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A Method for the Design of 
Compliant Mechanisms With 
Small-Length Flexural Pivots 
Compliant or flexible-link mechanisms gain some or all of their motion from the 
relative flexibility of their joints rather than from rigid-body joints only. Unlike 
rigid-body mechanisms, energy is not conserved between the input and output ports 
of compliant mechanisms because of energy storage in the flexible members. This 
effect and the nonlinearities introduced by large deflections complicate the analysis 
of such mechanisms. The design of compliant mechanisms in industry is currently 
accomplished by expensive trial and error methods. This paper introduces a method 
to aid in the design of a class of compliant mechanisms wherein the flexible sections 
{flexural pivots) are small in length compared to the relatively rigid sections. The 
method includes a definition and use of a pseudo-rigid-body model, and the use of 
a large-deflection finite element type algorithm. An example is used to illustrate the 
design technique described. 

Introduction 
There is a relatively unknown and unexplored branch of 

mechanisms called compliant or flexible-link mechanisms. Such 
mechanisms gain mobility from the relative flexibility of their 
members rather than from rigid-body joints only. Figure 1 
shows two examples of compliant mechanisms (Salamon, 1989). 
Both mechanisms would be classified as structures in classical 
rigid-body kinematics, but the ability of some members to flex 
gives them mobility, and the ability to perform useful work. 
The challenge presented by such mechanisms is that energy is 
no longer conserved between their input and output ports be­
cause of energy storage in the flexible members. This effect 
coupled with the nonlinearities introduced by large deflections 
of flexing members complicates the analysis. Due to these 
difficulties, the design of compliant mechanisms in industry 
is currently accomplished by expensive trial and error methods. 

Though the analysis is involved, there are advantages to 
compliant mechanisms. One of these is that a mechanism can 
be built in one piece, if manufactured from an extrudable or 
injection-moldable material. This not only simplifies manu­
facturing, but can also reduce weight and eliminate wear, back­
lash, noise, and need for lubrication (Sevak and McLarnan, 
1974; Her, 1986; Salamon, 1989). 

As stated, compliant mechanisms gain at least some of their 
motion from the deflections of their flexible members. For 
many simple mechanisms, these deflections are small and con­
ventional linear beam theory may be used in the deflection and 
motion analysis. Often, however, the deflections are relatively 
large and the small-deflection assumptions used to linearize 
the beam equations are no longer valid. The difference in 
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flexural pivot 

(b) 
Fig. 1 (a) A partially compliant and (b) a fully compliant mechanism 
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analysis lies in the treatment of the Bernoulli-Euler beam equa­
tion, which states that the bending moment is proportional to 
beam curvature. Using the exact equation for curvature the 
beam equation can be written as 
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M= EI ~ = El­
ds 

dx2 

1 + 

(1) 

where M is the moment, dd/ds the rate of change in angular 
deflection along the beam (curvature), y the transverse de­
flection, x the coordinate along the undeflected beam axis, 
and EI the flexural rigidity. For small deflections, the square 
of the slope (dy/dx)2 can be assumed to be small compared 
to unity, and the denominator in Eq. (1) may be ignored. The 
curvature may then be approximated by the second derivative 
of y, i.e., d2y/dx2. This linearization leads to the classical beam 
moment-curvature equation 

M=EA 
dx 

(2) 

The assumption described above cannot be used in the anal­
ysis of large deflections since the slope of the transverse de­
flection is no longer small. There are several methods available 
that take into account the nonlinearities introduced by large 
deflections. One method used to find a closed-form solution 
involves the solution of a second-order, nonlinear differential 
equation using elliptic integrals (Bisshopp and Drucker, 1945; 
Frisch-Fay, 1969; Gorski, 1976). The advantage of this solution 
technique is that it provides exact, closed-form solutions. The 
disadvantage is that the derivations are cumbersome and so­
lutions only exist for relatively simple geometries and loadings. 

Several numerical techniques have been explored and sug­
gested for use in large-deflection analysis. Several large-de­
flection finite element techniques are available and offer a 
versatile approach for solving general problems (Bathe, 1979; 
Yang, 1986; Zienkiewicz, 1989). The disadvantage of conven­
tional large-deflection finite element analysis is the compu­
tation time involved in the solution. A similar technique uses 
the same basic theory as finite elements, but employs a different 
method to obtain the solution of the resulting equations. This 
technique, called the chain algorithm, reduces the computation 
time dramatically for certain types of problems. An expla­
nation of the algorithm's use in compliant mechanisms will be 
discussed and a more in-depth explanation with mathematical 
details is given in the Appendix, and Midha et al. (1992). 

