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1. Introduction

Starting with single summation over hypergeometric terms developed, e.g., in Gosper
(1978); Zeilberger (1990a); Petkovšek (1992); Abramov and Petkovšek (1994); Paule (1995)
symbolic summation has been intensively enhanced to multi-summation like, e.g., the
holonomic approach of Zeilberger (1990b); Chyzak (2000); Schneider (2005a); Koutschan
(2009). In this article we use –among various different approaches– the techniques of Fasenmyer
(1945); Wilf and Zeilberger (1992) which lead to efficient algorithms developed, e.g.,
in Wegschaider (1997) to compute recurrence relations for hypergeometric multi-sums.
Besides this, we rely on multi-summation algorithms presented in Schneider (2007) that
generalize the summation techniques worked out in Petkovšek et al. (1996); the under-
lying algorithms are based on a refined difference field theory elaborated in Schneider
(2008, 2011) that is adapted from Karr’s ΠΣ-fields originally introduced in Karr (1981).

In this article we aim at combining these summation approaches which leads to a new
framework assisting in the task to evaluate Feynman integrals in an automatic fashion.
We show in a first step that Feynman parameter integrals, which contain local operator
insertions, in D-dimensional Minkowski space with one time- and (D−1) Euclidean space
dimensions, ε = D− 4 and ε ∈ R with |ε| ≪ 1, can be transformed by means of symbolic
computation to hypergeometric multi-sums.

Given these integrals in form of hypergeometric multisums S(ε,N), with N an integer
parameter, one can check by analytic arguments wether the integrals can be expanded in
a Laurent series w.r.t. the parameter ε, and we seek for summation algorithms to compute
the first coefficients of its Laurent series expansion whenever they are representable in
terms of indefinite nested sums and products. If we obtain such solutions, they usually
can be transformed –due the special input class of Feynman integrals– to harmonic
sums or S-sums; see Blümlein and Kurth (1999); Vermaseren (1999); Moch et al. (2002);
Ablinger (2009).

In general, we present an algorithm (see Theorem 3) that decides constructively, if
these first coefficients of the ε–expansion can be written in such indefinite nested product-
sum expressions. Here one first computes a homogeneous recurrence by WZ-theory and
Wegschaider’s approach, and afterwards derives the coefficients (see Corollary 1) by
ansatz and solving incrementally linear recurrences by the algorithms given in Petkovšek
(1992); Abramov and Petkovšek (1994); Schneider (2001, 2005b). The found solutions
are highly nested by construction, and finding sum representations with minimal depth
using the algorithms from Schneider (2011) is an essential subproblem in our recurrence
solver.

From the practical point of view there is one crucial drawback of the proposed solution:
looking for such recurrences is extremely expensive, even worse, for our examples arising
form particle physics the proposed algorithm is not applicable considering the available
computer and time resources. On that score we relax this very restrictive requirement
and search for possibly inhomogeneous recurrence relations. By a careful analysis of the
involved input sums and dealing with the problem that the summand has poles almost
everywhere outside of the summation range, we can compute with Wegschaider’s package
MultiSum.m and the new package FSums.m presented in Stan (2010) a recurrence where
the inhomogeneous side consists of multi-sums with less sum quantifiers. Applying our
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method to these simpler sums by recursion will eventually lead to an expansion of the
right hand side of the starting recurrence. Finally, we compute the coefficients of the
original input sum by our new recurrence solver mentioned above.

The outline of the article is as follows. In Section 2 we explain all computation steps
that lead from Feynman integrals to hypergeometric multi-sums of the form (13) which
can be expanded in a Laurent expansion (17) where the coefficients Fi(N) can be rep-
resented in the form (18). In the beginning of Section 3 we face the problem that the
multi-sums (13) have to be split further in the form (19) to fit the input class of our
summation algorithms. We first discuss convergent sums only. The treatment of those
sums which diverge in this special format or sums with several infinite summations that
have difficult convergence properties will be dealt with later, cf. Remark 5. In the re-
maining parts of Section 3 we present the general mechanisms to compute the first
coefficients Fi(N) for a given hypergeometric multi-sum. In Section 4 we enhance the
ideas of Wegschaider (1997) in order to deal with infinite sums and sums with non-trivial
boundary conditions in an automatic fashion. Finally, in Section 5 we combine the ideas
of the previous sections to obtain a method that is capable to compute the coefficients
Fi(N) in reasonable time. Conclusions are given in Section 6.

2. Multiple sum representations of Feynman integrals

We consider two–point Feynman integrals in D-dimensional Minkowski space with one
time- and (D− 1) Euclidean space dimensions, ε = D− 4 and ε ∈ R with |ε| ≪ 1 of the
following structure 1 :

I(ε,N, p) =

∫
dDp1
(2π)D

. . .

∫
dDpk
(2π)D

N (p1, . . . pk; p;m1 . . .mk; ∆, N)

(−p21 +m2
1)

l1 . . . (−p2k +m2
k)

lk

∏

V

δV . (1)

Here the external momentum p and the loop momenta pi denote D-dimensional vectors,
mi > 0,mi ∈ R are scalars (masses), mi ∈ {0,M}, k, li ∈ N, k ≥ 2, li ≥ 1, and ∆
is a light-like D-vector, ∆.∆ = 0. The numerator function N is a polynomial in the
scalar products p.pi, pi.pk and of monomials (∆.p(i))

ni , ni ∈ N, ni ≥ 0. N ∈ N denotes
the spin of a local operator stemming from the light cone expansion, see, e.g., Frishman
(1971) and references therein, which contributes to the numerator function N with a
polynomial in ∆.pi of maximal degree N , cf. Bierenbaum et al. (2009b). Furthermore
we assume for simplicity that only one of the loops is formed of massive lines. These
integrals are mathematically well defined, while they would not in natural space-time
dimensions, where they usually exhibit singularities. The change of the space dimension
from 3 → 3 + ε is a minimal modification, in accordance with the conservation laws,
cf. Noether (1918). The integrals are evaluated setting p2 = 0, the on-shell condition for
external massless lines. The distributions δV assure D-momentum conservation at any
of the (P − L+ 1) vertices of the Feynman graph, where P is the number of propagator
lines (edges) and L the number of closed loops. Denoting the momenta which belong to
the vertex V and are all incoming as r1, ..., ra, δV is given by

1 We only display the essential parameters as arguments in the integrals I.
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δV = δ(D)(r1 + ...+ ra) , (2)

with δ(D) Dirac’s δ-distribution in D dimensions.
In the following we device an algorithm to transform I into nested sum representations.

All the following steps can be executed efficiently in a standard computer algebra system,
like, e.g., Maple, Mathematica or Form.

Step 1: Performing all momentum integrals

The distributions δV imply momentum correlations and can be integrated out trivially
changing the momentum structure of the denominator functions Di = (−p2i + m2

i ).
To be able to perform the remaining D–momentum integrals analytically one has to
form quadratic forms in the momenta pi, which are successively integrable. A necessary
step consists in performing the Wick-rotation of the one dimensional energy components
p0k → ip0k to obtain D-dimensional Euclidean integrals. Next, the n denominator factors
Dlc

c , which contain the momentum pi, are combined introducing Feynman parameters
via

1
∏n

c=1 D
lc
c

=
Γ(
∑n

k=1 lk)
∏n

k=1 Γ(lk)

∫ 1

0

dx1 . . .

∫ 1

0

dxnδ

(
n∑

k=1

xk − 1

) ∏n
k=1 x

lk−1
k

(x1D1 + . . . xnDn)
∑

n

k=1
lk

.

(3)
Here Γ(z) denotes the Euler Gamma-function. The momentum integral for pi can now be
carried out and the procedure is repeated until all momentum integrals are performed.
As a result one is left with the Feynman parameter integrals over xi ∈ [0, 1].

Step 2: From Feynman parameter integrals to Mellin–Barnes integrals and multinomial series.

Parts of these scalar integrals again can be performed trivially related to the δ-distributions
δ (
∑n

k=1 xk − 1),

∫ 1

0

dxlδ

(
n∑

k=1

xk − 1

)

= θ



1−
n∑

k=1,k 6=l

xk





n∏

m=1,m 6=l

θ(xm), (4)

θ(z) =







1, z ≥ 0

0, z < 0.
(5)

There may be more integrals, which can be computed, usually as indefinite integrals,
without special effort.

Mapping all Feynman-parameter integrals onto the m-dimensional unit cube one ob-
tains the following structure :

I(ε,N) = C(ε,N,M)

∫ 1

0

dy1 . . .

∫ 1

0

dym

∑k
i=1

∏ri
l=1[Pi,l(y)]

αi,l(ε,N)

[Q(y)]β(ε)
, (6)

with k ∈ N, r1, . . . , rk ∈ N and where β(ε) is given by a rational function in ε, i.e.,
β(ε) ∈ R(ε), and similarly αi,l(ε,N) = ni,lN + αi,l for some ni,l ∈ {0, 1} and αi,l ∈
R(ε), see also Bogner and Weinzierl (2010) in the case no local operator insertions are
present. C(ε,N,M) is a factor, which depends on the dimensional parameter ε, the integer
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parameter N and the mass M . Pi(y), Q(y) are polynomials in the remaining Feynman

parameters y = (y1, . . . , ym) written in multi-index notation. In (6) all terms which

stem from local operator insertions were geometrically resummed; see Bierenbaum et al.

(2009b).

Remark. (1) After splitting the integral (6) (in particular, the k summands), the resulting

integrals fit into the input class of the multivariate Almkvist-Zeilberger algorithm, see

Apagodu and Zeilberger (2006). Hence, if the splitted integrals are properly defined, the

integrals obey homogeneous recurrence relations 2 in N due to the existence theorems

in Apagodu and Zeilberger (2006). However, so far we failed to compute these recur-

rences due to time and space resources.

Remark. (2) Usually the calculation of I(ε,N) for fixed integer values of N is a simpler

task. If a large enough number of these values is known, one may guess these recur-

rences and with this input derive closed forms for I(ε,N) using the techniques applied

in Blümlein et al. (2009). This has been illustrated for a large class of 3-loop quantities.

However, at present no method is known to calculate the amount of moments needed.

