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ABSTRACT
This work presents a methodology to solve

transient inverse design of radiative enclosures for
heating processes that require refined temperature
control. The proposed methodology is applied to
find the heat input to a heater located at the top of
a three-dimensional enclosure that can satisfy a
prescribed time-dependent temperature curve on a
surface located at the base of the enclosure. The
process is governed by radiative exchanges
between diffuse, gray surfaces. This problem is
described by an ill-conditioned system of linear
equations, which is regularized by the TSVD
(truncated singular value decomposition) method.
The inverse analysis led to a heat input in the
heater that assured, within an error less than
1.0%, both uniformity and the correct magnitude
of the design surface temperature in every instant
of the process.

NOMENCLATURE
A matrix of coefficients
c thermal capacity per unit of area, J/(K·m2)
C dimensionless thermal capacity, c/ (σΤf

. 3
refT )

F view factor
H height, m
L length, m
Q dimensionless heat flux, q/(σ 4

refT )
q heat flux, W/m2

r equivalent thermal resistance, K/W
R dimensionless thermal resistance, rσ 3

refT
t dimensionless temperature, T/Tref
T temperature, K
x position along the enclosure length
y position along the enclosure width
z position along the enclosure width
w singular values of matrix A
W width, m

Greek symbols
ε emissivity
τ dimensionless time, Τ/Τf 
Τ time, s
Τf time required for the design surface to reach 

99 % of the final temperature, s

Subscripts/Superscripts
d design surface
h heater
i irradiation
j counter
k counter
m time step
o radiosity; outside (initial) temperature
r net radiative heat flux
w wall

INTRODUCTION
Many industrial processes, such as in the

metallurgy field and the rapid thermal processing
of silicon wafers, require controlled heating of
materials, as has been described by Choi and Do
[1], Huang et al. [2], and Balakrishnan and Edgar
[3]. Regarding the material temperature, such
processes require not only uniformity but also that
it follows a specified time-dependent curve. This
can be achieved only by means of a carefully
controlled heat flux on the surface of the
processed material, as defined by the energy
balance, so in fact both the temperature and heat
flux are imposed. The thermal designer aims at
finding the thermal conditions of the system such
that these two conditions are satisfied.

In the inverse design approach, the conditions
in the unconstrained elements are found directly
from the two specifications on the design surface,
avoiding the trial-and-error procedure of the
foward design. The mathematical model allows
the prescription of two conditions in some
boundaries, while other boundaries are left
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unconstrained. For problems that involve thermal
radiation heat transfer, this type of formulation is
described by a Fredholm integral equation of the
first kind, known to result in ill-posed problems
that can be solved only by means of regularization
methods (Hansen [4]). A comprehensive review
of steady state inverse design can be found in
França et al. [5].

This paper considers a transient inverse design
of a three-dimensional rectangular enclosure. The
objective is to find the time-dependent heat input
in the heater located at the top of the enclosure so
that the time-dependent temperature curve
imposed on the design surface is attained. All
physical properties are assumed constant, and all
the surfaces that form the enclosure are gray
emitters and absorbers. The energy transport is
governed solely by thermal radiation, which is
treated numerically through the discretization of
the radiative terms of the energy equation. The
resulting system of equations is expected to be ill-
conditioned, since it arises from the discretization
of a Fredholm integral equation of the first-kind.
The set of equations is solved by first relating the
known temperatures and heat fluxes of the design
surface elements directly to the unknown
radiosities of the heater elements. This requires an
iterative solution, since the effect of the remaining
walls of the enclosure needs to be assumed and
corrected. The ill-conditioned nature of the
system is treated by means of the truncated
singular value decomposition (TSVD).

PHYSICAL AND MATHEMATICAL MODEL
Figure 1 presents a schematic view of a three-

dimensional radiative enclosure,  which is formed
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Figure 1 – Schematic of the radiative enclosure

Figure 2 – Division of the bottom and two side
surfaces of the enclosure into finite size elements

by gray, diffuse surfaces. The space inside the
enclosure is filled with a transparent medium, so
the heat is transported solely by thermal radiation
exchanges among the surfaces. The design
surface and the heater are located on the bottom
and top of the enclosure. The remainder of the
enclosure is formed by walls that are isolated,
albeit not ideally, from the outside. The length,
width and height of the enclosure are L, W and H.

As depicted in Fig. 2, the enclosure is divided
into finite-size square elements, ∆x = ∆y = ∆z, to
which the energy balance is applied. The elements
in the design surface, heater and wall are
designated by jd, jh and jw, respectively.