Various researchers have added valuable insights into other 
areas of compliant mechanism analysis and design. Shoup and 
McLarnan (1971) and Shoup (1972) used the equations of the 
undulating and nodal elastica for the analysis of flexible-link 
mechanisms. The resulting method requires the solution of a 
set of nonlinear equations involving elliptic integrals of the 
first and second kind. Design charts were developed to help 
determine good initial guesses for the iterative solution tech­
nique used to solve the system of equations. Winter and Shoup 
(1972) used similar equations to generate coupler curves for a 
partially compliant mechanism, similar to that shown in Fig. 
1(a). Sevak and McLarnan (1974) coupled a finite element 
method with an optimization technique to synthesize a flexible-
link mechanism for function generation. Fletcher and Powell's 
variable metric method was used to minimize the unconstrained 
error function for mechanisms in which one or two links were 
flexible. Her (1986), Hill (1987), and Salamon (1989) used a 
finite element type chain algorithm to aid in the analysis and 
design of compliant mechanisms. Salamon also proposed a, 
general design methodology which included synthesizing a rigid-
body mechanism first, selectively introducing compliance to 
obtain a pseudo-rigid-body mechanism, and finally obtaining 
and analyzing a fully compliant model. This methodology is 
the progenitor of the design method described in this work. 

In general, obtaining an accurate pseudo-rigid-body model 
for an arbitrary compliant mechanism would be a difficult task 
because its kinematic inversions may yield many more mech­

anisms than those of a rigid-body counterpart. These diffi­
culties have been addressed in works by Burns and Crossley 
1966), Shoup and McLarnen (1971), Her (1986), and Her and 
Midha (1987). The current discussion, however, is centered 
around compliant mechanisms with small flexural segments 
compared to the rigid sections. Such an arrangement results 
in obvious choices for the location of the pseudo-rigid-body 
joints, and thus an approximate pseudo-rigid-body model is 
readily obtained. 

Introduced herein is a computer-aided design approach which 
uses rigid-body"kinematic analysis and large-deflection analysis 
via a finite element type algorithm, as tools for the design of 
a class of compliant mechanisms. The method is applicable 
for mechanisms comprised of flexible segments (flexural pi­
vots) that are considerably smaller than the lengths of the more 
rigid sections. The reason for this distinction will be discussed 
in the next section. 

The method discussed is exemplified with the design of a 
compliant mechanism. This example mechanism is a hand tool 
which needs to be designed for high mechanical advantage, be 
made of one piece, and have geometry and motion similar to 
a classical rigid-body four-bar mechanism. That is, it should 
have four flexural pivots (relatively flexible sections) and four 
relatively rigid sections connected in a closed loop, such as the 
mechanism shown in Fig. 1(5). 

Design and Analysis 
Salamon (1989) proposed a general design method for com­

pliant mechanisms. Figure 2 shows this method in a slightly 
revised form (conditional blocks have been added). In this 
method, rigid-body and pseudo-rigid-body mechanisms are 
generated. A pseudo-rigid-body mechanism models flexible 
members as discrete springs attached to rigid links, where the 
rigid links represent the more rigid segments of the compliant 
mechanism. The pseudo-rigid-body mechanism is analyzed to 
see if the design specifications and constraints are satisfied. If 
they are not met, the pseudo-rigid-body mechanism may be 
modified and analyzed again. The loop involving the modi-

Design Specifications 

Synthesize Rigid-
Body Mechanism 

Modify Pseudo-
Rigid-Body 
Mechanism 

Obtain a Pseudo-Rigid-
Body Mechanism 

yes 
Analyze Mechanism 

Modify Pseudo-
Rigid-Body 
Mechanism 

yes 

Can Performance Be 
Improved by Change 
in Pseudo-Rigid-
Body Model? 

Are Objectives and 
Constraints Met? 

yes 

Can Performance Be 
Improved by Change 
in Pseudo-Rigid-
Body Model? 

Obtain Fully Compliant 
Mechanism 

Analyze Mechanism 

Modify Fully 
Compliant 
Mechanism 

yes 

Are Objectives and 
Constraints Met? 

yes 

Can Performance Be 
Improved by Small 
Changes in Fully 
Compliant Model? 

Final Design 

Fig. 2 Flow chart for a compliant mechanism design process 

Journal of Mechanical Design MARCH 1994, Vol. 116/281 Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



- flexural 
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Fig. 3 (a) A compliant mechanism, (b) its pseudo-rigid-body model, and 
(c) free-body diagrams for moving links 

Fig. 4 (a) Large deflection of a flexible beam with an end moment, and 
(b) a pseudo-rigid-body approximation 

fication and analysis of the pseudo-rigid-body mechanism may 
be a simple iterative method or a formal optimization routine. 
The designer may occasionally find that the design objectives 
are not readily satisfied with the type of mechanism chosen. 
In this case it is necessary to design a new rigid-body mechanism 
and start the process again. 

Once an appropriate pseudo-rigid-body mechanism is found, 
the model is used to obtain a fully compliant mechanism. The 
fully compliant model is analyzed by means of a large-deflec­
tion analysis method. If the pseudo-rigid-body model was ac­
curate, this step may simply serve as a means to verify that 
the objectives have been met, and to analyze the mechanism 
performance. Small design changes to improve performance 
may be made by modifying the compliant model. If analysis 
reveals that large adjustments are necessary, the pseudo-rigid-
body model or the initial rigid-body mechanism may be mod­
ified. 

The discussion here will focus primarily on three major 
areas: pseudo-rigid-body mechanism analysis, modification of 
pseudo-rigid-body model, and fully compliant mechanism 
analysis. 