To compute the integrals (6) over the variables y1, . . . , ym we proceed as follows :

• decompose the denominator function using Mellin–Barnes integrals, see Paris and Kaminski

(2001) and references therein,

• decompose the numerator functions, if needed, into multinomial series.

The yi-integrals finally turn into Euler integrals. Here we line out a general framework,

despite in practice, different algorithms are used in specific cases, cf. e.g. Ablinger et al.

(2010a,b).

The denominator function is of the structure

[Q(y)]β(ε) =

[
n∑

k=1

qk(y)

]β(ε)

, (7)

with qk(y) = a1 . . . am where ai ∈ {1, yi, 1 − yi} for 1 ≤ i ≤ m. This function can be

decomposed applying its Mellin-Barnes integral representation (n− 1) times,

1

(A+B)q
=

1

2πi

∫ γ+i∞

γ−i∞

dσ Aσ B−q−σ Γ(−σ)Γ(q + σ)

Γ(q)
. (8)

Here γ denotes the real part of the contour. Often Eq. (8) has to be considered in the

sense of its analytic continuation, see Whittaker and Watson (1996).

The numerator factors [Pi,l(y)]
αi,l(ε,N) obey

[Pi,l(y)]
αi,l(ε,N) =

[
w∑

k=1

pk(y)

]αi,l(ε,N)

, (9)

2 Recursions of this type may be established and solved by various methods in specific cases, cf.
Bierenbaum et al. (2007b).
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where the monomials pk(y) have the same properties as qk(y). One expands

[Pi,l(y)]
αi,l(ε,N) =

∑

k1,...,kw−1≥0

(
αi,l(ε,N)

k1, . . . , kw−1

)w−1∏

l=1

pl(y)
klpw(y)

αi,l(ε,N)−
∑

w−1

r=1
kr . (10)

Now all integrals over the variables yj can be performed. They are of the type

∫ 1

0

dyyα−1(1− y)β−1 = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (11)

One obtains

I(ε,N) =
1

(2πi)n

∫ γ1+i∞

γ1−i∞

dσ1 . . .

∫ γn+i∞

γn−i∞

dσn

L(N)
∑

k1=1

...

L(N,k1,...,kv−1)∑

kv=1

l∑

k=1

Ck(ε,N,M)
Γ(z1,k) . . .Γ(zu,k)

Γ(zu+1,k) . . .Γ(zv,k)
.

(12)

Here l ∈ N and the summation over ki comes from the multinomial sums, i.e., the upper
bounds L(N), . . . , L(N, k1, . . . , kv−1) are integer linear in the depending parameters or
∞. Moreover, the zu,k are linear functions with rational coefficients in terms of the
Mellin-Barnes integration variables σ1, . . . , σn, the summation variables k1, . . . , kv, and
ε.

Step 3: Representation in multi–sums:

The Mellin-Barnes integrals are carried out applying the residue theorem in Eq. (12).
The following representation is obtained :

I(ε,N) =

∞∑

n1=1

...

∞∑

nr=1

L(N)
∑

k1=1

...

L(N,k1,...,kv−1)∑

kv=1

l∑

k=1

Ck(ε,N,M)
Γ(t1,k) . . .Γ(tv′,k)

Γ(tv′+1,k) . . .Γ(zw′,k)
. (13)

Here the tl,k are linear functions with rational coefficients in terms of the n1, . . . , nr,
of the k1, . . . , kv, and of ε. Note that the residue theorem may imply more than one
infinite sum per Mellin-Barnes integral, i.e., r ≥ n. In general, this approach leads to a
highly nested multi-sum. Fixing the loop order of the Feynman integrals and restricting
to certain special situations usually enables one to find sum representations with less
summation quantifiers. E.g., as worked out in Bierenbaum et al. (2008), one can identify
the underlying sums in terms of generalized hypergeometric functions, i.e., can reduce
the number of infinite sums to one or in some cases to zero.

Step 4: Laurent series in ε:

Eq. (13) can now be expanded in the dimensional parameter ε using

Γ(n+ 1 + ε) =
Γ(n)Γ(1 + ε)

B(n, 1 + ε)
(14)

and

B(n, 1 + ε) =
1

n
exp

(
∞∑

k=1

(−ε)k

k
Sk(n)

)

=
1

n

∞∑

k=0

(−ε)kS1, . . . ,1
︸ ︷︷ ︸

k

(n) (15)
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and other well-known transformations for the Γ-functions. The harmonic sums S~a(n)

Blümlein and Kurth (1999); Vermaseren (1999) are recursively defined by

Sb,~a(N) =

N∑

k=1

(sign(b))k

k|b|
S~a(k), S∅ = 1 . (16)

In (14) n stands for a linear combination of summation quantifiers with coefficients in

Q. In case of non-integer weight factors ri for n analytic continuations of harmonic sums

have to be considered Blümlein (2000, 2009, 2011); Blümlein and Moch (2005).

Remark 1. In order to guarantee correctness of this construction, i.e., performing the

expansion first on the summand level of (13) and afterwards applying the summation on

the coefficients of the summand expansion (i.e., exchanging the differential operator Dε

and the summation quantifiers) analytic arguments have to be considered. For all our

computations this construction was possible.

Usually I(ε,N) has the form

I(ε,N) =

∞∑

l=−L

εlIl(N) , (17)

with L ≥ 0 the loop order in case of infra-red finite integrals. Otherwise, L may be

larger. For physical reasons the contributions to different powers in ε have to be treated

separately.

The general expression of the functions Il(N) in terms of nested sums are

Il(N) =
∞∑

n1=1

...
∞∑

nr=1

L(N)
∑

k1=1

...

L(N,k1,...,kv−1)∑

kv=1

s∑

j=1

×Hj(N ;n1, ..., nr; , k1, ..., kv)
∏

i

S~ai,j
(Li,j(N ;n1, ..., nr; , k1, ..., kv)) , (18)

whereHj(N ;n1, ..., kv) denote proper hypergeometric terms 3 and S~ai,j
(Li,j(N ;n1, ..., kv))

are harmonic sums to the index set ~ai,j and Li,j (usually linear) functions of the argu-

ments (N ;n1, ..., kv). The sum-structure in (18) is usually obtained performing the syn-

chronization of arguments, see Vermaseren (1999), and applying the associated quasi–

shuffle algebra, see Blümlein (2004). Due to the infinite sums, frequently the limit of

summation parameters k to infinity has to be performed for intermediary sums which

results into Euler-Zagier or multiple zeta values, respectively, see Blümlein et al. (2010)

and references therein. In more involved cases, e.g. for various different masses, also other

special constants appear, see Broadhurst (1999) and references therein.

3 For a precise definition of proper hypergeometric terms we refer, e.g., to Wegschaider (1997). For all
our applications it suffices to know that Hj might be a product of Gamma-functions (occurring in the
numerator and denominator) with linear dependence on the variables N, ni, ki times a rational function
in these variables where the denominator factors linearly.
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3. A first approach for the problem

In the following we limit the investigation to a sub-class of integrals of the type (1) and
consider two- and simpler three-loop diagrams, which occurred in the calculation of the
massive Wilson coefficients for deep-inelastic scattering in Ref. Ablinger et al. (2010b);
Blümlein et al. (2006); Bierenbaum et al. (2007a, 2009a, 2008).

Looking at the reduction steps of the previous section we obtain the following result.
If we succeed in finding the representation (17) with (18) it follows constructively that
for each N ∈ N with N ≥ λ for some λ ∈ N the integral I(ε,N) has a Laurent expansion
in ε and thus it is an analytic function in ε throughout an annular region centered by 0
where the pole at ε = 0 has order L. In Bierenbaum et al. (2008); Ablinger et al. (2010b)
we started with the sum representation of the coefficients (18) and the main task was to
simplify the expressions in terms of harmonic sums.

In this article, we follow a new approach that directly attacks the sum representa-
tion (13) and searches for the first coefficients of its ε-expansion (17). By splitting the
sum (13) accordingly (and pulling out constants such as Ck(ε,N,m)) our integral can be
written as a linear combination of hypergeometric multi-sums of the following form.

Assumption 1.

S(ε,N) =

∞∑

σ1=p1

· · ·
∞∑

σs=ps

N+c∑

j0=q0

B1∑

j1=q1

· · ·
Br∑

jr=qr

F (N, σ, j, ε) (19)

where
(1) N ≥ λ is a discrete variable, ε > 0 is a real parameter and λ ∈ N, c ∈ Z;
(2) the upper summation bounds Bi := γiN + (j0, j1, . . . , ji−1) · ηi + νi depend on the

given constants γi, νi ∈ Z and ηi ∈ Zi for all 1 ≤ i ≤ r;
(3) the lower summation bounds are given constants pi, ql ∈ N for all 1 ≤ i ≤ s and

0 ≤ l ≤ r, respectively;
(4) F is a proper hypergeometric term (see Footnote 3) with respect to the integer

variable N and all summation variables from (σ, j) ∈ Zs+r+1.

Remark 2. While splitting the sum (13) into sums of the form (19) it might happen
that the infinite sums over individual monomials diverge for fixed values of ε, despite the
complete expression converges, i.e., one obtains a representation of the form (17) in an
asymptotic expansion for large upper bounds of the summation variables σ1, . . . , σs. We
will deal with these cases in Section 5 and consider only those sums which are convergent
at the moment.

In other words, we assume that (19) itself is analytic in ε throughout an annular region
centered by 0 and we try to find the first coefficients Ft(N), Ft+1(N), . . . , Fu(N) in terms
of indefinite nested product-sum expressions of its expansion

S(ε,N) = Ft(N) + Ft+1(N)ε+ Ft+2(N)ε2 + . . . . (20)

with t ∈ Z. In all our computations it turns out that the summand F (N, σ, j, ε) satisfies
besides properties (1)–(4) the following asymptotic behavior:

(5) for all 1 ≤ i ≤ s we have

F (N, σ, j, ε) = O
(

σ−di

i e−ciσi

)

as σi → ∞ with ci ≥ 0, di > 0. (21)
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For later considerations in Section 4 we suppose that such constants ci and di are given ex-
plicitly. E.g., using the behaviour (Whittaker and Watson, 1996, Section 13.6) of log Γ(z)
for large |z| in the region where |arg(z)| < π and |arg(z + a)| < π:

log Γ(z + a) = (z + a−
1

2
) log z − z +O(1), (22)

such constants can be easily computed. If not all ci > 0 for 1 ≤ i ≤ s, things get more
complicated and –for simplicity– we restrict ourself to the case that s = 1 and c1 = 0;
we refer again to Section 5 for further details how one can treat the more general case.