Consider that each design surface element jd
is imposed a heating history of the following type:

)6.4exp()1(1 τ−−−= ojd tt     (1)

So, the temperature is required to increase from a
value of t = to for τ = 0 to t ≅  0.99 for τ = 1.0.
(The constant “4.6” assures this requirement.) The
elevation in the temperature of the design surface
must follow from the energy balance; that is, the
increase in the internal energy of the design
surface must account for heat gains and losses:

R
tt

Q
d

dt
C ojd

jdr
jd

d
−

−−=
τ ,   (2)

The first term of the right-hand side of Eq. (2)
accounts for the net radiative heat transfer
exchanged with the other enclosure surfaces. The
negative signal arises from the convention that
radiative heat out of the surface is positive. The
second term accounts for heat losses to the
outside, at the temperature to, where R is the
equivalent thermal resistance.

Rearranging Eq. (2) allows finding the
required radiative heat flux on the design surface
at a given instant of time:
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Equation (3) indicates that the heat flux to be
provided to the design surface must account for
both the increase in the temperature and
compensate for the heat losses. Note that the
transient term of Eq. (2) is based on the lumped
capacitance model. While this model is accurate
only for small temperature gradients in the
interior of the material, Eq. (2) still holds as an
illustrative, simple relation for the required heat
load in a material undergoing an imposed heating
history. When the temperature of the material is
not uniform, it is necessary to apply a conduction
analysis in the interior of the material to find the
required heat load. This would complicate,
although not change the essence of the inverse
analysis presented here.

The radiative heat flux specified on the design
surface must be supplied by the heater located
along the top of the enclosure. This energy is
transported by thermal radiation, which involves
multiple reflections and absorptions in all the
surfaces of the enclosure. The mathematical
model relies on the radiative relations for
enclosures (Siegel and Howell [6]). The problem
is formulated by a system of integral equations,
which can be solved numerically by the
discretization of the domain into finite size
elements. The net radiative heat flux on a design
surface element jd is given by a balance between
the radiosity and the irradiation:

jdijdojdr QQQ ,,, −=   (4)

The radiosity Qo,jd accounts for both emission
and reflection from the design surface element.
Since both the temperature and heat fluxes are
specified on the design surface, the radiosity of
the design surface element can be readily found
from the relation:

jdr
d

d
jdjdo QtQ ,
4

,
1

ε
ε−

−=     (5)

The irradiation Qi,jd accounts for all the
incident energy on the design surface element,
including both emissions and reflections from the
other surfaces of the enclosure:

∑∑ −− +=
jw

jwojwjd
jh

jhojhjdjdi QFQFQ ,,,   (6)

In the above equation, for example, Fjd-jh is the
view factor between elements in the design
surface and in the heater; Qo,jh is the radiosity of
element jh in the heater.

As stated before, no thermal condition has
been imposed on the heater. At this point,
however, it is possible to rearrange Eqs. (4) and
(6) to provide an equation for the radiosity of the
heater elements:
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Neglecting the thermal capacity of the heater
and other losses, the heat input in the heater
should equal the net radiative heat transferred to
the other surfaces of the enclosure, that is:

∑

∑

−

−

−

−=

jw
jwojwjh

jd
jdojdjhjhojhr

QF

QFQQ

,

,,,

  (8)

To solve for the net radiative heat flux in a
heater element jh using Eqs. (7) and (8), it is still
required to find the radiosities of the wall
elements, Qo,jw. It is considered here that the
thermal capacity of the wall is not negligible, so
they also absorb energy during the heating of the
design surface. In addition, as occurs in practice,
these elements are not ideally insulated, so heat
losses to the outside should be also accounted for.
Therefore, the usual simplification of adiabatic
wall, Qr,jw = 0, is not adopted here. Instead, the
radiative relations will be set in terms of the
temperatures of the elements on the wall, since
they will be followed and determined during
every time instant of the process. In such a case,
the radiosity of a wall element jw can be found as:
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The last term in the above relation accounts for
the energy that the wall element receives from
another wall element, jw*, when they face each
other. To find the temperature of the wall
elements, it is necessary to solve the energy
balance. Following the same arguments presented
for the design surface elements, one obtains:

R
tt

d
dt

CQ ojwjw
wwr

−
+=−

τ, (10)

where the net radiative heat flux can be found as:
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SOLUTION PROCEDURE
Regularization of the System of Equations

