
Ming-Yuan He 
Institute of Mechanics, 

Chinese Academy of Sciences, 
Beijing, China 

John W. Hutchinson 
Division of Applied Sciences, 

Harvard University, 
Cambridge, MA 02138 

Fellow ASME 

Kinking of a Crack Out of an 
Interface 
Kinking of a plane strain crack out of the interface between two dissimilar isotropic 
elastic solids is analyzed. The focus is on the initiation of kinking and thus the seg
ment of the crack leaving the interface is imagined to be short compared to the seg
ment in the interface. Accordingly, the analysis provides the stress intensity factors 
and energy release rate of the kinked crack in terms of the corresponding quantities 
for the interface crack prior to kinking. Roughly speaking, the energy release rate is 
enhanced if the crack heads into the more compliant material and is diminished if it 
kinks into the stiff material. The results suggest a tendency for a crack to be trapped 
in the interface irrespective of the loading when the compliant material is tough and 
the stiff material is at least as tough as the interface. 

1 Introduction and Form of the Solution 

A fracture mechanics of interfacial separation is beginning 
to emerge, although there are still conceptual difficulties to be 
overcome associated wtih the nonstandard oscillatory square 
root singularity of some interface cracks. In this paper an 
analysis of a crack kinking out of an interface is carried out 
with the aim of providing the crack mechanics needed to assess 
whether an interface crack will tend to propagate in the inter
face or whether it will advance by kinking out of the interface. 
The geometry analyzed is shown in Fig. 1. The parent inter
face crack lies on the interface between two semi-infinite 
blocks of isotropic elastic solids with differing elastic moduli. 
A straight crack segment of length a and angle co (positive 
clockwise) kinks downward into material 2. The length a is 
assumed to be small compared to the length of the parent in
terface segment of the crack, and thus the asymptotic problem 
for the semi-infinite parent crack is analyzed. The stress field 
prior to kinking (a—0) is therefore the singularity field of an 
interface crack characterized by a complex intensity factor, K 
= K{ + iK2, to be specified precisely. The crack tip field at the 
end of the kinked crack is characterized by a combination of 
the standard mode I and mode II stress intensity factors, Kt 
and Ku. The analysis provides the relationships among KY and 
Kn for the kinked crack and K{ and K2 for the interface crack 
as dependent on the kink angle to and the material moduli. The 
energy release rate of the kinked crack is also related to the 
energy release rate of the interface crack. Limiting results for 
the case when the moduli differences across the interface 
disappear are compared with previously published work on 
kinked cracks. 

The remainder of this section is used to completely specify 
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the functional form of the relationships sought. The numerical 
analysis is given in the next section and results and discussion 
are given in Sections 3 and 4. Section 2 containing the analysis 
may be skipped if one is primarily interested in the results. 

Although there are three independent nondimensional 
material moduli parameters, Dundurs (1969) has shown that 
for problems of this class the solution depends on only two 
special parameters which in plane strain are 

« = [ G 1 ( 1 - P 2 ) - G 2 ( 1 - K , ) ] / [ G 1 ( 1 - V 2 ) + G 2 ( 1 - * 1 ) ] (1) 

/3 = ~ lGl{l-2v2)-G2(l~2ul)] 

/[G,(l-»2) + G 2 ( l -^ ) ] (2) 
where G and v are the shear modulus and Poisson's ratio and 
the subscript identifies the material as indicated in Fig. 1. Both 
a and /3 vanish when the dissimilarity between the elastic prop
erties of the two materials vanishes and they change sign when 
the materials are interchanged. 

The stress field for the semi-infinite interface crack (a = 0) 
has the form 

Fig. 1 Geometry of kinked crack 

270/Vol. 56, JUNE 1989 Transactions of the ASME 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



aaf)=Re{K(,2Trr)-i/2r"5a0(e)) (3) 

where ; = V - 1, r and 6 are planar-polar coordinates centered 
at the origin, K ± Kx + iK2 is the complex interface stress in
tensity factor, and . 