(6) If s = 1 and c1 = 0, we suppose that we are given a constant e ∈ N such that

S(ε,N) =

∞∑

σ1=p1

σe
1F (N, σ, j, ε) (23)

converges absolutely for any small nonzero ε around 0, N ≥ B and any j that runs
over the summation range.

Using, e.g., hypergeometric function results from (Andrews et al., 1999, Thm. 2.1.1) such
a maximal constant e can be determined.

The following sum is a typical entry from the list of sum representations for a class of
Feynman parameter integrals we computed:

U (ε,N) := (−1)N
∞∑

σ1=0

N−3∑

j0=0

N−j0−3
∑

j1=0

j0+1
∑

j2=0

(
j0 + 1

j2

)(
N − j0 − 3

j1

)

(24)

×

(
ε
2 + 1

)

σ1
(−ε)σ1

(j1 + j2 + 3)σ1

(
3− ε

2

)

j1

(j1 + 4)σ1

(
− ε

2 + j1 + j2 + 4
)

σ1

(
4− ε

2

)

j1+j2

×
Γ(j1 + j2 + 2)Γ(j1 + j2 + 3)Γ(N − j0 − 1)Γ(N − j1 − j2 − 1)

Γ(σ1 + 1)Γ(j1 + 4)Γ(N − j0 − 2)
;

here (x)k = x(x + 1) . . . (x + k − 1) denotes the Pochhammer symbol defined for non-
negative integers k. Then using formulas such as (x)k = Γ(x + k)/Γ(x) and

(
x
k

)
=

Γ(x+1)/Γ(x−k+1)/Γ(k+1) and applying (22) we get the asymptotic behavior O(σ−5
1 )

of the summand. Moreover, we choose the maximal e = 3 such that condition (23) is
satisfied.

Restricting the O-notation to formal Laurent series f =
∑∞

i=r fiε
i and g =

∑∞
i=s giε

i

the notation
f = g +O(εt)

for some t ∈ Z means that the order of f − g is larger or equal to t, i.e., f − g =
∑∞

i=t hiε
i. Subsequently, K denotes a field with Q ⊆ K in which the usual operations can

be computed.

3.1. Single nested sums

First, we look for single nested sums over proper hypergeometric terms, such as

S(ε,N) =

N−1∑

k=0

(−2)k(k + 2)Γ(4− ε)Γ
(
ε
2 + 3

)
Γ(N)Γ

(
− ε

2 + k + 2
)

Γ
(
2− ε

2

)
Γ(−ε+ k + 4)Γ

(
ε
2 + k + 3

)
Γ(N − k)

?
= F0(N) + F1(N)ε+ F2(N)ε2 +O(ε3);

(25)
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note that the existence of the coefficients follows by arguments given in Remark 1. In
order to obtain the coefficients Fi, we compute in a first step a recurrence relation.
This task can be accomplished for instance by the packages Paule and Schorn (1995),
Wegschaider (1997) or Schneider (2007) which are based on the creative telescoping
paradigm presented in Zeilberger (1990a) or the paradigm presented in Fasenmyer (1945).
In our example it turns out that S(ε,N) satisfies for all N ≥ 1 the recurrence

a0(ε,N)S(ε,N) + a1(ε,N)S(ε,N + 1) + a2(ε,N)S(ε,N + 2)

= −24N − 48 + (2N − 20)ε+ (2N + 6)ε2 + 2ε3 (26)

with

a0(ε,N) = 2N(N + 1)(ε+ 2N + 5),

a1(ε,N) = (N + 1)
(
ε2 + 2εN + 5ε+ 4N + 12

)
,

a2(ε,N) = (ε−N − 4)(ε+ 2N + 3)(ε+ 2N + 6).

(27)

Then together with the first two initial values N = 1, 2,

S(ε, 1) = 2 and S(ε, 2) = 2 +
6

ε+ 6
= 1 +

1

6
ε−

1

36
ε2 +O(ε3), (28)

we use the following algorithm to compute, e.g., the first three coefficients of the series
expansion (25).
Namely, by setting ε = 0 in (26), it follows that the constant term F0(N) satisfies the
recurrence

a0(0, N)F0(N) + a1(0, N)F0(N + 1) + a2(0, N)F0(N + 2) = −24N − 48. (29)

At this point we exploit algorithms from Petkovšek (1992); Abramov and Petkovšek
(1994); Schneider (2001, 2005b) which can constructively decide if a solution with certain
initial values is expressible in terms of indefinite nested products and sums 4 . To be more
precise, with the algorithms implemented in the summation package Sigma one can solve
the following problem.

Problem RS: Recurrence Solver for indefinite nested product-sum expressions.
Given a0(N), . . . , ad(N) ∈ K[N ]; given µ ∈ N such that ad(k) 6= 0 for all k ∈ N with
N ≥ µ; given an expression h(N) in terms of indefinite nested product-sum expressions
which can be evaluated for all N ∈ N with N ≥ µ; given the initial values (cµ, . . . , cµ+d−1)
which produces the sequence (ci)i≥µ ∈ KN by the defining recurrence relation

a0(N)cN + a1(N)cN+1 + · · ·+ ad(N)cN+d = h(N) ∀N ≥ µ.

Find, if possible, λ ∈ N with λ ≥ µ and an indefinite nested product-sum expression
g(N) such that g(k) = ck for all k ≥ λ.

Remark. Later, we will give further details only for a special case that occurred in almost
all instances of our computations related to Feynman integrals; see Theorem 2.

4 This means in particular indefinite nested sums over hypergeometric terms (like binomials, factorials,
Pochhammer symbols) that may occur as polynomial expressions with the additional constraint that

the summation index ij of a sum
∑ij+1

ij=1
f(ij ) may occur only as the upper index of its inner sums and

products, but not inside of the inner sums itself; for a formal but lengthy definition see Schneider (2011).
Typical examples are sums of the form (16), (39), or (40).
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In our concrete example, Sigma finds that for all N ≥ 1 we have

F0(N) =
3
(
2N2 + 4N + 1

)

2N(N + 1)(N + 2)
−

3(−1)N

2N(N + 1)(N + 2)
. (30)

Remark. The correctness follows from the following fact: The expression given in (30) is
a solution of (29) for all N ≥ 1 and has the same initial values as F0(N) for N = 1, 2.

Now, plugging in the partial solution

S(ε,N) =
3
(
2N2 + 4N + 1

)

2N(N + 1)(N + 2)
−

3(−1)N

2N(N + 1)(N + 2)
+ F1(N)ε+ . . .

into (26) gives

a0(ε,N)(F1(N)ε+ . . . ) + a1(ε,N)(F1(N + 1)ε+ . . . )

+ a2(ε,N)(F1(N + 2)ε+ . . . ) = h(N)ε+O(ε2)

with h(N) = −10N4−98N3−344N2−511N−267
(N+2)(N+3)(N+4) − 3(−1)N (3N+7)

(N+2)(N+3)(N+4) . As a consequence, by

coefficient comparison F1(N) is uniquely determined by

a0(0, N)F1(N) + a1(0, N)F1(N + 1) + a2(0, N)F1(N + 2) = h(N)

and the initial values given in (28). Solving the recurrence with these initial values, i.e.,
solving the corresponding problem RS, leads for all N ≥ 1 to the sum representation

F1(N) =
10N3 + 52N2 + 63N + 10

8N(N + 1)(N + 2)2
−

3S1(N)

2N (N + 2)
+

3S−1(N)

2N(N + 2)
+

(−1)N (N − 10)

8N(N + 1)(N + 2)2
;

(31)
recall the definition (16). Repeating this procedure, one gets the quadratic term

F2(N) =
(

3
4N(N+2) −

3(−1)N

4N(N+1)(N+2)

)
S1,−1(N) +

(
N3−14N2−43N−34
8N(N+1)2(N+2)2

+ 3(−1)NS−1(N)
4N(N+1)(N+2)

)
S1(N) +

(
−N3+14N2+43N+34

)
S−1(N)

8N(N+1)2(N+2)2 + 3(−1)NS−2(N)
4N(N+1)(N+2)

+ 3N6+41N5+206N4+478N3+541N2+267N+30
8N(N+1)3(N+2)3 − 3S1(N)2

8N(N+2) −
3(−1)NS−1(N)2

8N(N+1)(N+2)

+
(

−3
8N(N+2) −

3(−1)N

8N(N+1)(N+2)

)
S2(N) +

(−1)N
(
7N4+37N3+47N2−7N−30

)

8N(N+1)3(N+2)3

(32)

of the series expansion (25).

3.2. A recurrence solver for ε-expansions

Looking at the construction above (not necessarily assuming that the sequences can
be represented in terms of indefinite nested product-sum expressions), we can extract
the following consequences.

Lemma 1. Let µ ∈ N, and let a0(ε,N), . . . , ad(ε,N) ∈ K[ε,N ] such that ad(0, k) 6= 0
for all k ∈ N with k ≥ µ. Let ht, . . . , hu : N → K (t, u ∈ Z with t ≤ u) be functions,
and let ci,k ∈ K with t ≤ i ≤ u and µ ≤ k < µ + d. Then there are unique functions
Ft, . . . , Fu : N → K (up to the first µ evaluation points) such that Fi(k) = ci,k for all
t ≤ i ≤ u and µ ≤ k < d+ µ and such that for T (ε,N) =

∑u
i=t Fi(N)εi we have

a0(ε,N)T (ε,N) + · · ·+ ad(ε,N)T (ε,N + d) = h0(N) + . . . ,+hu(N)εu +O(εu+1) (33)
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for all N ≥ µ. If the hi(N) are computable, the values of the Fi(N) with N ≥ µ can be
computed by recurrence relations.