In this inverse analysis, the radiosities of the
design surface elements are known from the
application of Eq. (5). Taking the energy balance
on the heater elements, Eq. (8), to establish a
relation for their radiosities does not result in any
advantage, since it also introduces their unknown
heat fluxes. For this reason, the energy balance
for the design surface is taken to form a system of
linear equations to solve for the unknown
radiosities of the heater elements, as given by Eq.
(7). However, this system has two challenging
aspects. First, if the numbers of design surface
elements and of heater elements are M and N,
then the numbers of equations and of unknowns
will be M and N, respectively. Therefore, unless
M and N are equal, the numbers of equations and
of unknowns are not be the same. Secondly, Eq.
(7) is the discrete form of a Fredholm integral
equation of the first-kind, and so the system is
expected to be ill-conditioned (Hansen, 1996).
The application of conventional methods of
matrix inversion inevitably leads to a solution
vector whose components present steep
oscillations between positive and negative
numbers, which is not physically acceptable since
the radiosities must be positive numbers.

The two above difficulties can be tackled with
the application of so-called regularization
methods. Such methods impose additional
constraints to the original problem to smooth the
solution vector, although at the expense of
introducing an error into the solution. Among
other methods, it can be mentioned the methods

based on singular value decomposition (SVD),
the Tikhonov or conjugate gradient regularization.

In this work, the truncated singular value
decomposition (TSVD) was the selected method.
First, the matrix A corresponding to the set of
Eqs. (7), and whose components are the view
factors Fjd-jh, is singularly decomposed into three
matrices:

TVWUA ⋅⋅= (12)

where U and V are orthogonal matrices, and W is
a diagonal matrix formed by the singular values
wj. The solution vector x, which is formed by the
radiosities of the heater elements, is computed by:
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where N is the number of unknowns, and bk is the
coefficient of the independent vector b.

In ill-posed problems, the singular values wj
decay continuously to very small values. Since
they are in the denominator of Eq. (13), this
results in components of x with very large
absolute numbers. However, the smaller the
singular value wj is, the closer the corresponding
vector vj is to the null-space of A. In other words,
the terms related to the smaller singular values
can be eliminated from Eq. (13) without
introducing a large error to the solution. This is
the principle idea of the TSVD: only the terms
related to the p-th largest singular values are kept
on Eq. (13), instead of all N terms. The solution is
the vector x with the smallest norm subjected to
minimum deviation bxA −⋅ . Another important
feature of the TSVD method is that it can also be
applied to the case where the numbers of
unknowns and equations are not the same, as will
be shown in the results section.

Solution Strategy
This section discuss the steps to be followed

to find the time dependent heat flux distribution
on the heater.

In the beginning of the process, τ = 0, the
design surface and the wall are at a uniform
temperature to, the same temperature as outside
the enclosure. The net radiative heat flux on the
design surface can be found by applying an
explicit finite difference approach to the transient
term of Eq. (3):
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In the above equation, m
jdt  represents the

temperature of the design surface computed from
Eq. (1) at time τ∆=τ m , where τ∆ is the time
step. An analytical expression for the time
dependent heat flux on the design surface could
be easily obtained from Eqs. (3) and (1), but since
an explicit finite difference approximation will
used for the wall elements, Eq. (14) was used to
keep a uniform approach.

Once the heat flux and the temperature are
known for each design surface element, its
radiosity can be determined from Eq. (5). Next
the radiosities of the heater elements, Qo,jh, are
determined from the solution of Eq. (7). As
discussed in the previous section, this system of
equations is ill-conditioned, and is solved by the
regularization method. Since the radiosities of the
wall elements, Qo,jw, are unknown, an iterative
approach is involved. First, Qo,jw is guessed in Eq.
(7) to allow the computation of Qo,jh. Once Qo,jh is
computed, Eq. (9) is applied to solve for Qo,jw.
This last step requires a solution of a linear
system of equations on the unknowns Qo,jw, a
system that is both square and well-conditioned,
so it can be solved by any standard method. With
the newly calculated Qo,jw, the system of
equations formed by Eq. (7) is solved to find new
values for Qo,jh. This procedure is repeated until
convergence is achieved. Next, the net radiative
heat flux on the heater, Qr,jh, is determined from
Eq. (8), since all the radiosities are now known.

Note that the heat flux on the heater elements
determined according to the above is related to
time step m. At this time step, the design surface
and wall temperatures are also known. Since one
thermal condition is known for each boundary of
the system, a forward analysis can then be applied
to find the actual net radiative heat flux design
surface element, which is not exactly the same as
the imposed one due to the regularization. The
actual temperature of the design surface in the
next time step, m+1, is found from the application
of Eq. (14) using the actual heat flux.

