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Abstract: The advances and adoption of Trusted Computing and hardware assisted
virtualisation technologies in standard PC platforms promise new approaches in build-
ing a robust virtualisation platform for security sensitive software modules. The amal-
gam of these technologies allows an attractive off-the-shelf environment, capable of
supporting security levels potentially higher than commonly deployed today. This ar-
ticle proposes a practical approach of combining technology elements available today
to create such a platform using available components. The design supports operating
high-security and low-security compartments side by side. The high security compart-
ment is able to use the functionality of the Trusted Platform Module. The low security
compartment is isolated through hardware-assisted virtualisation. The platform boots
via Intel Trusted Execution Technology to resist manipulation. We discuss the building
blocks of the architecture and present a number of open research challenges.
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1 Introduction

The unstoppable pervasiveness of information technology applications through-
out our daily lives moves security of data processing and associated risks and
problems into focus. Conventionally, protection software has been employed to
detect security threats such as computer viruses or trojan horses. However, se-
curity features provided by software alone can be similarily circumvented by
software based attacks. The combination of recent improvements to x86 com-
puter architectures promises a possible solution.

Virtualisation is a methodology of dividing the resources of a computer into
multiple execution environments, by applying concepts such as hardware and
software partitioning, time-sharing, machine simulation or emulation. Modern
architectures are based on a single hypervisor, a control entity which directly
runs on the hardware and manages it exclusively. It then manages the creation,
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execution and hibernation of isolated compartments, each hosting an unmodified
operating system.

The concept of Trusted Computing extends the standard PC architecture
with elements such as the Trusted Platform Module (TPM)[TCG(2007)]. The
introduction of this additional hardware component allows for increased assur-
ance that a measurement and report of the state of a system is accurate and
authentic. The hard-to-tamper nature of the TPM, along with recent advances in
chipsets and CPU components, allows for new approaches to build more secure
and robust systems.

The advantages of combining virtualisation with Trusted Computing are
manifold. First of all, separating the execution environment of different applica-
tions naturally results in a higher attack resistance and availability, as it allows
to contain software attacks to a single compartment. Demonstrations of such
systems are Terra [Garfinkel et al.(2003)], or the results of the [EMSCB(2004)]
and [OpenTC(2005-9)] projects. More recently, hardware platforms have become
available [Grawrock(2009)] that support the challenges of secure virtualisation
by providing strong isolation of compartments on commodity hardware.

The second main advantage of virtualisation is that it helps to reduce the
number of software components which influence the system state, and therefore
its trustworthiness. A main difficulty [England(2008)] for the Trusted Comput-
ing concept of Attestation is keeping track of known-good system configurations.
This proves extremely challenging due to the high number of possible software
component combinations found in today’s complex and constantly-updated op-
erating systems. With virtualisation, the hypervisor can reduce the measurement
complexity drastically by simply performing a single measurement of the com-
plete compartment image file.

Thirdly, modern platforms also provide an alternative to the TCG model of a
static chain-of-trust, which envisioned a continuous transition between authen-
ticated states from platform boot onwards. They now provide the possibility of
a dynamic switch to one special well-defined trusted system state. A new CPU
instruction allows to switch the system into a secure state and then measure
and run a piece of software, typically a hypervisor, which has full system con-
trol. Close hard-wired cooperation of CPU, chipset and TPM guarantees that
the result is accurate. Thus, influences from boot-time only components, as for
example the BIOS, can be ruled out.

In this article we propose a system architecture which integrates the dynamic
switch into a trusted hardware state with an up-to-date hypervisor. Furthermore,
we restrict the execution of critical compartments to trustworthy platform con-
figurations, while at the same time describe a set of operational procedures which
help us retain flexibility with respect to configuration changes. We also outline
open future research challenges.
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1.1 Trusted Computing

Today, Trusted Computing is commonly understood as based on the specifica-
tions of the Trusted Computing Group[TCG(2003)]. The TCG concepts extend
current platforms with an additional hardware component, the Trusted Platform
Module (TPM)[TCG(2007)]. Increasingly, common available PC hardware ships
with an on-board TPM.