Proof. Plugging in the ansatz T (ε,N) =
∑u

i=t Fi(N)εi into (33) and doing coefficient
comparison w.r.t. εt yields the constraint

a0(0, N)Ft(N) + · · ·+ ad(0, N)Ft(N + d) = ht(N). (34)

Since ad(0, N) is non-zero for any integer evaluation N ≥ µ, the function F0 : N → K is
uniquely determined with the initial values Ft(µ) = ct,µ, . . . , Ft(µ+d−1) = ct,µ+d−1 – up
to the first µ evaluation points; in particular the values Ft(k) for k ≥ µ can be computed
by the recurrence relation (34). Moving the Ft(N)εt in (33) to the right hand side gives

a0(ε,N)
∑u

i=t+1 Fi(N)εi+· · ·+ad(ε,N)
∑u

i=t+1 Fi(N+d)εi = −
[

a0(ε,N)ht(N)εt+· · ·+

ad(ε,N)ht(N + d)εt
]

+
∑u

i=t hi(N)εi; denote the coefficient of εi on the right side by h̃i.

Since the coefficient of εt on the left side is 0, it is also 0 on the right side and we can
write

a0(ε,N)
u∑

i=t+1

Fi(N)εi + · · ·+ ad(ε,N)
u∑

i=t+1

Fi+1(N + d)εi =
u∑

i=t+1

h̃i(N)εi +O(εu+1)

for all N ∈ N with N ≥ µ. Repeating this process proves the lemma. 2

Moreover, using in addition the algorithms for problem RS we obtain the following
constructive version.

Algorithm FLSR (Formal Laurent Series solutions of linear Recurrences)
Input: µ ∈ N; a0(ε,N), . . . , ad(ε,N) ∈ K[ε,N ] such that ad(0, k) 6= 0 for all k ∈ N with k ≥ µ;
indefinite nested product-sum expressions ht(N), . . . , hu(N) (t, u ∈ Z with t ≤ u) which can be
evaluated for all N ∈ N with N ≥ µ; ci,j ∈ K with t ≤ i ≤ u and µ ≤ j < µ+ d
Output (r, λ, T̃ (N)): The maximal number r ∈ {t − 1, 0, . . . , u} such that for the unique so-
lution T (N) =

∑u

i=t
Fi(N)εi with Fi(k) = ci,k for all µ ≤ k < µ + d and with the rela-

tion (33) the following holds: there are indefinite nested product-sum expressions that compute
the Ft(N), . . . , Fr(N) for all N ≥ λ for some λ ≥ µ; if r ≥ 0, return such an expression T̃ (N)
for T (N) together with λ.
(1) (Preprocessing) By Lemma 1 we can compute as many initial values ci,k := Fi(k) for

k ≥ µ as needed for the steps given below (at most λ− µ extra values are needed).
(2) Set r := t, λ := µ, and T̃ (N) := 0.
(3) Note that the sequence (Fr(N))N≥µ is defined by the initial values Fi(N) for λ ≤ N < d+λ

and its defining relation

a0(0, N)Fr(N) + · · ·+ ad(0, N)Fr(N + d) = hr(N) (35)

for all N ∈ N with N ≥ λ; see the proofs of Lemma 1 or Theorem 1. By solving problem RS

decide constructively if there is a λ′ ≥ λ such that Fr(N) can be computed in terms of
an indefinite nested product-sum expression F̃r(N) for all N ∈ N with N ≥ λ′.

(4) If this fails, RETURN (r − 1, λ, T̃ (N)). Otherwise, set T̃ (N) := T̃ (N) + F̃r(N)εr.
(5) If r = u, RETURN (r, λ, T̃ (N)).
(6) Collect the coefficients (product-sum expressions) w.r.t. εi for all i (r + 1 ≤ i ≤ u):

h′
i(N) := coeff(−

[

a0(ε,N)Fr(N) + · · ·+ ad(ε,N)Fr(N + d)
]

+

u
∑

i=r+1

hi(N)εi, εi).

(7) Set hi := h′
i for all r + 1 ≤ i ≤ u, set r := r + 1 and GOTO Step 2.
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Theorem 1. The algorithm terminates and fulfills the input–output specification.

Proof. We show that entering the rth loop (r ≥ t) we have for all N ≥ λ that

a0(ε,N)

u∑

i=r

Fi(N)εi + · · ·+ ad(ε,N)

u∑

i=r

Fi(N + d)εi =

u∑

i=r

hi(N)εi +O(εu+1) (36)

where the hr(N), . . . , hu(N) are given explicitly in terms of indefinite nested product-sum

expressions. Moreover, we show that the found expression T̃ (N) =
∑r−1

i=t F̃i(N)εi com-

putes the values
∑r−1

i=t Fi(N)εi for each N ≥ λ. For r = t this holds by assumption. Now
suppose that these properties hold when entering the rth loop (r ≥ t). Then coefficient
comparison in (36) w.r.t. εr yields the constraint (35) for all N ≥ λ as claimed in Step 3
of the algorithm. Solving problem RS decides constructively if there is a λ′ ≥ 0 such
that Fr(N) can be computed by an expression in terms of indefinite nested product-sum
expressions, say F̃r(N), for all N with N ≥ λ′. If this fails, Fr(N) cannot be represented

with such an expression and the output (r − 1, λ, T̃ (N)) with T̃ (N) =
∑r−1

i=t F̃i(N) is

correct. Otherwise, the indefinite nested product-sum expressions F̃i(N) for t ≤ i ≤ r
compute the values Fi(N) for all N ∈ N with N ≥ λ′. Now move the term Fr(N)εr

in (36) to the right hand side and replace it with F̃r(N)εr. This gives

a0(ε,N)
u∑

i=r+1

Fi(N)εi + · · ·+ ad(ε,N)
u∑

i=r+1

Fi(N + d)εi = −
d∑

i=0

ai(ε,N)F̃r(N + i)

+

u∑

i=r

hi(N)εi +O(εu+1) =: h̃r+1(N)εr+1 + · · ·+ h̃u(N)εu +O(εu+1)

for all N ≥ λ′ where h̃r+1(N), . . . , h̃u(N) are given in terms of indefinite nested product-
sum expressions that can be evaluated for all N ∈ N with N ≥ λ′. By redefining the
hi(N) as in Step 7 of the algorithm we obtain the relation (36) for the case r + 1. 2

Note that Algorithm FLSR has been implemented within the summation package Sigma.
E.g., the expansion for the sum (25) with s = 0, t = 2 and start = 1 is computed by

GenerateExpansion[a0(ε,N)S[N ] + a1(ε,N)S[N + 1] + a2(ε,N)S[N + 2],

{−24N − 48, 2N − 20, 2N + 6, 2}, S[N ], {ε, s, t},

{start, {{2, 1, 4/5}, {0, 1/6, 19/150}, {0,−1/36,−119/18000}}}];

here the ai(ε,N) stand for the polynomials (27), {−24N−48, 2N−20, 2N+6, 2} is the list
of the first coefficients on the right hand side of (26), and start tells the procedure that
the list of initial values {{2, 1, 4/5}, {0, 1/6, 19/150}, {0,−1/36,−119/18000}} from (28)
starts with N = 1, 2, 3.

The following application is immediate.

Corollary 1. For each nonnegativeN , let S(ε,N) be a an analytic function in ε through-
out an annular region centered by 0 with the Laurent expansion S(ε,N) =

∑∞
i=t fi(N)εi

for some t ∈ Z, and suppose that S(ε,N) satisfies the recurrence (33) with coefficients and
inhomogeneous part as stated in Algorithm FLSR for some µ ∈ N; define ci,k := Fi(k) for
t ≤ i ≤ u and µ ≤ k < µ+ d. Let (r, λ,

∑r
i=t Fi(N)εi) be the output of Algorithm FLSR.

Then fi(k) = Fi(k) for all t ≤ i ≤ r and all k ∈ N with k ≥ λ.
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For further considerations we restrict to the following important special case. Namely,
we observed –to our surprise– in almost all examples arising from Feynman integrals that
the operator

a0(0, N) + a1(0, N)SN + · · ·+ ad(0, N)SN+d

= c(N)(SN − bd(N))(SN − bd−1(N)) . . . (SN − b1(N)) (37)

with the shift operator SN factorizes completely for some b1, . . . , bd, c ∈ K(N); the ra-
tional functions can be computed by Petkovšek’s algorithm Petkovšek (1992). In this
particular instance we can construct immediately the complete solution space of

a0(0, N)F (N) + · · ·+ ad(0, N)F (N + d) = X(N) (38)

for a generic sequence X(N). Namely, choose µi ∈ N such that the numerator and
denominator polynomial of bi(j) have no zeros for all evaluations j ∈ N with j ≥ µi,
and take λ := max1≤i≤d µi + 1. Now define for 1 ≤ i ≤ d the hypergeometric terms

hi(N) =
∏N

j=λ bi(j − 1). Then by Abramov and Petkovšek (1994) one gets the d linearly
independent solutions

H1(N) : = h1(N), H2(N) := h1(N)

N−1∑

i1=λ

h2(i1)

h1(i1 + 1)
, . . . ,

Hd(N) : = h1(N)

N−1∑

i1=λ

h2(i1)

h1(i1 + 1)
· · ·

id−2−1
∑

id−1=λ

hd(id−1)

hd(id−1 + 1)

(39)

of the homogeneous version of (38), and the particular solution

P (N) :=
h1(N)

c(N)

N−1∑

i1=λ

h2(i1)

h1(i1 + 1)
· · ·

id−2−1
∑

id−1=λ

hd(id−1)

hd−1(id−1 + 1)

id−1−1
∑

id=λ

X(id)

hd(id + 1)
(40)

of (38) itself. In other words, the solution space of (38) is explicitly given by

{c1H1(N) + · · ·+ cd Hd(N) + P (N)|c1 . . . , cd ∈ K}; (41)

here the nesting depth (counting the nested sums) of Hi is i− 1 and of P is d.
Given this explicit solution space (41) we end up with the following result.