The angular dependence aa/3(6) is complex in general, but 
universal for a given material pair. On the interface ahead of 
the tip the tractions are 

022 + i<jn=K(2irr)-mrk. (5) 

The notation and normalizations for the interface crack used 
here follow those introduced by Rice (1987) and Hutchinson, 
Mear, and Rice (1987) which, in turn, are based on the early 
papers on the subject by England (1965), Erdogan (1965), and 
Rice and Sih (1965). The interface intensity factors are defined 
so that A"(~Kl and A"2—A"n when the dissimilarity between 
the elasticity of the two materials vanishes. Note also that 
when |8 = 0 and thus e = 0, A", measures the normal component 
of the traction singularity acting on the interface while K2 

measures the shear component with the standard definitions 
for an intensity factor. 

The complex interface factor K = A", + iK2 is taken as the 
prescribed loading parameter in the present study. For a 
specific interface crack problem, K will necessarily have the 
dimensional form 

K=K1+iK2 = (applied stress) 'LU2L~ UF (6) 

which follows from its definition in equation (5), where L is a 
length quantity such as crack length or ligament length and F 
is a dimensionless function of the in-plane geometry and 
material moduli. Examples of specific solutions for K can be 
found in the aforementioned references. 

The singular field at the tip of the kinked crack in material 2 
is the classical field with conventional stress intensity factors 
Kx and Kn such that 

* 2 ' 2' + » i ' 2' = (*i + >Kn ) ( 2 * * , ) " m (7) 

on the line ahead of the tip (xx' > 0 , x2' =0). 
As already stated, the problem considered is the asymptotic 

one where a is small compared to all relevant in-plane length 
quantities (in particular, compared to L) so that the interface 
crack is taken as semi-infinite with stresses which remotely 
asymptote to (3). The relationship between the intensity fac
tors of the kinked crack and the prescribed complex interface 
intensity AT specifying the remote field can be written as 

A'i + ;A'II=c(co,Q:,i3)A'a''e+J(co,a,lS)A%a-;e (8) 

where ( ) denotes complex conjugation and c and d are 
complex-valued functions of co, a, and /3.1 The argument justi
fying (8) is as follows: The factors A"i and Kn have dimen
sions of stress • (length)172 while AT has the form (6). By dimen
sional considerations, a must combine with K as Ka* or its 
conjugate, since in the asymptotic problem a is the only length 
quantity other than the length quantities implicit in K in (6). 
Equation (8) is a general representation of Kx + iKn consis
tent with this observation and with linearity. Use of d in (8) 
(rather than d) is purely for convenience. When e = 0, as when 
the material dissimilarity vanishes, or just when |8 = 0, the real 
and imaginary parts of (8) become 

A"i = (c«+tf«)A"i-(ci+rf,)A"2 (9) 

Ka = (cl-dl)Kl + {cR~dR)K2 (10) 

where c = cR + ic1 and d = dR + idx. This form is equivalent to 

In this paper the focus is on plane strain behavior. However, the results 
presented for the stress intensities are valid for plane stress as well when a and /3 
are evaluated using plane stress formulas. 

4 

a/L 
Fig. 2 Schemalion variation of energy release rate with length of kink
ed segment of crack for /3 ^ 0 

that employed by Bilby, Cardew, and Howard (1977) and 
Hayashi and Nemat-Nasser (1981) in reporting results for the 
homogeneous kinked crack problems which will be discussed 
in Section 2. 