The TPM functions as the core trusted reporting component in the system.
The TPM supports cryptographic operations and associated protocols. The sup-
port includes a hardware random number generator, RSA cryptography, SHA-1
hashing and protected non-volatile memory. One of the most important features
is the set of platform configurations registers (PCRs). At platform reboot the
PCRs are initialised to a known fixed value and then can only be changed by the
PCR extend operation. It concatenates the current content of a PCR register
with given, new data and stores the hash of the result in the same PCR. Thus,
by the very nature of the SHA-1 cryptographic hash function, PCR registers
attain the same content after reboot only by receiving the exact same input in
the exact same order.

At power-on a platform is in a well known, freshly initialised state. The ex-
tend mechanism can then be applied to exactly document the software (code and
configuration) executed in a system. All code binaries must be measured into
PCRs before execution is passed on to them. Starting from the BIOS bootblock
to BIOS main core, from BIOS option ROMs to the master boot record (MBR),
covering bootloader, kernel, and system libraries etc., up to application code, an
uninterrupted chain-of-trust can, in principle, be constructed. The exact con-
figuration of the platform is mapped to unique PCR values. If a certain system
state fulfills given security or policy requirements, we refer to it as a trusted
state.

Any current state of the PCRs can be cryptographically signed by the TPM
Quote operation with a TPM identity key, thus producing proof of the cur-
rent configuration. An accompanyning measurement log documents how it was
reached.

1.2 Existing Trusted Virtualisation Platforms

Several previous efforts applied the Trusted Computing chain-of-trust concept
into practical application using a virtualised platform.

The [OpenTC(2005-9)] project researched, built and assembled multiple com-
ponents necessary to build a demonstration operating system with integrated
Trusted Computing support. The project publicly released two demonstrators
[OpenTC(2009)]. The first showcases a Private Electronic Transactions (PET)
scenario in which communications endpoints mutually attest their system state
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by using Trusted Computing technology. The second is called a Corporate Com-
puting at Home (CCAH) scenario. In this scenario virtualised (Trusted Com-
puting) attested compartments run side-by-side high security (corporate com-
puting) and low security (home software) system images. The OpenTC project
applied the technologies available during the project’s lifetime. These includes
building a chain-of-trust from the BIOS to the bootloader via Trusted Grub
[Marcel Selhorst(2006)]. The system hypervisor component is provided by Xen
[Barham et al.(2003)] or a L4 variant [Dresden(1999)] The OpenTC project suc-
cessfully demonstrated a Trusted Computing enhanced system.

Likewise, the [EMSCB(2004)] platform demonstrates TPM-based Trusted
Computing on a L4-Fiasco-based virtualisation platform. Microsoft’s now de-
funct NGSCB[England et al.(2003)] envisioned the security critical Nexus kernel
to provide an environment for security critical services, while running a legacy
OS in parallel. [Coker et al.(2008)] describe a Xen-based platform which is op-
timized for flexible Remote Attestation.

2 Towards A Practical Platform

These previous proposals share certain characteristics. First, hardware virtuali-
sation or isolation features are not used. Second, the chain-of-trust is established
only at system boot time.

However, we believe that a chain of trust starting with the BIOS may be too
brittle in practice. Consider a BIOS update, some configuration change, a new
or different option ROM due to hardware change and decades of old legacy code
- reaching a predictable PCR state after BIOS boot seems to be impractical. The
other end of the measurement chain, the OS/application side, is also unstable.
A modern operating system consists of too many components (plus component
subversions), which are not loaded in strict order, thus changing the resulting
PCR values. In practice it is very likely that creating a chain-of-trust fails.

Even if a reproducible (in effect constant) configuration can be established
(i.e. by CD boot images), a major problem remains: Reaching a trust decision
in a Remote Attestation scenario is extremely difficult due to the many possible
combinations of measurements and lack of trusted known-good-value reposito-
ries.

We believe that any future security concept must go beyond just adding
a TPM to the system. There are additional security benefits if CPU, chipset
and TPM work in close cooperation, under the control of a fully measured and
measuring system hypervisor software. We further believe that those powerful
mechanisms can be applied to overcome many of the outlined challenges.
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2.1 Modern Trusted Computing Hardware

Since 2005 mainstream CPUs of the major CPU manufacturers have gained the
low-level capability to transparently pretend to an operating system that it is
alone in the system, while in reality multiple OSe are running in parallel on
the same hardware. Previously, this virtualisation required sophisticated soft-
ware tricks like on-the-fly code rewriting. Nowadays, CPUs can enforce control
of the most privileged instructions of an operating system by another instance,
a hypervisor. The hypervisor is the component with full control of the physical
hardware and enforces which hardware resources are assigned to which virtuali-
sation compartment.