Theorem 2. Let ht(N), h1(N), . . . with t ∈ Z be functions that are computable in terms
of indefinite nested product-sum expressions where the nesting depth of the summation
quantifiers of hi(N) is di; let a0(ε,N), . . . , ad(ε,N) ∈ K[ε,N ] such that the operator
factors as in (37) for some b1, . . . , bd, c ∈ K(N). If S(ε,N) =

∑∞
i=t Fi(N)εi is a solution

of

a0(ε,N)S(ε,N) + · · ·+ ad(ε,N)S(ε,N + d) = h0(N) + h1(N)ε1 + . . . , (42)

for some functions Fi(N), then the values of Fi(N) can be computed by indefinite nested
product-sum expressions F̃i(N). The depth of the F̃i(N) is ≤ maxt≤j≤i(dj+(i−j+1)d)).

Proof. Choose µ ∈ N with µ ≥ d such that ad(k) 6= 0 for all integers k ≥ µ and such that
the sequences hi(k) can be computed for indefinite nested product-sum expressions for
each k ≥ µ. Consider the rth loop of Algorithm FLSR. Since Fr(N) is a solution of (38)
with X(N) = hr(N) for all N ≥ γ, Fr(N) is a linear combination of (41). Taking the
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first d initial values Fr(µ), . . . , Fr(µ + d − 1) the ci are uniquely determined. Applying
this construction inductively for each r ∈ N proves the theorem. The bound of the depth
is immediate. 2

In particular, if the operator (35) factorizes as stated in (37), the following considerations
of Algorithm FLSR are relevant.

Simplification 1. The factorization (37) needs to be computed only once and the solutions
Fi(N) can be obtained in terms of indefinite nested product-sum expressions by simply
plugging in the results of the previous steps. E.g., for our running example, we get the
generic solution

c1
N(N + 2)

+ c2

N∑

i1=1

−(−1)i1(2i1+1)

i1

(
i1+1

)

2N(N + 2)
−

N∑

i1=1

(−1)i1 (2i1+1)

i1

(
i1+1

)

i1∑

i2=1

(−1)i2 i22X
(
i2−2

)

(
2i2−1

)(
2i2+1

)

2N(N + 2)
(43)

of the recurrence

a0(0, N)F (N) + a1(0, N)F (N + 1) + a2(0, N)F (N + 2) = X(N)

where the coefficients are defined as in (27). In this way, one gets the solution F0(N) in
terms of a double sum by setting c1 = c2 = 0 and X(i2) = −24i2 + 48 in (43), i.e.,

F0(N) =
−1

2N(N + 2)

N∑

i1=1

(−1)i1(1 + 2 i1)

i1(1 + i1)

i1∑

i2=1

−(−1)i224i32
(
− 1 + 2i2

)(
1 + 2i2

) . (44)

One step further, one gets the solution F1(N) in terms of a quadruple sum by setting
c1 = c2 = 0 and plugging in the double sum expression

X(i2) = 2i2 − 20− coeff(a0(ε, i2)F0(i2) + a1(ε, i2)F0(i2 + 1) + a2(ε, i2)F0(i2 + 2), ε)

into (43). Similarly, one obtains a sum expressions of F2(N) with nesting depth 6.

Minimizing the nesting depth. Given such highly nested sum expressions, the summation
package Sigma finds alternative sum representations with minimal nesting depth. The un-
derlying algorithms are based on a refined difference field theory worked out in Schneider
(2008, 2011) that is adapted from Karr’s ΠΣ-fields originally introduced in Karr (1981).
E.g., with this machinery, we simplify the double sum (44) to (30), and we reduce the
quadruple sum expression for F1(N) and the 6–fold sum expression for F2(N) to expres-
sions in terms of single sums (31) and double sums (32).

Simplification 2: The solutions (39) of the homogeneous version of the recurrence (38) can
be pre-simplified to expressions with minimal nesting depth by the algorithms mentioned
above. Moreover, using the algorithmic theory described in Kauers and Schneider (2006)
the algorithms in Schneider (2008) can be carried over to the sum expressions like (40)
involving an unspecified sequence X(id). With this machinery, the generic solution (43)
can be simplified to

c1
N(N + 2)

+
c2(−1)N+1

2N(N + 1)(N + 2)
−

N∑

i1=1

i1X
(
i1−2

)

(
2i1−1

) (
2i1+1

)

2N(N + 2)
−

(−1)N
N∑

i1=1

(−1)i1 i21X
(
i1−2

)

(
2i1−1

)(
2i1+1

)

2N(N + 1) (N + 2)
.
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Performing this extra simplification, the blow up of the nesting depth for the solutions
F0(N), F1(N), F2(N), . . . reduces considerably: instead of nesting depth 2, 4, 6, . . . we get
the nesting depths 1, 2, 3, . . . . In particular, given these representations the simplification
to expressions with optimal nesting depth in Step 2 also speeds up.

For simplicity we restricted ourself to the situation that the ai(ε,N) are polynomials
in ε. However, all arguments can be carried over immediately to the situation that the
ai(ε,N) are formal power series where the first coefficients are given explicitly.
Moreover, our algorithm is applicable for more general sequences ai(N) and hi(N) when-
ever there are algorithms available that solve problem RS. E.g. if the coefficients ai(N)
itself are expressible in terms of indefinite nested product-sum expression, problem RS
can be solved by Abramov et al. (2011), and hence Algorithm FLSR is executable.

3.3. An effective method for multi-sums

For a multisum S(ε,N) with the properties (1)–(6) from Assumption 1 and with the
assumption that it has a series expansion (20) for all N ≥ λ for some λ ∈ N, the ideas of
the previous section can be carried over as follows.

Step 1: Finding a recurrence. By WZ-theory (Wilf and Zeilberger, 1992, Cor. 3.3) and
ideas given in (Wegschaider, 1997, Theorem 3.6) it is guaranteed that there is a re-
currence

a0(ε,N)S(ε,N) + · · ·+ ad(ε,N)S(ε,N + d) = 0 (45)

for the multi-sum S(ε,N) in N that can be computed, e.g., by Wegschaider’s algorithm;
for infinite sums similar arguments have to be applied as in Step 2.2 of Section 4. Given
such a recurrence, let µ ∈ N with µ ≥ λ s.t. ad(0, N) 6= 0 for all N ∈ N with N ≥ µ.

Step 2: Determining initial values. If the sum (19) contains no infinite sums, i.e., s = 0,

the initial values Fi(k) in S(ε, k) =
∑∞

i=t Fi(k)ε
i for k = µ, µ + 1, . . . can be computed

immediately and simplify usually to rational numbers. However, if infinite sums occur it
is not so obvious to which values these infinite sums evaluate for our general input class–
by assumption we only know that the Fi(k) for a specific integer k ≥ µ are real numbers.
At this point we emphasize that our approach works independently to the fact whether we
express these sums in terms of well known constants or if we just keep the symbolic form
in terms of infinite sums. In a nutshell, if we do not know how to represent these values in
a better way, we keep the sum representation. However, whenever possible it is desirable
to write these values in terms of special numbers or functions. Examples are harmonic
sums which are known as limits for the external index N → ∞ for harmonic sums,
see Blümlein and Kurth (1999); Vermaseren (1999), to yield Euler-Zagier and multiple
zeta values, cf. Blümlein et al. (2010), and generalized harmonic sums, see Moch et al.
(2002) which give special values of S-sums. In massive 2-loop computations and for the
simpler 3-loop topologies these are the only known classes, whereas extensions are known
in case of more massive lines, cf. e.g. Broadhurst (1999).

Step 3: Recurrence solving. Given such a recurrence (45) together with the initial values
of S(ε,N) (hopefully in a nice closed form) we can activate Algorithm FLSR. Then by
Corollary 1, we have a procedure that decides if the first coefficients of the expansion are
expressible in terms of indefinite nested product-sum expressions.

Summarizing, we obtain the following theorem.
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Theorem 3. Let S(ε,N) be a sum with Assumption 1 which forms an analytic function
in ε throughout an annular region centered by 0 with the Laurent expansion S(ε,N) =
∑∞

i=t fi(N)εi for some t ∈ Z for each nonnegative N ; let u ∈ N. Then there is an
algorithm which finds the maximal r ∈ {t − 1, 0, . . . , u} such that the ft(N), . . . , fr(N)
are expressible in terms of indefinite nested product-sums; it outputs such expressions
Ft(N), . . . , Fr(N) and λ ∈ N s.t. fi(k) = Fi(k) for all 0 ≤ i ≤ r and all k ∈ N with k ≥ λ.

As mentioned already in the introduction, the proposed algorithm is not applicable for
our examples arising form particle physics: forcing Wegschaider’s implementation to find
a homogeneous recurrence is extremely expensive and usually fails by the given computer
and time resources. Subsequently, we relax this restriction and search for recurrence
relations which are not necessarily homogeneous.

4. Find recurrence relations for multi-sums

Given a multi-sum S(N) of the form (19) we present a general method to compute
a linear recurrence of S(N). Here the challenges are to deal with the infinite sums and
struggling with the fact that the summand in almost all instances is not well defined
outside the summation range. We proceed as follows using WZ–summation.

Step 1: Finding a summand recurrence. The summation problem (19) fits the input class
of the algorithm Wegschaider (1997), an extension of multivariate WZ-summation due
to Wilf and Zeilberger (1992). This allows us to compute a certificate recurrence for the
hypergeometric summand F .

Let us first recall that an expression F (N, σ, j, ε) is called hypergeometric in N, σ, j, if

there are rational functions rν,µ,η(N, σ, j, ε) ∈ K(N, σ, j, ε) such that F(N,σ,j,ε)
F(N+ν,σ+µ,j+η,ε) =

rν,µ,η(N, σ, j, ε) at the points (ν, µ, η) ∈ Zr+s+2 where this ratio is defined. Then the
Mathematica package MultiSum described in Wegschaider (1997) solves the following
problem by coefficient comparison and solving the underlying system of linear equations.

Given a hypergeometric term F (N, σ, j, ε), a finite structure set S ⊂ Ns+r+2 and degree
bounds B ∈ N, β ∈ Ns, b ∈ Nr+1.
Find, if possible, a recurrence of the form

∑

(u,v,w)∈S

cu,v,w (N, σ, j, ε)F (N + u, σ + v, j + w, ε) = 0 (46)

with polynomial coefficients cu,v,w ∈ K[N, σ, j], not all zero, where the degrees of the
variables N , ji and σi are bounded by B, βi and bi, respectively.