In plane strain, the energy release rate Go of the interface 
crack advancing in the interface is related to K by (Malyshev 
and Salganik, 1965) 

g0 = [(1 - y , ) /G, + (1 - x2)/G2]A"A7(4cosh27re) (11) 

in the new normalization. The energy release rate Q of the 
kinked crack (« > 0) is given by 

g = [(l-»-2)/(2G2)](K? + K?,). d2) 

By (8), 

g = [ ( l - f 2 ) / (2G 2 ) ] [ ( lc l 2 + Id^KK+lR^cdJ^a^)}. (13) 

To reduce this expression further, write A" as 

KmKt + iK2 = I K\e'iL~k (14) 

where by (6), L is the in-plane length quantity characterizing 
the specific interface crack problem when a = 0. The real 
angular quantity y will be used as the measure of the loading 
combination. Then by (11), (13), and (14), 

9 = < r 2 9 o l l c l 2 + \d\2+2Re(cde2ii)] (15) 

where 

q = {(l-p)/(\+a)Vn (16) 

and 

y = y + eln(a/L). (17) 

When e = 0, the stress intensity factors, A", and Kn, and Q 
are independent of a. This is the case for similar moduli across 
the interface (a = /3 = 0). By (4), e is also zero whenever /3 = 0 
regardless of the value of a. The oscillatory behavior of the in
terface crack fields and the a-dependence of 8 only appear 
when /3^0. A sensible approach to gaining insight into inter-
facial fracture behavior, while avoiding complications 
associated with the oscillatory singularity, would be to focus 
on material combinations with j3 = 0. Indeed, Hutchinson et 
al. (1987) tabulated strain values on a and j8 for six represen
tative material combinations and found that (3 was quite small 
for most of the combinations. For example, MgO has a shear 
modulus more than four times that of Au, yet this combina
tion has a = .51, 0 = .011, and e = - .004. In this paper, 
special attention is directed to material combinations with 
/3 = 0, but the role of /3 will also be examined. 

When /3^0 and, therefore, e^0 , the interface crack with 
a = 0 suffers contact between the crack faces within some 
distance (usually exceedingly small) from the tip, as discussed 
recently by Rice (1987) and Anderson (1987), and as analyzed 
by Comninou (1977). Contact between crack faces is less likely 
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Fig. 3 Geometry and conventions for construction of integral equation 

Z= X,+ i x „ = te 

for the kinked crack (a >0 , co>0) loaded such that K} and Kn 

are positive, since this will open up the crack at the kink. 
Nevertheless, contact will inevitably occur if e^O when a is 
sufficiently small compared to L. 

The dependence of g on a for a given kink angle is sketched 
qualitatively in Fig. 2 as predicted by (15) when e^O. When 
a/L becomes sufficiently small, g oscillates between a max
imum 9 c a n d a minimum g L , which are readily found to be 

Qu = q-2Q0Uc\ + \d\]2 (18) 

<3L=q-290Vc\-\d\]2 (19) 

and which depend on K{ and K2 only through Q0. For values 
of a/L outside the oscillatory range g approaches 8*, given by 
(15), with 7 = 7, i.e., 

g* =q~2G0[\c\2 + \d\2 + 2Re(cde2'y)]. (20) 

Note that g* coincides with g when e = 0. Contact between the 
crack faces will invalidate the prediction for g from (15) when 
a/L is in the range where oscillatory behavior occurs. 

In presenting results for the energy release rate when e T± 0, 
we will feature g*. From a physical standpoint, g* should be 
relevant if there exist crack-like flaws emanating from the in
terface whose lengths are greater than the zone of contact. 
That is, g* should be relevant for testing for kinking if the 
fracture process zone on the interface is large compared to the 
contact zone of the idealized elasticity solution. If it is not, 
then more attention must be paid to the ^-dependence of g 
and to consideration of contact. In any case, g* should play a 
prominent role in necessary conditions for a crack kinking out 
of an interface, because once nucleated, the kinked crack has 
an energy release rate which rapidly approaches g* as it 
lengthens. 