Initial Pseudo-Rigid-Body Analysis. There is currently very 
little known about the analysis of compliant mechanisms. It 
would, therefore, be of value to model these mechanisms in a 
manner such that knowledge of rigid-body kinematics may be 
used for guidance in design. The idea of a pseudo-rigid-body 
model was developed with this in mind. An example of a 
pseudo-rigid-body model is shown in Fig. 3. Here, the flexural 
pivots [the relatively more flexible sections in the compliant 

mechanism in Fig. 3(a)] are modeled as torsional springs at­
tached to the rigid-body joints in Fig. 3(b). 

In order to use such a model, some simplifying assumptions 
must be made. First, it is assumed that the motion of the 
compliant mechanism resembles that of the pseudo-rigid-body 
mechanism. This assumption will tend to be more accurate as 
the lengths of the flexural pivots [Fig. 3(a)] decrease compared 
to those of the relatively rigid sections. This may be illustrated 
by the uniform cross-section beam in Fig. 4(a) . For a pure 
end moment, M, the Bernoulli-Euler equation is expressed 
(Shigley and Mischke, 1989) as 

d6_M 
ds~El 

Separating variables and integrating 

ds 

M 

' EI 

(3) 

(4) 

(5) 

The vertical deflection may be found by writing the curvature 
as 

dd dddy dd . „ 

ds dy ds dy 

and for the horizontal deflection 

dd_dddx_dl 
ds dx ds dx 

COS0 

(6a) 

(6b) 
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Combining Eqs. (3), (5), and (6a) and separating variables 
yields: 

1 n i ro 
- \ dy = - \ sinM? 

5y _ 1 - cos0o 

(7) 

(8) 

The same procedure is followed to find the horizontal deflec­
tion, resulting in 

l-8x sind0 

I 
(9) 

Figure 4(a) shows this deflection path for a beam of constant 
flexural rigidity, EI. These results may be used as a simple 
illustration of the comparative accuracy of the pseudo-rigid-
body approximations. 

Figure 4(b) shows a beam with a flexible section of length 
/ and flexural rigidity (EI)h connected to a rigid section of 
length L and rigidity (EI)L, where (EI)L » (EI),. The de­
flection of the beam is calculated from Eqs. (8) and (9) above, 
and the deflected configuration is shown in dashed lines. This 
path is also approximated by two rigid links connected by a 
revolute joint at 1/2, and the displacement path is shown in 
solid lines. For a given angular deflection, the rigid sections 
of the calculated and approximated beams will be parallel, 
causing the distance between the corresponding path points 
determined by the two methods, d, to be the same at both ends 
of the rigid section, as shown in Fig. 4(b). This distance, d, 
will obviously decrease with decreasing /. For this reason, the 
accuracy of the pseudo-rigid-body model shown in Fig. 3 is 
improved by insuring that the lengths of the flexural pivots 
are small compared to the lengths of the rigid sections. Similar 
results can be shown for other end loads. 

It is also assumed that the bending stiffness of a pivot ap­
proximates its torsional spring stiffness. The initial estimate 
used for the spring stiffness is obtained form elementary beam 
theory (Shigley and Mischke, 1989): 

k = -
EI 
I 

(10) 

where E is the modulus of elasticity, I the cross-sectional mo­
ment of inertia and / the pivot length. This assumption will be 
more accurate if bending is the more dominant loading in the 
flexural pivot. Since this stiffness is assumed to be that of a 
beam under pure bending, the model essentially neglects the 
transverse and axial loads applied to the pivots. Therefore, as 
these loads grow larger compared to the bending moment, 
greater error will be introduced to the model. An advantage 
of this simple model is that for pure bending, the equation M 
= ElVI8 is accurate even for large-deflections, since no small-
deflection linearizations have been made. The errors intro­
duced by this model will be accounted for in the fully compliant 
mechanism analysis discussed later in this paper. 

Materials with nonlinear stress-strain characteristics may also 
be modeled by approximating a linear modulus over the ap­
propriate range of deflections and strains. If the nonlinearity 
is large for the above approximation to be accurate, a nonlinear 
form for the spring constant in Eq. (10) may be defined. 

The pseudo-rigid-body model may be analyzed by con­
structing a free-body diagram for each link, as shown in Fig. 
3 (c). The torque at each joint caused by the deflection of the 
torsional springs may be written as 

r i=*i(02,-02) 

T2 = k2 ( 03 - d3s + 02s - &2 ) 

Tj = k) (04s - 04 + 03 - 03s) 

T4 = k4(64S — 64) 

(11) 

where 7} is the torque caused by torsional spring /, with spring 
constant k,, and 6is represents the (starting) value of 8, at which 
the spring is unstrained. 