The isolation functionalities provided by the CPU alone are not sufficient to
separate memory areas from one another, as I/O devices can manipulate main
memory on their own using Direct Memory Access (DMA). A subset of most
recent chipsets now allow to assign certain I/O devices to a specific virtualised
compartment instance. Thus, previous attacks via manipulation of DMA trans-
fers of e.g. firewire, graphics or network devices can be prevented.

2.2 Proposed Architecture

We identify two major challenges to practically establish trust in a software
platform

1. identifying and measuring individual components in the chain of trust

2. deciding the trustworthiness of the resulting chain of trust.

In the following sections we present an architecture which reduces the com-
plexity of these problems by reducing the length of the chain-of-trust from both
ends.

Our approach uses two techniques to accomplish this: First, we utilize the
features of the most recent Intel Trusted Execution Technology (TXT) enabled
hardware platform to perform a late launch into a trusted state. TXT moves the
switch to a measured initialisation state to a later point in time, thus shortening
this side of the chain-of-trust, as more platform boot related components are
ignored.

Second, we create an in situ image from a trustworthy hypervisor, system
configuration and runtime environment. The application compartments to be
executed in a compartment are encrypted, with the key being sealed to the state
of the base system. This ensures that a configuration as set up by the operator
is protected against manipulation. Only if the hypervisor and the associated
runtime system are in the correct state the keys to decrypt the virtual application
images are released. We extent the hypervisor and its support tools to allow the
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unsealing of a compartment only if the overall system is in a state defined to be
trustworthy by the platform operator.

The added value of this architecture is more clearly understood with the
observation that a late launched hypervisor does not have to restore the system to
a state identical to before the late launch initiation. Instead we use the hypervisor
to partition memory into a secure and an insecure world. The insecure side
hosts a traditional operating system. The newly created secure section is strictly
isolated by hardware virtualisation and I/O control, enforced by the hypervisor.

As security critical code will only be handled in isolation, Trusted Computing
measurements and ultimately the chain-of-trust need only be extended into the
secure side. Thus, virtualisation enables the processing of security sensitive data
and code which requires a certain system state (PCRs content).

Overall, the shorter measurement chain provided by late launch, covering a
small base system, to a secure compartment running trusted code ensures that
the number of components is small and manageable.

3 Pieces of the Puzzle

In order to realise a dynamically launched and measured trusted platform on
standard PC hardware, a set of building blocks is required. The following sections
describe the individual hardware and software components and their specific role
in the process.

Figure 1 illustrates the overall architecture and as well as the timeline at
system start-up. At first, a conventional boot is performed by the BIOS using
the Grub Bootloader to launch the TBoot tool, which configures and initiates
the hardware-supported late launch. In this special mode the system control
is passed on to a trusted and authenticated code module, which establishes a
well-defined and secure system state. The module then returns control to TBoot,
which subsequently launches a Linux kernel based hypervisor service. This secure
and trusted platform can now initialize trusted as well as untrusted application
compartments which are isolated from each other. The TPM serves as a trust
anchor for measuring and reporting on the state transitions and as protected
storage for system launch configurations.

In the following sections we discuss the building blocks of our architecture
and of the boot process in more detail.

3.1 Intel TXT and Late Launch

Amongst a number of security improvements, a shortening of the chain-of-
trust has become possible with the introduction of Intel Trusted Execution
Technology[Intel Corporation(2008a)] enabled platforms. Platforms branded as
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Figure 1: Overview of the software architecture and the timeline of the late
launch into a measured/trusted mode. Untrusted software is shown red, mea-
sured/trusted software green and trusted hardware blue. The timeline is indi-
cated in orange.

such possess all of the capabilities described in Section 2.1. Furthermore, they en-
able a late-launch, a dynamic switching to a measured system state at any point
in time. This removes the need to maintain a (potentially very long) chain-of-
trust, started at the time of platform power-on.