The final observation about the form of the solution con
cerns the behavior expected as co—0. When co becomes small, 
the kinked segment parallels the interface and the solution ap
proaches the solution obtained by Hutchinson et al. (1987) for 
a semi-infinite crack paralleling an interface a distance h 
below the interface. That solution has the property that g = g0 

and is given by 

Kl + iKll = qei*hkK (21) 

where 0 is a real function of a and /3 which is tabulated by 
Hutchinson et al. (1987) and which is given approximately by 
4> = .158a + .063/3 when a and /3 are small. In the present 
problem for small co, h can be identified with a sin co = aco and 
(21) becomes 

KY + iKu = 9e'<*+dnu)a /£. (22) 

Thus, by comparing (8) and (22), one sees that for smallco 
c-geW+dnu), rf_0> g - g 0 . (23) 

2 Integral Equation and Solution Methods 

The integral equation governing the solution to the kinked 
crack problem is constructed using a basic solution for an edge 

Fig. 4 Dependence of strength of singularity at kink, s, as a function of 
kink angle o> tor various «(/S = 0) 

dislocation in material 2 interacting with a semi-infinite 
traction-free crack extending along the interface to the origin, 
as shown in Fig. 3. The dislocation is located at z0 and its 
branch line extends parallel to the crack to Xj -» — °°. Its radial 
and circumferential components of the Burgers vector along d 
- - co are br and bg. The traction at z on d = - co can be writ
ten as 

aee(t) + iare(t)=2Be-i"(t—n)-
l+BH^t,r,)+BH2(t,v) (24) 

where 

B = [G2/(l - v2)]{br + ibg)e-iu/{4iri). (25) 

The functions H{ and H2 are specified in the Appendix. They 
are analytic at t = -q, increase in proportion to t~W2 as /—-0, 
and decrease in proportion to rj1/2 as r/ —0. 

Denote the traction at z along 6= -co due to the interface 
crack tip field (3) by a°m (t) + ia%(t). This traction, which is 
also given in the Appendix, can be written as 

a°ee(t) + ia%(t) = (Kh{ ( 0 +Kh2(t))r
l/2. (26) 

The functions h, and h2 depend on co and e as well as t. When 
e = 0, hx and h2 are independent of t. 

The segment of the crack corresponding to Q<t<a is 
represented by a distribution of dislocations B(-q) chosen such 
that the net tractions resulting from (24) and (26) are zero on 
this line segment. Since the a-dependence of the solution is 
already known from (8), a is taken to be unity. The integral 
equation is then 

2e-"»\ B(7,)(t~r,)~'dr,+ \ B{r,)Hi{t,r,)dti 
Jo Jo 

+ ^ B(r,)H2(t,r,)dri= - (<j°M(t) +io%(t)). (27) 

Similar formulations for other problems have been given by 
Bilby and Eshelby (1968), Rice (1968), and Hayashi and 
Nemat-Nasser (1968a,b). 

Singularity at t = l. The dislocation density representing 
the kinked segment is proportional to (l-t)~W2 as t—l and 
the stress intensity factors are given by 

Kx +iKu =(27r)3/2e-'Mlim {(l-t)l/2B(t)} (28) 

Singularity at t = 0. A weaker singularity exists at the kink. 
The most singular stresses in the vicinity of the origin have the 
form aap ~ r~sajj (6) where, in general, s is a complex number 
depending on co, a, and /3. Hein and Erdogan (1971) have 
derived the equation for s for the relevant bimaterial, wedge-
shaped region. When 13 = 0, the imaginary part of s, sl, is zero; 
the real part, sR, is shown as a function of co for several values 
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of a in Fig. 4. When /3^0, sx is still zero over most of the 
range of co except for co greater than about 3TT/4 in most cases; 
the real part depends on a> in much the same way as displayed 
in Fig. 4. Thus, for essentially all cases of interest here, $• is real 
and smaller than 1/2. 

So 
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Fig. 5 Variation of S'So with kink angle for loading combinations 
specified by 7 = t a n - 1 (K2/K1) for various values of a, all with /S = 0. 
The homogeneous case (a = 0 = 0) is in (c). 

