Clockwise cycle R^{\prime} and (b) counterclockwise cycle R^{\prime}.
or

$$
\begin{equation*}
2 d_{i} \leq m_{0}\left(e^{-}\right)<m\left(X^{\prime}\right) \tag{4}
\end{equation*}
$$

Let $E\left(X^{\prime \prime}\right) \cap B_{1}=\left\{e_{g}, e_{h}\right\} . E\left(X^{\prime \prime}\right)$ corresponds to a path R in G^{*} through e^{-} either from u_{g} to u_{h} or from u_{h} to u_{g}. We may assume that path R is from u_{g} to u_{h}. Add edge $\left(u_{h}, u_{g}\right)$ to R so that v_{c} lies outside the resulting plane directed cycle $R^{\prime}=R \cup\left(u_{h}, u_{g}\right)$. Then the cycle R^{\prime} must be clockwise; otherwise, $X^{\prime \prime}$ would contain s_{i}. (See Figure 11.) Remember $m_{1}\left(e^{-}\right)$is defined as

$$
m_{1}\left(e^{-}\right)=\operatorname{MIN}\left\{\operatorname{dist}\left(u_{p}, u^{\prime}\right)+\operatorname{leng}\left(e^{-}\right)+\operatorname{dist}\left(u, u_{q}\right)-d_{1}\left(e_{p}, e_{q}\right) \mid e_{p}, e_{q} \in B_{1}\right\}
$$

Clearly, $m_{1}\left(e^{-}\right) \leq m\left(X^{\prime \prime}\right)$. Let $R_{p q}$ be the path in G^{*} from u_{p} to u_{q} through e^{-} of length $m_{1}\left(e^{-}\right)+d_{1}\left(e_{p}, e_{q}\right)$. First consider the case $R_{p q}$ is a simple path. Add edge (u_{q}, u_{p}) to $R_{p q}$ so that v_{c} lies outside the resulting plane cycle $R_{p q}^{\prime}=R_{p q} \cup$ (u_{q}, u_{p}). If cycle $R_{p q}^{\prime}$ is clockwise, then $m_{1}\left(e^{-}\right)=m\left(X^{\prime \prime}\right)$. Otherwise, $2 d_{i} \leq m_{1}\left(e^{-}\right)$. Next consider the case path $R_{p q}$ is not simple. Then $R_{p q}$ contains a cycle Z through e^{-}in G^{*}. If Z is clockwise, then $m_{0}\left(e^{-}\right) \leq \operatorname{lng}(Z) \leq m_{1}\left(e^{-}\right)$. Otherwise, $2 d_{i} \leq \operatorname{leng}(Z) \leq m_{1}\left(e^{-}\right)$. Thus in either case we have either

$$
\begin{equation*}
m_{1}\left(e^{-}\right)=m\left(X^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{MIN}\left\{2 d_{i}, m_{0}\left(e^{-}\right)\right\} \leq m_{1}\left(e^{-}\right) \leq m\left(X^{\prime \prime}\right) . \tag{6}
\end{equation*}
$$

Equations (1)-(6) imply that either

$$
m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)=m\left(e,\left(s_{i}, t_{i}\right)\right)
$$

or

$$
2 d_{i} \leq m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)<m\left(e,\left(s_{i}, t_{i}\right)\right) .
$$

This immediately implies the claimed equation

$$
D=\operatorname{MIN}\left\{d_{i}, c(e), m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right) / 2\right\}
$$

We can compute $m^{\prime}\left(e,\left(s_{i}, t_{i}\right)\right)$ in $O\left(k+T_{-}(n)\right)$ time. The computation occurs $O(n)$ times, and so spends $O\left(k n+n T_{-}(n)\right)$ time in total. The other tasks can be done in $O\left(k n+n T_{+}(n)\right)$ time as in Section 4.4. Thus algorithm MFLOW01 runs in $O\left(k n+n T_{-}(n)\right)$ time. Edge weights of G^{*} may be negative and, to make matters worse, edge weights may decrease during the execution of MFLOW01. However, using the same standard technique as in Section 5, we may compute the shortest paths in graphs without negative edges except the first computation. Thus we can conclude:

Theorem 5. Algorithm MFLOW01 finds multicommodity flows for networks belonging to C_{01} in $O\left(k n+n T_{+}(n)\right)$ time.
7. Conclusion. We have presented simple efficient algorithms for the multicommodity flow problems for two classes C_{12} and C_{01} of planar undirected networks. C_{12} consists of networks in which every source-sink pair lies on one of the two specified face boundaries B_{1} and $B_{2} . C_{01}$ consists of networks in which some pairs lie on the specified boundary B_{1} and all other pairs share a common sink on B_{1}. The feasibility can be checked by solving the single-source shortest-path problem $O\left(b_{1}+b_{2}\right)$ times for C_{12} and b_{1} times for C_{01}, where b_{1} and b_{2} are the number of edges on B_{1} and B_{2}, respectively. On the other hand, multicommodity flows can be found by solving the shortest-path problem $O(n)$ times for C_{12} and C_{01}. More precisely the feasibility can be checked in $O\left(\left(b_{1}+b_{2}\right) T_{+}(n)\right)$ time for C_{12} and in $O\left(T_{-}(n)+b_{1} T_{+}(n)\right)$ time for C_{01}, while k-commodity flows can be found in $O\left(k n+n T_{+}(n)\right)$ time for C_{12} and C_{01}.