To determine the wall temperature for time
step m+1, Eq. (11) is first applied to find the net
radiative heat flux on each wall element at time
step m, since all the radiosities are known. Then,
the temperature of the wall elements at time step

m+1 can be determined from the application of an
explicit finite difference approach to the transient
term of Eq. (10):
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Finding the heat flux on the heater for the next
time step, m+1, only requires that the procedure
outlined above is repeated. A time marching
solution has been therefore established.

Verification of the Solution
The application of the TSVD regularization

inevitably introduces an error to the solution,
since only p < N terms are kept in the series of
Eq. (13). The accuracy of the solution can be
accessed by comparing both the heat flux and the
temperature obtained from the inverse solution
with the prescribed values for the temperature,
Eq. (1) and heat flux, Eq. (3):
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RESULTS AND DISCUSSION
The case considered in this work consists of a

three-dimensional enclosure as shown in the
schematic of Fig. 1. The initial temperature of the
enclosure, the same as the outside temperature, is
to = 0.375. The total hemispherical emissivities of
the design surface, of the heater and of the walls
are εd = 0.5, εh = 0.8 and εw = 0.8, respectively.
The thermal capacities of the design surface and
of the wall are Cd = 20 and Cw = 4. As a common
design procedure, the thermal resistance to the
outside, R, is set so that the maximum heat flux
lost to the outside is about 2.5 % of the maximum
heat flux in the design surface, giving R = 0.4.

The aspect ratio of the enclosure base is W/L =
0.8. The selection of the other dimensions of the
enclosure requires a few considerations. First, the
design surface ought not to cover the entire
extension of the base, since the portions close to
the corners are mainly affected by the side wall
conditions, not the heater. Therefore, the design
surface dimensions are taken as Ld/L = 0.6 and
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Wd/L = 0.4. In addition, to reduce the effect of the
side walls, previous work (França et al., 2002) has
shown the advantage of selecting heaters with
larger dimensions than those of the design
surface. For this reason, the heater is selected to
cover the entire top surface of the enclosure: Lh/L
= 1.0 and Wh/L = 0.8.

One consequence of this choice is that the
number of elements in the design surface and in
the heater (M and N, respectively) are not the
same. Taking the advantage of the symmetry (that
is, only a quarter of the domain needs to be
solved: 0 ≤ x/L ≤ 0.5, 0 ≤ y/L ≤ 0.4), and selecting
a grid size of ∆x/L = 1/30, one finds M = 54 and N
= 135. Thus, the system of equations formed by
Eq. (7) will have M = 54 equations and N = 135
unknowns.

To select the enclosure height, it is instructive
to inspect the characteristics of the system of
equations formed by Eq. (7). Figure 3 presents the
singular value decomposition of the system of
equations for H/L = 0.1, 0.2, 0.3 and 0.4. The
number of singular values is equal to the number
of unknowns, N = 135. Since the number of
equations is M = 54, all singular values for j ≥ 55
are null, and are not shown. As seen, in all cases
the singular values wj decay continually with
index j, which is typical of ill-posed problems. In
addition, the larger the enclosure height, the more
abrupt is the decaying of the singular values. This
indicates that enclosures with relatively large
heights make it more difficult to invert the system
of equations, and therefore are less interesting
design choices. In addition, considering that an
enclosure with H/L = 0.1 might be too short, the
selected height is H/L = 0.2.
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Figure 3 – Singular values of matrix A for
different heights of the enclosure.

Now that the system is completely defined,
the procedures outlined previously is employed to
find the required heat input in the heater. This
problem involves the TSVD regularization of
matrix A, that is, the selection of different values
of the regularization parameter p to be applied in
Eq. (13). Then, the obtained solution for each p
can be compared in terms of their adequacy
(physical and practical constraints) and accuracy
(the error in the design surface temperature).

Figures 4(a) to 4(c) present the required heat
flux distribution on the heater at the initial instant,
τ = 0, for different regularization parameters, p =
4, 6 and 8. It was verified that selecting p larger
than 8 led to negative heat fluxes on some of the
heater  elements  (not  a  practical  solution)  or  to

Figure 4 – Heat flux distributions in the heater for
different regularization parameters (τ = 0):

(a) p =4, (b) p = 6, and (c) p = 8.

(b)

(a)

(c)
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negative radiosities (not a physically possible
solution). As seen in the figures, the three
solutions present the oscillations that often
characterize such inverse problems. These
oscillations are in fact reminiscent of the steep
oscillations of the exact solution. As the
regularization parameter is reduced, the steep
oscillations are increasingly smoothed out. Once
the regularization parameter is selected, the
procedure outlined in the Solution Strategy
section was applied to determine the heat flux
required to the heater during the transient process.
For that, a time step of ∆τ = 0.001 was adopted.