Solution Method #1. This method builds in the correct 
singularity of the dislocation distribution at each end of the in
terval with 

B(n) =,-'(1 -r,)~i/2P(v) (29) 
where P(TJ) is bounded on 0 < J J < 1 . For an approximation 
with N unknown complex coefficients, C,-, P was represented 
by a polynomial of degree N— 1 as 

PW=TlCjnJ- (30) 
j=\ 

By substituting (29) and (30) in the integral equation (27) 
one obtains the equation 

N 

D {CjEj(t) + CjFj(t)) = - (o°geU) +h%U)) (31) 
y = i 

where the integral expressions for Ej and Fj are readily iden
tified. To determine the TV complex coefficients, (31) is 
satisfied at TV points on the interval 0 < t < 1; the set of Gauss-
Legendre points were used once the interval had been mapped 
to lr I < 1. Some of the integrals making up the Ej and Fj must 
be evaluated numerically at each of the points t. Unusual care 
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Table 1 (co = 45 deg) 

Method #1 Method #2 
a = 0 0=0 

N 
4 
8 
10 
12 
16 
20 
40 

^«(D 
0.05036 
0.05016 

0.05009 
0.05004 

PmU) 
0.02135 
0.02113 

0.02106 
0.02104 

PRQ) 
0.04820 
0.04981 
0.04988 
0.04992 
0.04996 
0.04998 
0.05001 

PmW 
0.02046 
0.02112 
0.02112 
0.02111 
0.02109 
0.02107 
0.02103 

N 

a = 0.56 

P R W ^»(D 

0 = 0.12 

PRW PmW 
4 0.04268 0.01934 0.04279 0.01838 
8 0.04207 0.01889 0.04216 0.01878 

12 0.04204 0.01888 0.04208 0.01883 
20 0.04204 0.01885 
40 0.04202 0.01886 

100 0.04201 0.01887 

must be taken that these numerical integrations are performed 
accurately. It is this part of the computation which consumes 
the bulk of the computational effort. The polynomial 
representation (30) is equivalent to an expansion in any set of 
polynomials of degree N— 1. The particular set (30) has cer
tain advantages in reducing the computational effort involved 
in the numerical integrations. 

Solution Method #2. This method is that used by Lo 
(1978) and Hayashi and Nemat-Nasser (1981a) which, in turn, 
follows the procedures developed by Erdogan and Gupta 
(1972). In our application of this method, s is taken to be 1/2 
in (29) and the condition P(0) = 0 is imposed. The recipes 
developed by Erdogan and Gupta and used by Lo can then be 
taken over directly even though the singularity at t = 0 is not 
strictly correct. At the M h level of approximation, this 
method generates a system of algebraic equations for values of 
P(ij) at TV Gauss-Chebychev points. The advantage of this 
method is that it requires far less numerical computation than 
Method #1 at the corresponding M h level of approximation. 

Table 1 compares results from the two methods for two ex
amples at various levels of approximation. By (28) and (29), 
the stress intensity factors are given by 

Kl + iKll = (2-w)3/2e-hPj\) (32) 

and Table 1 presents the real and imaginary parts of P(l). The 
convergence of Method #1 is clearly faster than that of #2. 
Nevertheless, at corresponding levels of accuracy, Method #2 
is still far more efficient than #1. The results presented in the 
following section were computed using Method #2 with 
Af=40. A number of test calculations indicated that the dif
ference in the values of P{\) computed with N=40 and 
N= 100 was less than .1 percent except at small values of co, as 
will be discussed later. 

3 Numerical Results 

Homogeneous Limit (a = /S = 0). The limiting case for 
crack kinking in a homogeneous material has been studied 
thoroughly in the literature, although considerable confusion 
has surrounded the problem because a number of early solu
tions were in error. Perhaps the most recent paper on the sub
ject is that by Hayashi and Nemat-Nasser (1981a) which pro
vides access to the literature. The results of Bilby, Cardew, 
and Howard (1977) derived using the method of Khrapkov 
(1971) and the results of Lo (1978) and Hayashi and Nemat-
Nasser (1981a) are generally accepted to be correct, and our 
numerical results for this limit reproduced their results within 
the accuracy which could be inferred from their graphs and 
tables. All information can be derived from c(co) and d(u>) in 

(8)-(10), and these coefficients are available in tabulated form 
in a limited-circulation companion report (He and Hutchin
son, 1988). Our results agree within 1 percent with the 
equivalent set of tabulated coefficients included in the paper 
by Hayashi and Nemat-Nasser (1981a). 