Remark 3. (1) In all our computations we found such a summand recurrence by setting
the degree bounds to 1, i.e., B = βi = bi = 1.
(2) To determine a small structure set S ⊆ Zs+r+2 which provides a solution w.r.t. our
fixed degree bounds, A. Riese and B. Zimmermann enhanced the package MultiSum by
modular computations. In this way one can loop through possible choices in a cheap
fashion until one succeeds to find such a recurrence (46).

Next, the algorithm successively divides the polynomial recurrence operator (46) by
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all forward-shift difference operators

∆σi
F(N, σ, j, ε) := F (N, σ1, . . . , σi + 1, . . . , σs, j, ε)−F(N, σ, j, ε)

for 1 ≤ i ≤ s, as well as, by similar ∆-operators defined for the variables from j which
have finite summation bounds.

At last we obtain an operator free of shifts in the summation variables (σ, j) called
the principal part of the recurrence (46) which equals the sum of all delta parts in the
summation variables from (σ, j), i.e.,

∑

m∈S′

am(ε,N)F(N +m,σ, j, ε) =

r∑

l=0

∆jl




∑

(m,n)∈S′
l

dm,n(N, σ, j, ε)F(N +m,σ, j + n, ε)





+
s∑

i=1

∆σi




∑

(m,k,n)∈Si

bm,k,n(N, σ, j, ε)F(N +m,σ + k, j + n, ε)



 (47)

where the coefficients am, not all zero, bm,k,n and dm,n are polynomials and the sets
S′ ⊂ N, Si ⊂ Ns+r+2 and S′l ⊂ Nr+2 are finite.

Recurrences of the form (47) satisfied by the hypergeometric summand are called
certificate recurrences and have polynomial coefficients am (ε,N) free of the summation
variables from (σ, j), while the coefficients of the delta-parts are polynomials involving
all variables.

Remark 4. In principle, the degrees of the polynomials bm,k,n and dm,n arising in (47)
can be chosen arbitrarily large w.r.t. σi and ji. However, in Step 2 we will sum (47) over
the input range and hence we have to guarantee that the resulting sums over (47) are
well defined. As a consequence, the degrees of the dm,n and bm,k,n w.r.t. the variables
σi have to be chosen carefully if in (21) one of the constants ci is zero. As mentioned
earlier, for such cases we restrict ourself to the case that s = 1. In this instance, the
degree in the bm,k,n should be smaller than the constant d1 from (21) and the degree in
the dm,n should be not bigger than the constant e from (23). To control this total bound
b := min(d1−1, e), we exploit the following observation (Wegschaider, 1997, p. 43): While
transforming (46) to (47) by dividing through the operators (4), one only has to perform
a simple sequence of additions of the occurring coefficients in (46), and thus the degrees
w.r.t. the variables do not increase. Summarizing, if we choose β1 in our ansatz such that
β1 < b, the degrees in the bm,k,n and dm,n w.r.t. the variable σ1 are smaller than b.
In some rare instances it might happen that the principal part gets 0. It has been shown
in (Wegschaider, 1997, Thm. 3.2) that this unlucky case can be cured by some extra
operations where the degrees of some of the variables might increase. If within this
construction the degree w.r.t. σ1 increases too much, manual adjustment is needed (e.g.,
force the structure set to be different or change the degree bounds manually); however,
within our computations we never entered in such a situation.

We illustrate all these mechanisms by a concrete example. The package MultiSum can
be loaded within a Mathematica session by

In[1]:= << MultiSum.m
MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard Zimmermann)
– c© RISC Linz
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For N ≥ 3 a discrete parameter and ε > 0 we introduce the sum

S (ε,N) :=

N−3∑

j0=0

N−3−j0∑

j1=0

(−1)j1(j1 + 1)

(
N − 2− j0

j1 + 1

)Γ(j0 + j1 + 1)
(
1− ε

2

)

j0

(
3− ε

2

)

j1

(4− ε)j0+j1

(
ε
2 + 4

)

j0+j1

.

(48)
As it was mentioned above, we apply WZ-summation techniques included in the Math-
ematica package MultiSum to compute a certificate recurrence for its summand

In[2]:= termS = (−1)j1(j1 + 1)
(N − 2 − j

j1 + 1

)Γ(j0 + j1 + 1)
(
1 − ε

2

)

j0

(
3 − ε

2

)

j1

(4 − ε)j0+j1

(
ε
2
+ 4
)

j0+j1

.

For this, we find a suitable structure set using the command

In[3]:= FindStructureSet[termS, N, {j0, j1}, 1];

In[4]:= strSetS = %[[1]]

Out[4]= {{0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 1, 0}, {1, 1, 1}}

(the input 1 sets all degree bounds to 1) and calling further the MultiSum procedure

In[5]:= FindRecurrence[termS, N, {j1, j0}, strSetS, 1,WZ → True];

In[6]:= certRecS = ShiftRecurrence[%[[1]],{N, 1}, {j0, 1}, {j1, 1}]

Out[6]= (ε − 2N)NF [N, j0, j1] − (ε − N − 3)(ε + 2N + 2)F [N + 1, j0, j1] = ∆j0 [(ε
2 + j0ε + ε − 2j1 −

2j0N − 4j1N − 12N − 6)F [N + 1, j0, j1]] +∆j1 [(ε− 2N)(j0 + j1 −N + 1)F [N, j0, j1] + (−2N2 +

εN + 2j0N + 4j1N + 4N − 2ε− εj0 + 2j1)F [N + 1, j0, j1]]

we obtained a certificate recurrence which we afterwards shift to get only positive shifts
in the recursion parameter N and in the summation variables.

Step 2: A recurrence for the sum. Taking as input the certificate recurrences (47) we al-
gorithmically find the inhomogeneous part of the recurrence satisfied by the sum (19)
which will contain special instances of the original multisum of lower nesting depth.

The recurrence for the multisum (19) is obtained by summing the certificate recurrence
(47) over all variables from (σ, j) in the given summation range R ⊆ Zs+r+1. Since it can
be easily checked whether the summand F indeed satisfies the relation (47), the certificate
recurrence also provides an algorithmic proof of the recurrence for the multisum S(N, ε).
In particular, since we set up the degrees of the coefficients in (47) w.r.t. the variables
accordingly, see Remark 4, it follows that the resulting sums are analytically well defined.

To pass from the certificate recurrence to a homogeneous or inhomogeneous recur-
rences for the sum we use the telescoping property of the ∆-operators. The finite sum-
mation bounds appearing in (19) lead to an inhomogeneous right hand side after summing
over the recurrence satisfied by the summand F .

A method to set up the inhomogeneous recurrences for the summation problems (19)
was introduced in (Stan, 2010, Chapter 3). In the next paragraphs we summarize the
steps of this approach implemented in the package

In[7]:= << FSums.m
A package for nested sums with nonstandard summation bounds by Flavia Stan – c© RISC Linz

In this context, we use tuples to denote multi-dimensional intervals. The range repre-
sented by the tuple interval [i . . . k] is the Cartesian product of the intervals defined by
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the components i, k ∈ Zn. More precisely,

[i . . . k] := [i1 . . . k1]× [i2 . . . k2]× · · · × [in . . . kn].

Often when working with nested sums, summation ranges for inner sums will depend on
the value of a variable for an outer sum. Intervals whose endpoints are defined by tuples
are not enough to represent the summation ranges for these sums. We will use a variant
of the cartesian product notation to denote such a summation range. Namely, to refer
to a variable associated to a range, we will specify it as a subscript at the corresponding
interval and use ⋉ signs instead of the × symbols. For example, the range for the sum
(24) can be written as

[0 . . .∞]× [0 . . .N − 3]j0 ⋉ [0 . . .N − j0 − 3]⋉ [0 . . . j0 + 1].

We also introduce this notation for the initial range of the sum (19) as

R := Rσ ×Rj (49)

where Rσ := [p . . .∞) and Rj = [q0 . . . N + c] ⋉ [q1 . . . B1] ⋉ · · · ⋉ [qr . . . Br], are the
infinite and the finite range, respectively.

Step 2.1: Refining the input sum. As indicated earlier, we consider the summands from
(19) as well-defined only inside the initial input range R ⊆ DF where DF denotes the set
of well-defined values for the proper hypergeometric function F . This restriction adds to
the complexity of the method from (Stan, 2010, Chapter 3) since we need to determine
a possible smaller summation range over which we are allowed to sum the certificate
recurrences (47).

We illustrate this phenomenon by our concrete example (48). Let us start by summing
over the initial summation range

R = [0 . . . N − 3]j0 ⋉ [0 . . .N − 3− j0]

over the delta parts on the right hand side of the recurrence certRecS (see Out[6]) which
is of the form (47). For this we denote the polynomial coefficients inside the delta parts
∆j0 and ∆j1 with e[N, j0, j1, ε] and d1[N, j0, j1, ε], d2[N, j0, j1, ε], respectively.

By summing over the first term inside the ∆j1 -part and using the telescoping property,
we have

N−3∑

j0=0

N−3−j0∑

j1=0

∆j1 [d1[N, j0, j1, ε]F [N, j0, j1]] =

N−3∑

j0=0

(d1[N, j0, j1, ε]F [N, j0, j1])

∣
∣
∣
∣
∣
∣

j1=N−2−j0

j1=0

=
N−3∑

j0=0

d1[N, j0, N − 2− j0, ε]F [N, j0, N − 2− j0]−
N−3∑

j0=0

d1[N, j0, 0, ε]F [N, j0, 0]

where we introduce the following short-hand notation

l∑

k=0

F(k, l)

∣
∣
∣
∣
∣

l=B

l=A

:=

A∑

k=0

F(k,A)−
B∑

k=0

F(k,B).

We observe that, after telescoping, the upper bound N − 2 − j0 for j1 translates into
a term outside the original summation range. To work under the assumption that our
summand termS is well-defined only inside its range R, we need to adjust the range over
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which we sum the certificate recurrence or shift this relation with respect to the free
parameter N . As discussed in (Stan, 2010, Chapter 3), the approach based on computing
a smaller admissible summation range is more efficient since it leads to less new sums in
the inhomogeneous parts of the recurrences.