The equations of static equilibrium may be used to solve for 
the unknown reactions and output torque in Fig. 3(c). Sum­
ming the forces in the x and y directions and rearranging we 
find 

Rx=R\x=Rix=Rix=Rix 

Ry — R\y — R2y — R}y — R4y (12) 

where the reactions are defined in Fig. 3(c). Summing the 
moments for each link yields: 

T2 + T-s + Rxr3sm63 - -R/-3cos03 = 0 

7*3 + Tout +T4 + Rxr4sind4 - Ryr4cos84 = 0 

Ti - Tin +T2 + Rxr2sm82 ~ Ryr2cos82 = 0 (13) 

Assuming that the input torque, Tin, is known, the three equa­
tions can be solved algebraically for the three unknowns, Rx, 
Ry, and Touh where Tout is the output torque. This results in 

T0Ut = B+Ch2-Ah3 (14) 

where h; is the coefficient d8-,/d84. These coefficients are de­
termined from kinematics (Paul, 1979) as: 

/•4sin (03 - 04) 
h2 = -

h. 

r2sin (03 - 02) 

r4sin (04-02) 
/•3sin(03-02) ( 1 5 ) 

The coefficients A, B, and C for the mechanism in Fig. 3 are 
found to be 

A=-

B=-
C=-Tr 

T4~T} 

T2+Tin (16) 

The pseudo-rigid-body model for the compliant hand tool in 
Fig. 5(a) [and its compliant counterpart in Fig. 5(b)] would 
differ from the mechanism in Fig. 3 in that the input is applied 
to link 3 rather than link 2. This means that the input moment 
arm, /,„, is the shortest distance from the input force, Fin, to 
the relative instant center 713 (Erdman and Sandor, 1984). The 
instant center represents a point where there is no relative 
velocity between two links at a given instant. Instant center 
7]3 for links 1 and 3 is found as shown in Fig. 5 (a). With this 
in mind, the output torque equation for the hand tool model 
remains the same as Eq. (14), except the coefficients A, B, 
and C now become 

A- T2-T3+Tin 

B=-T4-T 

C=-Tx-T2 (17) 

This type of model is instrumental in ascertaining the mech­
anism type ("four-bar" mechanism, etc.) to be used, and the 
approximate lengths and orientations of the "rigid links." In 
the design of the compliant hand tool, for example, the general 
configuration type chose is shown in Fig. 5(a) . It was also 
discovered that when a link is always in compression, one pivot 
could readily be replaced by a "passive" pivot (Salamon, 1989), 
as shown in Fig. 5(c). A passive pivot transmits compressive 
loads while serving as a bearing between two contacting sur­
faces. The energy lost to friction is assumed to be small com­
pared to the energy storage in active flexural pivots. 

Modification of Pseudo-Rigid-Body Model to Improve Per­
formance. With the basic configuration of the mechanism 
determined, the pseudo-rigid-body model can be analyzed and 
modified to improve mechanism performance. The modifi-
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(c) 

Fig. 5 (a) Pseudo-rigid-body model for hand-tool, (b) its compliant coun­
terpart, and (c) the design after pseudo-rigid-body analysis 

cations may be accomplished by either trial and error or by 
means of formal optimization techniques. The first step is to 
determine the objective function, or what aspect of the design 
is to be improved. For instance, when high mechanical ad­
vantage is desired, the objective function may be written to 
assist in determining the maximum output force for a given 
input force and link configuration. The error function or struc­
tural error (Erdman and Sandor,1984) can be minimized for 
function or path generation problems, respectively. Possible 
design variables include the lengths and thicknesses of the 
pivots, lengths of the rigid sections, initial link orientations 
and width of the mechanism. Potential constraints include 
stress limits, buckling of compression members, min/max 
thickness and length of pivots and rigid sections, mobility 
requirements, maximum structural error and min/max input 
force. Such problems may be solved by nonlinear optimization 
methods such as the augmented Lagrangian (Vanderplaats, 
1984) or internal penalty function (Rao, 1984) methods. Fur­
ther design studies may then be carried out by varying param­
eters such as modulus of elasticity, yield strength and range 
of motion. 

In the design of the compliant hand tool, the thickness and 
length of the three active pivots are the design variables. Design 
studies are also carried out by varying the "rigid link" lengths 
and orientations to find the best design; so these may also be 
considered as design variables. The lengths of the more rigid 
sections and their initial orientations contribute significantly 
to the mechanism performance. The initial orientation of links 
may be especially vital in toggle mechanisms, such as the hand 
tool, which gain their high mechanical advantage by operating 
near the toggle position. 

The toggle position describes the mechanism orientation 
when links 2 and 3 in Fig. 5(a) [or the corresponding rigid 
sections of the compliant mechanism in Fig. 5 (c)] are collinear. 
For a rigid-link mechanism with no springs, Eqs. (14) and (17) 
give Tou, = - T,„hi, where h3 is defined in Eqs. (15). The 
mechanical advantage (ma) is given as 

™ = ^ = - r A 3 as) 
"in *out 

since Tin = Finlin and Toul = Foutlout [Fig. 5(a)]. Examination 
of the coefficient /i3 in Eqs. (15) reveals that this term tends 
to infinity as the mechanism approaches toggle (d2 = #3), and 
the mechanical advantage increases dramatically. For com­
pliant mechanism, this may be used to counter the effects of 
energy storage in the flexural pivots. This will be demonstrated 
in the analysis of the compliant hand tool. 