Plots of g/So versus co derived using (15) with the values of 
c and d are shown in Fig. 5(c) for a number of loading com
binations as measured by y = tan~'(AT2/A

r
1). Since the crack 

has been taken to kink downward, the loading combinations 
which result in AT, > 0 (i.e., an opening at the tip) and an open
ing at the kink will generally require K{ > 0 and 7 > 0 . Results 
for the maximum energy release rate and its associated direc
tion, together with the direction in which Ku = 0, will be 
presented later. 

The approximation of Cotterell (1965), Vitek (1977), and 
Lawn and Wilshaw (1975) gives in the present notation 

c = (e-iW2 + e~i3a/2), d = (e-/o./2_ei3U/2y (33) 
2 4 

Cotterell and Rice (1980) have shown that this approximation 
is asymptotically correct for small co and is reasonably ac
curate for predicting Kl and Kn for co as large as 45 deg or 
even 90 deg, depending on 7. 

Bimaterial Problem With /S = 0. As discussed in Section 1, 
cases with (3 = 0 and a ?* 0 afford insight into interface prob
lems without the added complication of oscillations, or con
tact, associated with nonzero e. Roughly speaking, a > 0 im
plies that material 1 is stiffer than material 2, and conversely. 
In the present paper the crack is always taken to kink 
downward into material 2 so that the relevant range of loading 
is restricted to K{ > 0 and Y > 0 as mentioned earlier. 

Values of c(co) and d(o>) have been tabulated for various 
values of a and are available in He and Hutchinson (1988). 
Plots of 9/80 versus w for various 7 are shown in Fig. 5 for a 
= .75, .5, 0, - .5, and - .75. As noted in (23), Q — Q0 as co-*0, 
and the numerical results for c and d were indeed in agreement 
with (23) for small a;. As long as a is positive the numerical 
method is accurate for co as small as 1 deg. For negative values 
of a the numerical method became increasingly inaccurate as 
co was decreased and results for co less than about 5 deg could 
not be obtained accurately for the cases a = - .5 and - .75. 
Thus, for co < 5 deg the curves in Fig. 5{d, e) have been inter
polated to the limit 8 = 80 f ° r " = 0, and these sections of the 
curves have been dashed. 

The qualitative features which emerge from the directional 
dependence of the energy release rate in Fig. 5 are the follow
ing: The more compliant is the material into which the crack 
kinks (i.e., the larger is a), the larger is the energy release rate, 
all other factors being equal. Conversely, if the lower material 
into which the crack kinks is relatively stiff er (a<0) , then the 
energy release rate is reduced. These features are consistent 
with the role of moduli differences across an interface when a 
crack approaches the interface from within one of the two 
materials. When the differences are relatively large, the energy 
release rate for a crack kinking into the stiff material can be 
less than the interface release rate S0 for all combinations of 
loading, as can be seen in Fig. 5(e) for a = - .75. This sug
gests that under conditions when the compliant material is 
tough and the stiff material and the interface are each relative
ly brittle with comparable toughnesses (as measured by a 
critical value of energy release rate), the crack will tend to be 
trapped in the interface for all loading combinations. If the 
stiff material is even less tough than the interface, the crack 
may leave the interface but not necessarily by kinking. For ex
ample, when a = - .75 in Fig. 5(e), the largest energy release 
rates occur when co is small approaching zero, suggesting that 
the crack may smoothly curve out of the interface. Such a 
path, however, would not necessarily satisfy Kn = 0. Some 
further discussion of these issues is given in the last section. 
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The direction co corresponding to the maximum energy 
release rate (i.e., where dQ/dco = 0 or at co = 0, whichever 
gives the larger 8) is displayed as a function of the loading 
angle 7 for various a in Fig. 6. For positive a, when the crack 
enters the more compliant material, co increases smoothly as 7 
increases from 0 deg to 90 deg. Note that even when K2 = 0 
(i.e. , 7 = 0), the direction of maximum energy release rate is a 
finite angle into material 2 when a > 0 . For negative a there is 
a range of 7 in the vicinity of 7 = 0 for which the maximum 
occurs at co = 0. In addition, for sufficiently negative a the 
maximum of 8 also occurs at co = 0 when 7 is in the vicinity of 
90 deg, as can be seen in Fig. 5. For a, more negative than 
- .67, the maximum occurs at co = 0 for all 7. 