If the usual Dijkstra's algorithm [1], [20] is used, then $T_{+}(n)=O(n \log n)$. Frederickson [3] shows that if a planar separator algorithm is used then $T_{+}(n)=$ $O(n)$ assuming the preprocessing is done in $O(n \log n)$ time. It is well known that $T_{-}(n)=O\left(n^{2}\right)$ [1], [20] if an ordinary shortest-path algorithm is used, while $T_{-}(n)=O\left(n^{3 / 2}\right)$ if a planar separator algorithm is used [6].

If the capacities and demands are all integers, then our algorithms find halfintegral flows for C_{12} and C_{01}. Note that $m(X)$ is an integer for any $X \subset V$ and D is always a half-integer throughout the execution of algorithms. A network is even if the capacities and demands are all integers and for each vertex v the capacities of edges incident with v and the demands of terminals lying on v total to an even integer. MFLOW12 finds integral flows for an even network in C_{12}. This is not the case for MFLOW01 because procedure MIN may reduce an even network to a minimal one which is not even. However, we can modify MFLOW01 so that it finds integral flows for an even network in C_{01} (the details are left to the reader). Thus our algorithms can be used to find edge-disjoint paths in plane grids [16], and are expected to be useful for VLSI routing problems.

Appendix. Detail of Step 2. We now show that we can execute step 2 (in Section 4.4) in $O(k+n)$ time. Clearly, we can compute $m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right)$ for a single edge $e_{q}^{\prime} \in B_{2}$ in $O(k+n)$ time. The key point to notice is that $m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right)$ can be updated from $m_{21}^{*}\left(e_{0}, e_{q-1}^{\prime}\right)$. In order to perform the update efficiently, we need a data structure called a variable priority queue Q [18]. Q is a sequence of elements ordered from left to right, and each element e in Q is associated with a real number key (e). The following instructions are permitted:

1. $\operatorname{INJECT}(Q, e, \operatorname{key}(e))$: insert a new element e with $\operatorname{key}(e)$ into Q as the rightmost element.
2. $\operatorname{POP}(Q)$: delete the leftmost element in Q.
3. $\operatorname{DECREASE}(Q, e, D)$: given an element e in Q together with a nonnegative number D, decrease by D all the keys of element e and those on e 's right.
4. UPDATE (Q, D) : add some real number D to all the keys of elements in Q.
5. $\operatorname{MIN}(Q)$: return the minimum key in Q.

Let $R_{p}=\left\{v_{q+1}^{\prime}, v_{q+2}^{\prime}, \ldots, v_{p}^{\prime}\right\}$, then

$$
\begin{aligned}
-d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)= & -d_{2}\left(e_{p}^{\prime}, e_{q-1}^{\prime}\right)+\sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{2} \cap D\left(\left\{v_{q}^{\prime}\right\}\right)\right\} \\
& -2 \sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{2} \cap D\left(\left\{v_{q}^{\prime}\right\}, R_{p}\right)\right\} .
\end{aligned}
$$