The original lengths of the rigid sections were chosen in light 
of the preceding discussion of rigid-body toggle mechanisms. 
Note the similarity in link length ratios between the compliant 
hand tool and, say, the commercially available Peterson's vice 
grips. The choice of initial orientation of these segments, how­
ever, is not as straightforward. The mechanism must start out 
close enough to the toggle position such that an appropriate 
mechanical advantage will result (/) for a workpiece that just 
fits in the grips, and (//') for smaller workpieces as well. The 
orientations should be chosen carefully since much energy can 
be lost to storage in the pivots if the mechanism must undergo 
large deflections before reaching the workpiece (Salamon, 
1989). Much of the energy storage problem could be solved 
by using adjustable grips for different sized workpieces. 

The performance of the hand tool will depend largely on its 
ability to have a large mechanical advantage while not ex­
ceeding stress limits. Therefore, it is important to maximize 
the output force (torque) for a given input force (torque). With 
this in mind, the objective function for the pseudo-rigid-body 
model is expressed by Eq. (14): 

T0Ul = B+Ch2-Ah3 (14) 

where Toul is the output torque to be maximized and the other 
parameters are as defined in Eqs. (10), (11), (15), and (17). 
Stress constraints for the active flexural pivots are expressed 
as 

^jkir /=2'3'4 (19) 

where 

and a,, (FS)i, th /,, and F, are the normal stress, factor of 
safety, thickness, length, and axial force corresponding to pivot 
/, and Sy, E and w are the material yield strength, modulus of 
elasticity and width, respectively, and A0, is the angle of de­
flection in the motion of pivot /. Other constraints include the 
minimum thickness of flexural pivots due to manufacturing 
constraints, and the maximum length of the pivots, to ensure 
that the pivot lengths remain much smaller than the lengths 
of the rigid sections. These are expressed as: 

0.01 <*,-< 0.375 
0.01</,<0.375 (21) 

The discussion above may be summarized as follows: 
Find the design vector (vector of design variables) 

h 

X = r 4 > 
] 
\h 
\u) 

which maximizes the objective function 
T0Ut(X)=B(X)+C(\)h2~A(\)h} (22) 

subject to the constraints 
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«/(X) = a,< 
(FS)i 

( = 2,3,4; 7=1,2,3 

g,(X) = ?,<.375; / = 2,3,4; y = 4,5,6 

g,(X) =?,•>.01; / = 2,3,4; y = 7,8,9 

g,-(X) =/,•<.375; /' = 2,3,4; y= 10,11,12 

ft(X) =/,•>.010; / = 2,3,4; j= 13,14,15 

The resulting mechanism is shown in Fig. 5(c). 
Several important ideas evolve from this work. In the hand 

tool design, for instance; it was discovered that the ideal ma­
terial for pivots is one with a high strength to modulus of 
elasticity ratio. From Eq. (5), for a specific 60, L and /, the 
moment required to deflect the pivot will decrease with de­
creasing E. Therefore, a pivot in bending with known angular 
deflection requirements and geometry will more easily be within 
the stress constraints for a higher material strength to modulus 
of elasticity ratio. It was also discovered that the mechanism 
performance could be improved by moving the passive pivot 
[Fig. 5(c)] to the upper joint of link 2, since it bends through 
a much larger angle of deflection. This change and others will 
be further illustrated later. 

Calculations are performed assuming the mechanism to be 
.685-in. wide, made from Delrin, an Acetal-based Dupont 
product with a yield strength of 10,000 psi, and a factor of 
safety (F.S.) of 1.5. The modulus of elasticity is approximated 
as constant with an experimentally determined value of 300,000 
psi. 

Analysis of Fully Compliant Model. A pseudo-rigid-body 
model is very useful in determining the general lengths of pivots 
and links and their orientations, but a more accurate method 
is required to further improve the design and perform the final 
analysis. The final data obtained from the pseudo-rigid-body 
design phase is taken and analyzed using the methods described 
below. 

Chain Algorithm. In the fully compliant model, a finite 
element type procedure employing a chain algorithm is used 
(Her, 1986). A brief explanation of the algorithm is given here 
and a more in-depth description and mathematical details are 
included in the Appendix, and Midha et al. (1992). The chain 
algorithm is so named because it discretizes the object being 
modeled into beam elements and analyzes each element in 
succession. Figure 6 shows a general flexible member to be 
analyzed. The chain algorithm begins calculations at element 
1 by assuming that node 0 is fixed. The equivalent external 
loads at node 1 are then determined by finding the internal 
loads at that node by using the equations of static equilibrium. 
The deflections of this element are now found as if it were a 
single cantilever beam. As the algorithm continues, it moves 
the next elements through a rigid-body rotation such that the 
angles are compatible at the end of element 1 and the beginning 
of element 2. Equivalent loads are now found for element 2 
at node 2, and it is analyzed again as a single cantilever beam 
(Fig. 6). When the deflections are found, the following ele­
ments are rotated and translated such that the angles at node 
2 are compatible. The sequence of finding equivalent end loads, 
calculating deflections, and rotating remaining elements is re­
peated for each element until the last element is reached. Ac­
curacy and stability are helped by two factors. First, it is 
important that the discretization be fine in areas of large de-' 
flection. Second, the load should be added in increments such 
that improved estimates of moment arms can be found for the 
equivalent end load calculations. 