A late launch is initiated by the special TXT CPU instruction SINIT. It stops
all processing cores except one, the chipset locks down all memory to prevent
outside modification by devices and initialises specific TPM PCRs to their initial
state. A special Intel provided (and cryptographically signed) Authenticated
Code Module (ACM) initiates this chain of trust by initialising the platform
to a well-defined state. Subsequently, the next software module is measured
and execution control is passed to it - typically a hypervisor. Step by step the
hypervisor decides which system resources to unlock and which software services
to continue or to start anew.

The SINIT initialisation code is also capable of enforcing specific launch
control policies (LCPs). The LCP is stored in the non-volatile storage of the
platform’s TPM and can only be set and modified with the authentication of
the TPM owner. SINIT measures the next software component to be executed
and uses the LCP to decide what to do with the measurement result. The sim-
plest policy type any essentially allows anything to be executed. However, the
policy can also contain a list of reference measurements. In this case the TPM
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owner decided that SINIT should only allow execution of one of the explicitly
listed known-good modules, which he deems trustworthy. A software modification
which was not authorized by the TPM owner is not allowed to continue.

Additional new functionalities provided by TXT aid security. For instance,
the chipset is capable of automatically scrubbing system memory whenever a
system reboot is initiated. This technique is also useful whenever a virtualisation
instance is shut down by the hypervisor. This prevents leakage of secret data over
operating system lifetime, for example.

3.2 Tboot

Trusted Boot (tboot) [Intel Corporation(2008b)] is an openly available tool to
initiate a TXT late launch. Tboot is not designed to be executed inside a running
operating system. Rather, it positions itself in the system boot-chain between a
standard bootloader and the operating system kernel. Tboot currently supports
launching Xen and alternatively the Linux kernel after a successful TXT late
launch.

Typically, a Linux kernel is loaded and started by a bootloader such as GRUB
[GNU(1999)], which resides in the Master Boot Record (MBR) of the harddisk.
The GRUB configuration specifies the Linux kernel image to boot and additional
required modules such as an initial ramdisk (initrd). For a dynamic boot this
configuration order needs to be modified: the tboot binary is positioned into the
first slot, before all other entries follow. The last configuration entry is the TXT
specific SINIT authenticated code binary.

With this modified GRUB configuration tboot is executed first. Tboot pre-
pares the system for TXT mode and initiates the dynamic late launch into a
measured system, which includes executing the SINIT module. After successful
TXT setup control is handed back to Tboot. Tboot measures the Linux kernel
and passes control to it, continuing a standard Linux boot process. The Linux
kernel must be Tboot aware, otherwise the memory and I/O configuration se-
curity modifications employed by SINIT and Tboot will immediately cause a
security violation and TXT enforces a system reboot as a security measure.

The well-defined initialisation performed by SINIT in combination with Tboot
provides the anchor of a shortened chain-of-trust. Thus, a TXT launch removes
all the effects of BIOS code executing before the system bootloader and provides
a robust first link for the chain-of-trust to the kernel.

3.3 KVM

A hypervisor which is able to partition the system resources into isolated com-
partments is provided by KVM [Qumranet(2006)] [Kivity et al.(2007)]. The re-
cently integrated hardware virtualisation support in CPUs offloads many of the
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tasks needed to virtualise a full operating system to hardware. This reduces code
size and complexity, and thus positively affects software security. With the KVM
hypervisor architecture the core, the small and critical virtualisation component,
is a loadable module of a standard Linux kernel.

The KVM kernel module monitores the low-level machine operations of the
virtualized systems. Whenever execution of privileged operations or I/O access is
attempted within the compartment executed in guest mode, KVM takes control
and decides on how to proceed. Privileged Instructions are emulated by KVM
and I/O is forwarded to a QEMU [Bellard(2005)] support process, which runs
with standard Linux user process privileges.

The KVM approach provides several benefits to our architecture. First, KVM
is integrated into the standard Linux kernel tree and therefore always in sync
with ongoing kernel developments. This affects security fixes as well as the abil-
ity to immediately take advantage of Linux kernel improvements to perform on
up-to-date platforms. Furthermore, virtualisation always requires support com-
ponents to provide device emulation and enable communication. In the KVM
model this is handled by an associated QEMU user process, which in turn uses
the services of a normal Linux (kernel) runtime.

In case one QEMU instances crashes, just like a normal misbehaving user
process, the offending one is removed - all other virtualisation are not affected.