In the case of our example S(ε,N), we consider the new range

R′ = [0 . . .N − 4]j0 ⋉ [0 . . .N − j0 − 4].

As a consequence we compute separately a single sum which was called in (Stan, 2010,
Chapter 3) a sore spot,

S(ε,N) =

N−4∑

j0=0

N−4−j0∑

j1=0

F [N, j0, j1] +

N−3∑

j0=0

F [N, j0, N − j0 − 3]. (50)

In general, the package FSums contains an algorithm that determines the admissible
summation range and computes the necessary sore spots for sums of the form (19);
these extra sums with lower nesting depth have to be considered separately (see also the
DIVIDE step in our method described in Section 5). Subsequently, we denote the sum
over the restricted range R′ by S ′(ε,N).

Step 2.2: Determining the inhomogeneous part of the recurrence. Summing a certificate
recurrence of the form (47) over the restricted range R′ determined in the previous
step, leads to a recurrence for a new sum S ′(ε,N). The inhomogeneous part contains
special instances of this sum of lower nesting depth. Next, we introduce the types of
sums appearing on the right hand side.

Step 2.2.1: The finite summation bounds. Subsequently, we will illustrate these aspects
with our running example (48). As deduced from Step 2.1, we continue from now on
with the new sum

S ′(ε,N) =

N−4∑

j0=0

N−4−j0∑

j1=0

F [N, j0, j1]. (51)

Shift compensating sums are a first side-effect of nonstandard summation bounds.
They appear when we sum over the left hand side of the recurrence over a given definite
range, because our upper summation bounds depend on the other summation parameters.
Hence, in the case of the certificate recurrence certRecS (see Out[6]) summing over the
restricted range R′, we obtain

N−4∑

j0=0

N−4−j0∑

j1=0

F [N + 1, j0, j1] = S ′(ε,N + 1)−
N−3∑

j=0

F [N + 1, j, N − 3− j]. (52)

Compensating sums of this form appear only in the case of upper summation bounds de-
pending on the free variable N . After summing over the left hand side of the recurrence,
we will move the resulting compensating sums, with a change of sign, to the inhomoge-
neous part. Including the new shifted sum as the first term of the output, the following
procedure delivers the right hand side of (52)

In[8]:= ShiftCompensatingSums[F [N, j0, j1], {{j0, 0, N − 4}, {j1, 0,N − 4 − j0}},N, 1]

Out[8]= SUM[N + 1] + FSum[−F [1 +N, j0,−3− j0 +N ], {{j0, 0,−3 +N}}].

Note that we use the structure FSum to store sums with nonstandard boundary conditions
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of the form (19). This data type contains two components, the summand and a list
structure for the summation range. The nested range is stored in the order given in (19),
starting with the infinite sums and ending with the sums with finite summation bounds
in the order of their dependence.

When summing over the ∆-parts we generate two type of sums on the right side of
the recurrence, the ∆-boundary sums and so-called telescoping compensating sums. For
example when summing over the ∆j0 -part of the recurrence certRecS of Out[6], we have

N−3∑

j0=0

N−3−j0∑

j1=0

∆j0 [e[N, j0, j1, ε]F [N + 1, j0, j1]] = (53)

=

N−3−j0∑

j1=0

(e[N, j0, j1, ε]F [N + 1, j0, j1])

∣
∣
∣
∣
∣
∣

j0=N−2

j0=0

+

N−2∑

j0=1

e[N, j0, N − 2− j0, ε]F [N + 1, j0, N − 2− j0].

Because of the structure of the summation bounds for the nested sums (19) we can use
again our procedure ShiftCompensatingSums to generate the shift and the telescoping
compensating sums. This connection becomes more clear, when we consider the more
involved sum (24) (with its restricted range N − 4 instead of its original range N − 3)
and apply, e.g., the ∆j0 -operator:

∞∑

σ0=0

N−4∑

j0=0

N−j0−4
∑

j1=0

j0∑

j2=0

∆j0 [F [N, σ0, j0, j1, j2]] =

∞∑

σ0=0

N−j0−4
∑

j1=0

j0∑

j2=0

F [N, σ0, j0, j1, j2]

∣
∣
∣
∣
∣
∣

j0=N−3

j0=0

+

∞∑

σ0=0

N−3∑

j0=1

j0−1
∑

j2=0

F [N, σ0, j0, N − j0 − 3, j2]−
∞∑

σ0=0

N−3∑

j0=1

N−j0−4
∑

j1=0

F [N, σ0, j0, j1, j0];

note that the first element on the right side of this identity produces the ∆-boundary
sums while the last two are due to telescoping compensation. More precisely, with the
following function call

In[9]:= ShiftCompensatingSums[F [N,σ0, j0 − 1, j1, j2], {{σ0, 0,∞}, {j1, 0, N − j0 − 4},

{j2, 0, j0}}/.j0 → (j0 − 1), j0, 1]

Out[9]= {FSum[F [N,σ0, j0, j1, j2], {{σ0, 0,∞}, {j1, 0, N −4− j0}, {j2, 0, j0}}],FSum[F [N,σ0, j0, N −3−

j0, j2], {{σ0, 0,∞}, {j2, 0, j0 − 1}}],FSum[−F [N,σ0, j0, j1, j0], {{σ0, 0,∞}, {j1, 0, N − 4− j0}}]}

we obtain exactly this result: the delta boundary sums are obtained by evaluating the
first entry of the output for j0 = 0 and j0 = N − 3 and the compensating sums result by
adding the shifted sum [1 . . .N − 3]j0 to the range of the other terms in the output.

Step 2.2.2: The infinite summation bounds. To sum over the delta parts in (47) coming
from the summation variables σi, e.g., ∆σi

bm,k,n(N, σ, j, ε)F(N +m,σ + k, j + n, ε) we
have to ensure that

lim
σi→∞

bm,k,n(N, σ, j, ε)F(N +m,σ + k, j + n, ε)
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exists. Looking at the asymptotic conditions (21) of the input sum (19), there will be no
problem if ci > 0. However, if the constant ci is zero, we need to verify that the degrees of
the polynomial coefficients bm,k,n appearing in the respective ∆σi

-part are smaller then
the bound βi. As worked out in Remark 4 this property is guaranteed by our ansatz.

The above sections introduced the types of sums, i.e., shift and telescoping compen-
sating sums as well as delta boundary sums, which will appear on the right hand side of
the inhomogeneous recurrences satisfied by summation problems of the form (19) after
summing over corresponding certificate recurrences (47). A procedure to generate these
inhomogeneous recurrences is implemented in the package FSums. E.g., the recurrence
satisfied by the sum S ′(ε,N), which we denote by simply SUM[N ], is returned by

In[10]:= finalRecS = InhomogenRec[certRecS, {{j0, 0,−4 + N}, {j1, 0,−4 − j0 + N}}, N]

Out[10]= (ε− 2N)NSUM[N ] + (3− ε+N)(2 + ε+ 2N)SUM[1 +N ] ==

FSum[(1 + j0 −N)(−ε+ 2N)F [N, j0, 0], {{j0, 0,−4 +N}}]+

FSum[−2(ε− 2N)F [N, j0,−3− j0 +N ], {{j0, 0,−4 +N}}]+

FSum[(ε− 2N)(2 + j0 −N)F [1 +N, j0, 0], {{j0, 0,−4 +N}}]+

FSum[(6− ε− ε2 + 2j1 + 12N + 4j1N)F [1 +N, 0, j1], {{j1, 0,−4 +N}}]+

FSum[(3− ε+N)(2 + ε+ 2N)F [1 +N, j0,−3− j0 +N ], {{j0, 0,−3 +N}}]+

FSum[(ε+ ε2 + 2j0 + εj0 − 2N + 2j0N − 4N2)F [1 +N, j0,−3− j0 +N ], {{j0, 1,−3 +N}}]+

FSum[−((6+2ε+2j0+εj0+6N−εN+2j0N−2N2)F [1+N, j0,−3−j0+N ]), {{j0, 0,−4+N}}].

5. An efficient approach to find ε-expansions for multi-sums

Let S(ε,N) be a multisum of the form (19) with the properties (1)–(6) from Assump-
tion 1 and assume that S(ε,N) has a series expansion (20) for all N ≥ λ for some λ ∈ N.
Combining the methods of the previous sections we obtain the following general method
to compute the first coefficients, say Ft(N), . . . , Fu(N) of (20).

Divide and conquer strategy
(1) BASE CASE: If S(ε,N) has no summation quantifiers, compute the expansion by

formulas such as (14) and (15).
(2) DIVIDE: As worked out in Section 4, compute a recurrence relation

a0(ε,N)S(ε,N) + · · ·+ ad(ε,N)S(ε,N + d) = h(ε,N) (54)

with polynomial coefficients ai(ε,N) ∈ K[ε,N ], am(ε,N) 6= 0 and the right side
h(ε,N) containing a linear combination of hypergeometric multisums each with less
than s+ r + 1 summation quantifiers. Note: In some instances, the sum has to be
refined and some “sore spots” (again with less summation quantifiers) have to be
treated separately by calling our method again; see Step 2.1 in Section 4.

(3) CONQUER: Apply the strategy recursively to the simpler sums in h(ε,N). This
results in an expansion of the form

h(ε,N) = ht(N) + h1(N)ε+ · · ·+ hu(N)εu + O(εu+1); (55)

if the method fails to find the ht(N), . . . , hu(N) in terms of indefinite nested
product-sum expressions, STOP.
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(4) COMBINE: Given (54) with 5 (55), compute, if possible, the Ft(N), . . . , Fu(N)
of (20) in terms of nested product-sum expressions by executing Algorithm FLSR.