Shooting Method. The chain algorithm calculates the de­
flection of a flexible member fixed at one end. A shooting 
method may be used in conjunction with the chain algorithm 
when additional boundary conditions must be met. These 

Fig. 6 A generalized compliant mechanism and a typical beam element 
as used by the chain algorithm 

boundary conditions are generally position and rotation con­
straints at a finite number of nodes. For example, consider 
the slider in Fig. 7. The boundary conditions for this mech­
anism would be no rotation and no vertical deflection at the 
slider, and no translations and no rotation at the fixed end. 
Since the chain algorithm assumes the first node to be fixed, 
the boundary conditions at the fixed end are readily met. The 
other constraints are met by estimating the corresponding re­
actions loads and treating these as external loads in the chain 
algorithm, and calculating the resulting deflections. In general, 
the error in the boundary conditions can then be calculated as 

/ = 1 , ,n (24) gi(z)=si(z)-si; 

where g, (z) is the boundary condition error (residual) function, 
z the reaction load vector, s*the desired final value of s, (z), 
and n the number of boundary conditions. An iterative tech­
nique, or shooting method, is needed to solve the set of n 
nonlinear error functions. Two such methods, for example, 
are the Newton-Raphson technique and unconstrained opti­
mization (Her, 1986). The Newton-Raphson technique finds 
a correction vector for z, 5Z, by truncating the Taylor's series 
expansion of the error functions and evaluating the Jacobian 
matrix. The correction vector may then be found by 

f8zi> 

\&z„) 

dzi dz2 dzn 

dgn dgn dgn 

_ dzi dzi dz„_ 

-gl1 

~gn) 

(25) 

ite) = [J]-l{-g} 

where [7]"1 is the inverse of the Jacobian matrix. Since g, 
cannot be expressed in closed form, the partial derivatives in 
[/] must be evaluated numerically. The system of simultaneous 
linear equations in Eq. (25) may be solved by a method such 
as the Gaussian elimination method. Once the correction vector 
is found, a new reaction load vector is obtained as 
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Fig. 7 Compliant slider mechanism and deflected configuration 

input loads 

BOUNDARY CONDITIONS: 

At node 0: AX=0, AY=0, A0=O (fixed) 

At node 22: AX=0, AY=0 (pinned) 

At nodes 6 and 12: 8=desired deflection 

(b) 
Fig. 8 Model for large-deflection calculations (a) compliant mechanism 
with outline of fully compliant model, and (b) discretization of model 
and boundary conditions 

{zrw=[z} + \bz} (26) 
This process is continued until the error (residual) functions 
are sufficiently close to zero. 

An alternative to the use of the Newton-Raphson method 
is an unconstrained minimization algorithm, such as the Dav-
idon-Fletcher-Powell method (Davidon, 1959; and Fletcher 
and Powell, 1963) or Powell's method (Powell, 1964). Such a 
method would be used to find the reaction loads, z, by min­
imizing the sum of the error functions squared, i.e., 

/(z) = 2]fe;(z)]2 (27) 

The method has converged when the objective function, /(z) , 
is sufficiently close to zero. 

Figure 8 shows the compliant hand tool [Fig. 8(a)] discre-
tized into elements [Fig. 8(b)] and the associated boundary 
conditions. The main difference between the mechanism shown 
in Fig. 8(a) and that shown in Fig. 5(c) is the change in 
location of the passive pivot, as discussed previously, and 
aesthetic changes. Since the chain algorithm assumes node 0 
to be fixed, the remaining boundary conditions will be met 
with the help of a shooting method. For instance, if no work-
piece is placed in the output grips, then only the two boundary 
conditions at node 22 need be satisfied. 

(a) 

* /*£*% 
-* 5-V* <*£*> 

(b) 

Fig. 9 (a) Final hand-tool design, and (/>) photograph of finished product 

4-lb input 

3-lb input 

(a) 

3-lb input 
2-Ib input 

4-Ib input 

5-lb input 

(b) 

Fig. 10 (a) Mechanism deflection with no workpiece and (b) mechanism 
deflection with rigid workpiece 

The final hand tool design is shown in Fig. 9(a) and a 
photograph of the finished product in Fig. 9(6). Its deformed 
configurations for different input loads and no workpiece is 
shown in Fig. 10(a). Figure \0(b) shows how the mechanism 
deforms under different input loads when gripping a rigid 
workpiece at the output port. 

Performance Analysis. The fully compliant model is used 
to verify that the mechanism performs as desired and to im­
prove the design as needed. This analysis is necessary for com­
pliant mechanisms since the input/output characteristics are 
not easily calculated. For instance, the mechanical advantage 
of a compliant mechanism may vary as a function of the energy 
stored in the flexural pivots, the initial and final orientations, 
the method of loading, and the flexible and rigid segment 
dimensions. 