It is also possible to control the code size of the QEMU executable. It can be
compiled to only contain the absolutely necessary functions for a specific task.
This allows run multiple virtualisations with different requirements in parallel.
From a security perspective, a small size of critical code provides a better starting
point for intensive scrutinization of the code in security reviews.

3.4 A Lightweight Linux Base System

Of course virtualisation with KVM requires a basic Linux system as support.
To integrate it in the measurement process, we slightly modify the Linux boot
process by integrating all pieces integrated into one large binary image consisting
of the Linux kernel, the initial ramdisk and the base system. This binary is
specified in the GRUB configuration as kernel and thus automatically measured
by tboot. Thus, any modification of the base system is reflected in different TPM
PCR values.

The size of the Linux base system depends on the requirements of the com-
ponents which it needs to run or support. The system must provide all the
capabilities so that QEMU can provide the I/O device emulations needed for all
KVM virtualised compartments. For example, if all KVM guests are e.g. server
services which do not require audio support QEMU can be compiled without
sound device emulation and the base system can be cleaned of audio compo-
nents, too.
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Additionally, there is a need for components to manage the virtualised ap-
plications themselves. In the simplest case this is an SSH attached service which
allows login, transfer and exchange of application images.

All virtualised application images are encrypted with AES. KVM is capable
of en-/decrypting virtualisation images on-the-fly if provided with the proper
cryptographic key. We seal this key to a trusted PCR state. Thus, whenever a
trustworthy base system (as defined by the TPM owner) is booted, the AES key
can be unsealed by a startup script and provided to KVM to run an encrypted
application image. If the base system were, possibly maliciously, modified, this
will fail.

4 Discussion

Combining the components discussed in Section 3 allows to assemble a system
as proposed in Section 2.2. The architecture allows for different approaches in
solving certain problems and some issues need further research to find a solution
of manageable complexity.

4.1 KVM and QEMU security

The security of QEMU device emulation is one of the critical issues. A failure in
the emulation potentially allows a “jail-break” of a virtualisation guest and con-
sequently access of the host system. As any other piece of software, the QEMU
software is not error-free [Debian(2009)]. However, the Unix user vs. root secu-
rity privilege model also applies for the QEMU userspace process [Kivity(2008)]
and it is therefore possible to run each virtualisation instance under a distinct
user ID. For higher security scenarios advanced mandatory access control system
such as [NSA(2000)] provide a hardened attack protection.

4.2 System Maintenance

The system requires an initial setup procedure. In this step the TPM ownership
is taken, the hard disk is partitioned, formatted, the boot loader is installed and
the necessary binaries are copied to the disc. The TPM non-volatile storage is
configured with the TXT launch control policy containing the correct hash of
the installed binaries.

As outlined in Section 3.4, the base system is assembled into one large binary.
As a direct consequence upgrading the system becomes a complex task. Any
change in the configuration or binaries causes a new known-good value, which
has to be updated in the LCP stored in the TPM. Furthermore, all keys for the
virtualised compartments need to be resealed to the new state.
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4.3 TPM multiplexing

The architecture outlined in Section 2.2 proposes a separation into a secure and
an insecure world. The chain-of-trust extends only into one compartment of the
secure world. First, the base system uses the TPM to establish a trusted system
state for the compartment and then starts it. Now the base system can pass
on the responsibility for the TPM to the appication compartment by granting
it exclusive access to the hardware device. This can be achieved by adding a
TPM device emulation to QEMU [Bleher(2007)], which appears to the operating
system inside just like a hardware TPM. QEMU forwards the byte streams to the
/dev/tpm interface in the base system, to which the hardware TPM is connected.

This solution only allows one virtualised compartment to run Trusted Com-
puting applications. Multiple approaches have been proposed to solve the mul-
tiplexing of the TPM, for example virtual software TPMs [Berger et al.(2006),
Scarlata et al.(2007)].

5 Conclusions

In this paper we propose a way to bring Trusted Computing technologies closer
to practical deployment. We describe how currently available hard- and software
components can be combined on the PC platform to create a system capable
of running multiple trustworthy compartments in parallel. By constructing a
short chain-of-trust using late launch via a hypervisor to virtual compartments,
we reduce complexity to manageable levels. We are currently in the process of
implementing a platform prototype. Using Intel TXT technology and sealing
virtualisation compartments to a specific system state helps to guarantee and
enforce the software integrity of the platform so that it resists malicious modifi-
cations.
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