Therefore, using the queue Q, we can compute $m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right)$ for all $e_{q}^{\prime} \in B_{2}$ as follows:

```
procedure M21*;
    begin
        prepare an empty queue \(Q\);
        for each edge \(e_{p}^{\prime}, p=1,2, \ldots, b_{2}-1\) do
            \(\operatorname{INJECT}\left(Q, e_{p}^{\prime}, \operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{0}^{\prime}\right)\right)\);
        \{the key of edge \(e_{p}^{\prime}\) in \(Q\) is \(\left.\operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{0}^{\prime}\right)\right\}\)
        \(m_{21}^{*}\left(e_{0}, e_{0}^{\prime}\right):=\operatorname{MIN}(Q)\);
        for each \(q, q=1,2, \ldots, b_{2}-1\), do
            begin
                \(\left\{Q\right.\) contains edges \(e_{p}^{\prime}, p=q, q+1, \ldots, q-2\), having keys
                \(\left.\operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{q-1}^{\prime}\right)\right\}\)
            \(\operatorname{POP}(Q) ;\left\{\right.\) delete \(e_{q}^{\prime}\) from \(\left.Q\right\}\)
            \(\operatorname{INJECT}\left(Q, e_{q-1}^{\prime}, \operatorname{dist}\left(u_{0}, u_{q-1}^{\prime}\right)\right)\);
            \(\left\{Q\right.\) contains \(\left.e_{q+1}^{\prime}, e_{q+2}^{\prime}, \ldots, e_{q-1}^{\prime}\right\}\)
                \(\operatorname{UPDATE}\left(Q, \sum\left\{d_{i} \mid\left(s_{i}, t_{i}\right) \in P_{2} \cap D\left(\left\{v_{q}^{\prime}\right\}\right)\right\}\right) ;\)
                for each pair \(\left(s_{i}, t_{i}\right) \in P_{2} \cap D\left(\left\{v_{q}^{\prime}\right\}\right)\) do
                    begin
                    assume that \(s_{i}\) lies on \(v_{q}^{\prime}\); let \(e_{p}^{\prime}\) be the edge clockwise
                        incident with \(t_{i}\) on \(B_{2}\);
                    \(\operatorname{DECREASE}\left(Q, e_{p}^{\prime}, 2 d_{i}\right)\)
                    end;
                \(\left\{\right.\) each edge \(e_{p}^{\prime}\) in \(Q\) has key \(\left.\operatorname{dist}\left(u_{0}, u_{p}^{\prime}\right)-d_{2}\left(e_{p}^{\prime}, e_{q}^{\prime}\right)\right\}\)
                \(m_{21}^{*}\left(e_{0}, e_{q}^{\prime}\right):=\operatorname{MIN}(Q)\)
            end
    end;
```

Thus during the execution of procedure M21* instructions $1-5$ occur $O(k+n)$ times in total. If the queue Q is realized by a 2-3 tree [1], then each instruction is executed in $O(\log n)$ time, and hence the execution of $\mathrm{M} 21^{*}$ spends $O((k+n) \log n)$ time. Using a disjoint set union algorithm [4], we can realize Q in a more sophisticated way so that M21* runs in time linear in the number of instructions [18]. Therefore step 2 can be done in $O(k+n)$ time.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] H. Diaz and G. de Ghellinck, Multicommodity maximum flow in planar networks (the D-algorithm approach), CORE Discussion Paper No. 7212, Center for Operations Research and Econometrics, Louvain-la-Neuve, 1972.
[3] G. N. Frederickson, Shortest-path problems in planar graphs, Proc. 24th IEEE Symp. on Foundations of Computer Science, Tucson, 1983, pp. 242-247.
[4] H. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. System Sci., 30 (1985), pp. 209-221.
[5] R. Hassin, On multicommodity flows in planar graphs, Networks, 14 (1984), pp. 225-235.
[6] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal., 16, 2 (1979), pp. 346-358.
[7] K. Matsumoto, T. Nishizeki, and N. Saito, An efficient algorithm for finding multicommodity flows in planar networks, SIAM J. Comput., 14, 2 (1985), pp. 289-302.
[8] K. Matsumoto, T. Nishizeki, and N. Saito, Planar multicommodity flows, maximum matchings, and negative cycles, SIAM J. Comput., 15, 2 (1985), pp. 495-510.
[9] T. Nishizeki, N. Saito, and K. Suzuki, A linear-time routing algorithm for convex grids, IEEE Trans. Computer-Aided Design, 4, 1 (1985), pp. 68-76.
[10] H. Okamura, Multicommodity flows in graphs, Discrete Appl. Math., 6 (1983), pp. 55-62.
[11] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory Ser. B, 31 (1981), pp. 75-81.
[12] M. Sakarovitch, The Multicommodity Flow Problem, Doctoral Thesis, Operations Research Center, University of California, Berkeley, 1966.
[13] M. Sakarovitch, Two commodity network flows and linear programming, Math. Programming, 4 (1973), pp. 1-20.
[14] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci., 26 (1983), pp. 362-390.
[15] J. W. Suurballe and R. E. Tarjan, A quick method for finding shortest pairs of disjoint paths, Networks, 14 (1984), pp. 325-336.
[16] H. Suzuki, A. Ishiguro, and T. Nishizeki, Edge-disjoint paths in a region bounded by nested rectangles, Technical Report AL85-28, Institute of Electrical and Communication Engineers of Japan, 1985, pp. 13-22 (in Japanese).
[17] H. Suzuki, T. Nishizeki, and N. Saito, Multicommodity flows in planar undirected graphs and shortest paths, Proc. 17th Annual ACM Symp. on Theory of Computing, 1985, pp. 195-204.
[18] H. Suzuki, T. Nishizeki, and N. Saito, A variable priority queue and its applications, Technical Report CAS86-131, Institute of Electrical and Communication Engineers of Japan, 1986, pp. 23-33.
[19] É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Report 84360-OR, Institut Ökonometrie und Operations Research, Rheinishe Friedrich-Wilhelms Universität, Bonn.
[20] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

[^0]: ${ }^{1}$ Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980 , Japan.