286/Vol . 116, MARCH 1994 Transactions of the ASME Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



,(lb) 

3D 

30 

0< 

20 

15 

10 

5 

0 

-
/ ^ 

s^h=to 

/ / / / 
; / 5=.025 / / / 

//h=.™ 

1 1 1 I I I 

3 
Fin (lb) 

(a) 

0 1 2 3 4 5 6 
Fin (lb) 

(b) 

Fig. 11 Input/output characteristics of compliant hand-tool (a) output 
force versus input force, and (b) mechanical advantage versus input 
force, for various workpieces 

Figures 11(a) and 11(b) show variations of the output 
force, Fou„ the mechanical advantage, ma = Fou,/Fin, respec­
tively, with increasing input force, Fin, for the example design. 
The three graphs in each figure represent the effects of using 
different sized workpieces, where 5 is the amount the output 
port deflects before gripping the workpiece, and b0 is measured 
as the original undeflected distance between nodes 6 and 12 
[Fig. 8(b)]. In comparison, a rigid-body mechanism working 
on a rigid workpiece would have a constant mechanical ad­
vantage with Fin for each given workpiece. The varying graphs 
for different workpieces illustrate the loss of energy to member 
deflection in compliant mechanisms. The increase in mechan­
ical advantage, ma, [Fig. 11(6)] after initial contact with the 
workpiece, for 8 = 0.025 and 8 = 0.050, is due to the compliant 
mechanism's ability to deflect toward its toggle position. 

Conclusion 
The design methodology suggested and explained herein 

should prove to be useful in the design of compliant mecha­
nisms, and offer an alternative to the trial and error methods 
currently used in industry. The pseudo-rigid-body model con­
stitutes a powerful tool which allows the designer to use con­
ventional knowledge of rigid-body mechanisms, and develop 
a significant portion of the design. The accuracy of the model 
increases as the lengths of the flexural pivots relative to those 
of the rigid sections decrease. This model is analyzed and 
modified to improve performance and satisfy design con-, 
straints. The modification and analysis procedure may be ac­
complished by simple iterative methods or formal optimization 
techniques. Once the pseudo-rigid-body analysis is completed, 
the mechanism performance is checked by using a fully com­
pliant model, and the design can be further improved. This 
model involves a finite element formulation such as the chain 
algorithm and a shooting method. This model takes into ac­
count the geometric nonlinearities introduced by large deflec­

tions. The above methodology was demonstrated by the design 
of a one-piece hand tool. The hand tool served to exemplify 
the various stages of design, and also illustrated the combined 
effects of energy storage in flexural pivots, and the changing 
orientation approaching toggle. 
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A P P E N D I X 
Her (1989) proposed a finite element type algorithm for use 

in compliant mechanism analysis called the' 'chain algorithm.'' 
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node i-1 

element 1 

Fig. A1 Flexible cantilever beam discretized into nseg elements 

Much of this work was developed from the earlier work by 
Harrison (1979) and Miller (1980). The chain algorithm is so 
named because it requires discretization of the object being 
modeled into beam elements and analyzes each element in 
succession. Each element is treated as a beam cantilevered at 
the end of the previous element. Equivalent loads are found 
for each cantilevered element, and its deflections are calcu­
lated. 

To illustrate the procedure, consider a flexible cantilever 
beam (Fig. Al), discretized into a number of beam elements. 
The first node (node 0) is considered fixed and located at the 
origin of the global coordinate system O-X-Y. The deflection 
of element 1 is calculated by treating it as a cantilever beam, 
and loaded at node 1, as shown in Fig. A2(a). The end loads 
are the internal axial, transverse, and moment loads, calculated 
by use of the equations of static equilibrium, i.e.: 

(Pax)i = 

{P,r)l=~ 

n 

2 (A)/ 
_ /= 1 

n 

S (fx)i 

COS01 + 

sin^! + 

_ / = l 

_ / = i 

sin0, 

COS01 

Ml = ̂ lm,+ ̂ ]Ufy)l(xl-xl)-(fx)l(yl-y1)] (Al) 
1=1 1 = 2 

where (Pax)i, (Pir)\ and Mj are the internal axial load, trans­
verse load, and moment at node 1, respectively, and (/*),, 
(/j,),-, and mi are the externally applied loads in the global X 
and Y directions, and the externally applied moment at node 
/', respectively. These loads may now be used to calculate the 
deflections of the end of beam element 1: 

(A2) 

where (8ax)i> (5<r)i>
 a nd A0) are the elastic axial, transverse and 

angular deflections, respectively, of element 1 at node 1 and 
[K] f' is the inverse of the stiffness matrix (flexibility matrix) 
for element 1. The axial deflection, 8ax> is assumed to be neg­
ligible and the equations that follow reflect this assumption. 
The transverse deflection is easily transformed to global co­
ordinates as follows: 

A J O - t o O i s i n p . + Afl,) 

(A3) Ay,= (5,r),cos(6>1 + A0,) 
The new coordinates of node 1 are found as 

x' i = Xi + AX{ 

y'l=yi + AYl (A4) 

With the new coordinates of node 1 known, the deflection 
of element 2 can be found. To ensure compatibility between 
elements, element 2 and the remaining elements go through a 
rigid-body rotation such that the angular deflection at the end 
of element 1 is the same as that at the beginning of element 

node 0 
(a) 

elastic 
deflection 

r AYi 

no e l-1 \ original undeflected 
ngid-body position of element i 
translation 

(b) 

Fig. A2 (a) The detlection of element 1, and (b) the deflection of element 
/, as calculated by the chain algorithm 