The different solutions presented in Figs. 4(a)
to 4(c) shown that more than one solution can be
proposed for an inverse design problem.
However, each regularized solution can only
satisfy the original problem with some error. In
section Verification of the Solution, two errors
have been defined: one based on the heat flux and
one based on the temperature of the design
surface. Both errors have been computed for the
three regularizations (p = 4, 6 and 8) for different
instants of time, and are presented in Fig. 5. As
expected, the results show that the smaller the
regularization parameter p the larger are the errors
for the heat flux and temperature distributions on
the design surface. It is interesting to note that the
errors for the heat flux and temperature present an
opposite behavior with time. The error in the heat
flux is maximum in the beginning of the process,
decreases steadily up to τ ≅ 1.0, and then shows a
slight increase with time. The error in the
temperature, on the other hand, starts with a
smaller value  than  that of the heat flux, increases

Figure 5 – Maximum errors of the inverse
solution during the heating process  for different

regularization parameters: p =4, 6 and 8.

to a maximum for a time less than τ = 0.5, and
then remains nearly constant with time.

It should be pointed out that, for the thermal
process, it is the error in the temperature that
matters the most, since it is the temperature
history that is in fact imposed on the design
surface; the heat flux is only the means for it to
occur. Comparing the three solutions, for p = 4, 6
and 8, if a maximum error of 1.0 % is imposed to
the temperature, then the solution for p = 4 is not
satisfactory. The solution for p = 8 presents the
smallest error, but it was observed that, for more
advanced times, it led to negative heat fluxes in
some elements of the heater elements, which is
not a practical solution. So the solution for p = 6
remains, and satisfies all the imposed criteria:
accuracy and practicality. Figures 6(a) and 6(b)
show the required heat flux on the heater for a
intermediary time, τ = 0.1, and for a sufficiently
long time, τ → ∞, when the temperatures in the
enclosure reach steady state. Comparing Figs.
5(b), 6(a) and 6(b), all solutions obtained with p =
6, the shape of the heat flux distribution did not
change considerably, only the intensity of the heat
flux (note the change of scale between them). For
long heating periods, τ → ∞, even though the
temperature of the design surface is no longer
required to increase, the heater must still provide
some heat to compensate the heat losses to the
outside, as shown in Fig. 6(b).

Figure 6 – Heat flux distribution on the heater for
two instants of time: (a) τ = 0.1, and (b) τ → ∞.
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Figure 7 – Temperature distribution on the design
surface for τ = 0.1. (p = 6)

Figure 8 – Heat flux distribution on the design
surface for τ = 0.1. (p = 6)

Figures 7 and 8 show the temperature and the
heat fluxes distributions on the design surface for
instant of time τ = 0.1. At this instant of time, the
required design surface temperature, according to
Eq. (1), is tjd = 0.605. The temperature obtained
from the inverse solution remained close to the
value for the entire extension of the design
surface. Similarly, Figure 8 shows that for τ = 0.1,
the heat flux distribution on the design surface
also remained close to the prescribed value,
Qr,jd = -36.9. Both figures also show that the
larger deviation occurs at the edges of the design
surface, especially in the corners, where the effect
of the side walls become important.

CONCLUSIONS
This work considered a transient inverse

boundary design where the time-dependent heat
input on the heater was determined to satisfy  a
specified time-dependent temperature curve. The
numerical discretization of the problem led to an
ill-conditioned system of equations as it is usual
in the inverse design approach, which was solved

with the aid of the truncated singular valued
decomposition (TSVD) regularization method.

The proposed methodology involved a time
marching solution, setting a system of equations
that related the design surface elements directly to
the heater elements, calculating the remaining
terms, that is, the radiosities of the wall elements
from the conditions of the previous iterative step.
This procedure allowed the application of the
regularization to a reduced system of equations.

The example problem consisted of a three-
dimensional radiative enclosure formed by gray,
diffuse surfaces. During the heating of the design
surface, the energy consumed by the other walls
of the enclosure as well as heat losses to the
outside of the enclosure were taken into account
to find the necessary heat input in the heater. The
proposed inverse analysis proved successful to
provide, within an error of less than 1.0 %, both
uniformity and correct magnitude of the design
surface temperature during the entire heating
process. Solving such a problem would be
impractical with a forward approach, since it
would require a cumbersome trial-and-error
solution for each instant of time.
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