We illustrate our method with the double sum (48) where the summand is denoted by
F [N, j0, j1]; internally we transform all the objects in terms of Γ(x)-functions in order
to apply expansion formulas such as (14) and (15). First, we compute the summand
recurrence given in Out[6]. While computing a recurrence for the sum itself, it turns
out that we have to refine the summation range, i.e., our computation splits into two
problems as given in (50). We continue with the refined double sum (51) and obtain the
inhomogeneous recurrence finalRecS given in Out[10]. Now we apply recursively our
method and compute successively expansions for each of the single sums on the right
hand side; see also Section 3.1 for a typical example. Adding all the expansions termwise
gives the recurrence

(ε− 2N)NS ′(ε,N)− (ε−N − 3)(ε+ 2N + 2)S ′(ε,N + 1) =

18(2N6−3N5−8N4+13N3−4N+8)
(N−2)(N−1)N(N+1)(N+2) − 36(2N4+N3−9N2−2N+4)(−1)N

(N−2)(N−1)N(N+1)(N+2)

+ ε
[
3(N8−6N7−32N6+20N5+151N4+14N3−200N2−28N+56)

(N−2)(N−1)N(N+1)2(N+2)2

+ 6(2N6+N5−14N4+9N3+40N2−22N−28)(−1)N

(N−2)(N−1)N(N+1)2(N+2)2 +
36S1(N)

N + 1

]

+ ε2
[
9S1(N)2

N + 1
−

6(N − 5)S1(N)

(N + 1)2
− N6(5N3+48N2+246N+568)

4(N2−3N+2)(N2+3N+2)3

+ 363N6+3720N5+3672N4−5280N3−10712N2−4592N−128
4N(N2−3N+2)(N2+3N+2)3

+

(
9(N4−N3−4N2+4N+8)

(N−2)(N−1)N(N+1)(N+2) −
18(2N4+N3−9N2−2N+4)(−1)N

(N−2)(N−1)N(N+1)(N+2)

)

S2(N)

]

+O(ε3).

Using in addition its first initial value S ′(ε, 4) = 27
16 − 1

128ε − 11
1024ε

2 we are ready to
activate Algorithm FLSR and get the result

S ′(ε,N) =
9(N5 − 3N4 − 3N3 + 15N2 − 6N − 12) + 36(N2 − 3)(−1)N

2N(N4 − 5N2 + 4)

+ ε

[
3(N8 − 12N7 − 46N6 + 201N4 + 276N3 − 36N2 − 336N − 288)

8N2(N2 − 3N + 2)(N2 + 3N + 2)2

−
3(N4 − 3N3 − 10N2 + 12N + 30)(−1)N

N(N2 − 3N + 2)(N2 + 3N + 2)2
+

9(N + 3)S1(N)

N(N2 + 3N + 2)

]

+ ε2
[

9(N + 3)S1(N)2

4N(N2 + 3N + 2)
−

3(5N3 + 36N2 + 37N − 18)S1(N)

4N(N2 + 3N + 2)2

+
9
(
N3 − 3N + 4(N2 − 3)(−1)N − 6

)
S2(N)

4N(N4 − 5N2 + 4)

−
(49N6 + 306N5 + 472N4 − 474N3 − 1769N2 − 1092N + 132)(−1)N

4N(N2 − 3N + 2)(N2 + 3N + 2)3

+
3
(
335N6 + 1586N5 + 3972N4 + 4584N3 + 352N2 − 3072N − 1152

)

32N3 (N2 − 3N + 2) (N2 + 3N + 2)
3

5 See Step 2 of Section 3.3 how we deal with the initial values.
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−
N4
(
5N4 + 27N3 + 176N2 + 414N + 185

)

32 (N2 − 3N + 2) (N2 + 3N + 2)3

]

+ O(ε3).

Finally, we compute our extra sum
∑N−3

j0=0 F [N, j0, N − 3 − j0] with our method, and
adding this result to our previous computation leads to the final result

S(ε,N) =
81(N2 − 3N + 2)

4N2

+ ε

[
3(N4 − 13N3 − 28N2 − 32N + 24)

8N3(N + 2)
+

9(N + 3)S1(N)

N(N + 1)(N + 2)

]

+ ε2
[

9(N + 3)S1(N)2

4N(N + 1)(N + 2)
−

3(5N3 + 36N2 + 37N − 18)S1(N)

4N(N + 1)2(N + 2)2
+

9(N2 + 3N + 4)S2(N)

4N2(N + 1)(N + 2)

−
5N6 + 17N5 + 162N4 + 208N3 + 592N2 + 240N − 288

32N4(N + 2)2

]

+O(ε3).

Similarly, we compute, e.g., the first two coefficients of the expansion of the sum (24):

U(ε,N) = N !
(3(−1)N

(
N2 + 2N − 1

)
S1(N)

N(N + 1)
− 9(−1)N +

6 (−1)NS2(N)

N

)
+

ε
[

ζ(2)N !
(
−

3(−1)N(4N + 3)

2N
−

3(−1)N (3N + 2) S−1(N)

N
+

9

2N

)

+N !
(3(−1)NS1(N)2

2 (N + 1)
+

(−1)N
(
2N4 + 34N3 + 101N2 + 89N + 2

)
S1(N)

2N(N + 1)2 (N + 2)

+
3(−1)N

(
4N2 + 14N + 13

)

(N + 1)(N + 2)
+

(−1)N
(
− 30N2 − 38N + 1

)
S2(N)

2N(N + 1)

−
9(−1)N(2N + 1) S3(N)

N
−

6(−1)N(3N + 2)S−2(N)S−1(N)

N

+
9 S−2(N)

N
+ 9(−1)NS2,1(N) +

6(−1)N(3N + 2) S−2,−1(N)

N

)]

+O(ε2)

where ζ(2) =
∑∞

i=1
1
i2

= π2/6.
In the following we give further comments on our proposed method and provide strate-

gies how it can be used in the context to evaluate Feynman integrals.

Remark 5. 1. A heuristic. The conquer step turns our procedure to a method and not to
an algorithm. Knowing that there is an expansion of S(ε,N) in terms of indefinite nested
sums and products and plugging this solution into the left hand side of (54) shows that
also the right hand side of (54) can be written in terms of indefinite nested product-sum
expressions. But, in our method the right hand side is split into various sub-sums and
it is not guaranteed that each sum in its own is expressible in terms of indefinite nested
product-sum expressions – only the combination has this particular form. However, for
the input class of multi-sums arising from Feynman-integrals this method always worked.
2. A hybrid version for speed ups. As it turned out, the bottleneck in our computations
is the task to compute a recurrence of the form (54) with the MultiSum-package. To
be more precise, in several instances we succeeded in finding a structure set S with
the corresponding degree bounds for the polynomial coefficients, but we failed to deter-
mine the summand recurrence (46) explicitly, since the underlying linear system was to
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large to solve. For such instances, we dropped, e.g., the outermost summation quanti-
fier, say

∑∞
σ1=p1

and searched for a recurrence in σ1; in particular the variable N was
put in the base field K. In this simpler form, we succeeded in finding a recurrence.
Next, we computed the initial values (in terms of N) by using another round of our
method. With this input, Algorithm FLSR found an expansion with coefficients in terms
of Ft(N, σ), Ft+1(N, σ), . . . , Fu(N, σ). To this end, we applied the infinite sum

∞∑

σ1=p1

Fi(σ,N) (56)

to the coefficients Fi(N, σ) and simplified these expressions further by the techniques
described in Ablinger et al. (2010b). In various instances, it turned out that this hybrid
technique was preferable than computing a pure recurrence in N or just simplifying the
expressions (18) by using the methods given in Ablinger et al. (2010b).
3. Asymptotic expansions for infinite expressions. As mentioned in Remark 2 we obtained
also sums of the form (19) which could be defined only by considering a truncated version
of the infinite sums. For such instances we computed the coefficients Fi(σ,N) as above
and considered –instead of (56)– the expressions

∑a
σ=0 Fi(σ,N) for large values a. To be

more precise, we computed asymptotic expansions for all these sums and combined them
to one asymptotic expansion in a. In this final form all the expressions canceled which
were not defined when performing a → ∞ and we ended up with the correct coefficient
for the expansion of S(ε,N).
4. Dealing with several infinite sums. In all our computations we considered the situation
that only one infinite sum arose. In principle, our method works also for more such sums.
However, in order to set up the recurrence in Section 4, we need additional properties
such as (23) for the multivariate case. If such properties are not available, we propose two
strategies: 4.1 Drop some (or all) of the infinite sums and proceeds as explained in point
2 of our remark. 4.2 Set up the recurrence with formal sums and expand the sums on the
right hand side: here one can either use the strategies as described in Step 4 of Section 2
(in particular, if asymptotic expansions have to be computed), or one can proceed with
the method of this section whenever the sum is analytically well defined.

6. Conclusion

We presented a general framework that enables one to compute the first coefficients
Fi(N) of the corresponding Laurent expansion of a given Feynman parameter integral,
whenever the Fi(N) are expressible in terms of indefinite nested product-sum expressions.
Namely, starting from such integrals, we described a symbolic approach to obtain a multi-
sum representation over hypergeometric terms. Given this representation, we developed
symbolic summation tools to extract these coefficients from its sum representation. In
order to tackle this problem, Wegschaider’s MultiSum package has been enhanced with
Stan’s package FSum that handles sums which do not satisfy finite support conditions.
Moreover, given a recurrence relation of the form (42) together with initial values, Schnei-
der’s Sigma package has been extended to decide constructively, if the first coefficients of
the formal Laurent series solution is expressible in terms of indefinite nested product-sum
expressions.

In order to fit the input class of hypergeometric multi-sum packages, we split the sums
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with the price of possible divergencies. We overcame this situation by combining our new
methods with other tools described, e.g., in Ablinger et al. (2010b); see Remark 5. Further
analysis of the introduced method should lead to a uniform approach that can handle in
one stroke also solutions in terms of asymptotic expansions.

The described summation tools assisted in the task to compute two- and simpler
three-loop diagrams, which occurred in the calculation of the massive Wilson coeffi-
cients for deep-inelastic scattering in Ref. Ablinger et al. (2010b); Blümlein et al. (2006);
Bierenbaum et al. (2007a, 2009a, 2008).
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Ablinger, J., Bierenbaum, I., Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wiss-
brock, F., 2010a. Heavy Flavor DIS Wilson coefficients in the asymptotic regime . Nucl.
Phys. B (Proc. Suppl.) in print; [arXiv:1007.0375 [hep-ph]].
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Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C., 2007b. Difference equations in mas-
sive higher order calculations. In: PoS ACAT2007. Vol. 082. [arXiv:0707.4659 [math-
ph]].
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