2. Element 2 is now considered to be cantilevered at node 1, 
internal loads are found and applied at node 3 and the cor­
responding deflections are found. This process is continued 
for each segment in the chain until the last element is reached. 
In general, the calculations for the /th element are similar to 
the special case of element 1, except for the changes in moment 
arm calculations in Eqs. (Al) and rigid-body rotations of ear­
lier elements. This is illustrated in Fig. A2(b). The internal 
loads for the j'th element can be written as 

{P«)l= 

(Plr)l= -

S (fx)j 
-J = i 

1 , </*)/ 
-j = i 

cos^,+ 

sin^,+ 

E (/,)y 

[S (Ah 

sin ,̂-

costy, 

Mi=T,mJ+Ti Ufy)jMji-(fx)jWjil (A5) 

where 

¥, = 0, + Ae,-, 
and A9,„i is the total angular displacement of the previous 
element; Ax,, and Aj?)/ are the distances from node / to node j 
using the most up-to-date coordinates (Salamon, 1989), and 
are defined as 

Axji= (Xj-Xj)cosAGt-i- (yj-yi)sinA9j-i 
A ^ = {xJ-Xj)smAQj-.l + (yj-y/) cos AQ^ i (A6) 

The deflection equations are similar in form to (A2): 
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Fig. A3 Six-degree-of-freedom beam element 

The number of load increments and the number of iterations 
may be adjusted as needed to increase efficiency and accuracy. 
For instance, if a large number of load increments are used, 
then a small number of iterations at the end are needed, and 
vice versa. 

The flexibility matrix [/ST],"1 used in the beam deflection 
calculations of Eqs. (A7) may be found by considering the six-
degree-of-freedom beam element shown in Fig. A3 . The stiff­
ness matrix for this element (Yang, 1986) may be written as: 

&ax\ 

8,r\ 

Ad . 

= [KV 

Pax u 
M 

(A7) 

The total displacements must now not only include the elastic 
displacements, 

Axf = - (5,,0,-sin*,-

Ayf=(a„.),-cos¥, (A8) 

but also the rigid-body displacements caused by the angular 
deflections of the previous elements 

Ax'=L,-(cos¥,—cos0,-) 

Ayri=Li(sm*i-smdi) (A9) 

and the total x and y displacements of the previous elements. 
In other words: 

A A ' ^ A A ' i - i + Axf + Ax? 

AY^AYi-i+Ayi + Ayl 

A e j = A e i - i + A9i (A10) 

A considerable amount of error may be introduced into the 
formulation through inaccurate moment arm calculations in 
Eqs. (A5). This error stems from the fact that the calculations 
must be made from the latest available deflected positions 
rather than from the final deflected positions. This error can 
be reduced by using a load increment technique (Her, 1986) 
and iteration (Salamon, 1989). 

The load increment technique works by applying the external 
load in increments. This means that some percentage of the 
load will be applied, the chain calculations performed, and the 
deflections found for this loading. The load is increased to the 
next percentage increment and the deflections are again cal­
culated, only this time the moment arms are evaluated from 
the deflected position of the previous load increment calcu­
lations. The load increments can be written as: 

( / ; ) , = - ; (/,)/ 

m• =—r- mi 
nine 

n=l,2 nine (All) 

where nine is the number of load increments. The superscript 
n denotes the current load increment. 

This method improves the accuracy of the chain calculations 
considerably, especially for relatively large deflections. As. 
would be expected, the accuracy of the chain algorithm is 
increased with increasing number of load increments. 

Iteration may be used with the load increment method to 
further improve accuracy. This is done by using the deflections 
found in the final load increment calculations to evaluate the 
new moment arms and new deflections for the full external 
load. This iteration may be continued until the desired accuracy 
is obtained. 
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Using boundary conditions to reflect that each element in the 
chain algorithm is fixed to the previous element, i.e., «i = u2 

= w3 = 0, the above matrix equation reduces to 
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-

(A13) 

The flexibility matrix, [K]f\ can be obtained by inverting the 
above stiffness (coefficient) matrix: 

[* ] /- ' = 

where 
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AE 
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0 

4L2Qi + 240£7L3 

3 ( Q 2 + 240£'2/2) 
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(A14) 

(Si),- = 2L3 (/>„),-

( & ) , = 3LJ(Pax)
2+ UOEJiL2 (Pax)i 

An advantage of the flexibility matrix is that the deflection of 
each beam element is calculated individually, using the same 
equation. This eliminates the need to invert large stiffness 
matrices as required in conventional finite element analysis. 
As stated earlier, hax in E q . (A13) is assumed negligible. 

The deflection equations can be simplified even further by 
alternatively defining an equivalent internal transverse load to 
approximate the nonlinear effects of axial stiffening (Timo-
shenko, 1941). The transverse load (Ptr), in Eqs. (A5) helps 
yield 
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(Prr)w = 7 ^ - - (M5) 
1 - a, 

where 
(P«)/(2Lf)

2 

iJ//(ir 
The beam deflections can now be calculated using linear beam 
theory and the equivalent transverse load: 

« * l ((p'r)i^L] M,Lf\ 

The error in these approximations increases with increasing 
axial force (/>„),-. 
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