The direction co corresponding to Kn = 0 is sometimes sug
gested as an alternative to co as the kink direction. A com
parison between co and co is shown in Fig. 7 for a = 0 and ± .5. 
In the homogeneous case when a = 0, the difference between co 
and co is less than 1 deg for nearly all 7 except near 7 = ir/2 

where it becomes about 2 deg. (Apparently, a numerical com
parison between these two directions has not previously been 
reported for the homogeneous case.) The difference between 
the two directions is also very minor for a = ± .5. It would be 
virtually impossible to distinguish between these directions us
ing experimental observation of kinked cracks. For more 
negative values of a than - .5, the range of 7 in which 8max 

occurs at co = 0 becomes significant, while Kn = 0 at values 
of co near the local maximum of 8 (see Fig. 5(e)) which occurs 
for co between about 45 deg and 60 deg depending on 7. In this 
range of 7, co and co are significantly different. 

Bimaterial Problem With /3^0. Values of c(co) and d(w) 
have also been tabulated in He and Hutchinson (1988) for 
various pairs of a and /3. The calculated values are in accord 
with the limits for small co indicated in (23) although for values 
co less than some value between 1 deg and 5 deg, depending on 
a and /3, the computational procedure begins to become 
inaccurate. 

As discussed in connection with (15), 8 is not independent 
of a when e^0 , but 8 approaches 8* for all but very small a. 

(x) 

4 

& (3max) 

— - a) ( K n = 0 ) 

- - 0 . 5 

= 0.5 

Fig. 6 Kinking angle & corresponding to maximum energy release rate 
as a function of the loading combination y = tan ~ 1 {K2IK*), in each F i9- 7 Kinking angle associated with Kn = 0 , a, as a function of y corn-
case for /S = 0 pared with kinking angle associated with maximum energy release rate, 

is, in each case for /3 = 0 
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** Q. 

Kinking angle u associated with maximum value of S 

Plots of S*/So a s a function of co are shown in Fig. 8 for (a = 
.5, 0 = .25) and (a = - .5, /3 = - .25). Although the /3-values 
in these examples are quite large, the curves are quite similar 
to the curves in Fig. 5 with the same values of a and with /3 = 
0. Curves of o> associated with the maximum value of 9* are 
shown versus 7 in Fig. 9. The effect of (3 on this variable ap
pears to be relatively weak. 

Contour plots of maximum values of S*/8o a r e shown in 
Fig. 10 where a and 0 are coordinates whose range shown is 
restricted to non-negative values of the Poisson's ratios, v{ 
and v2. Each of the four plots is associated with a given 
loading combination measured by 7. The cross-hatched areas 
coincided with those pairs of a and /3 for which the maximum 
value of 8* is Q0 with Q> = 0. Note that 8^ax/80

 v a r i e s by 
roughly a factor of 2 for a ranging from 1 to - 1. These plots 
also reveal that the dependence of Smax o n P l s n o t particularly 
strong, especially in the range Ij8l < . l . 

The only other paper on cracks kinking out of a bimaterial 
interface appears to be that of Hayashi and Nemat-Nasser 

*» Q 

a* /'So=l° 

(dj x = 7 r / 1 0 , K 2 / K , = 0.51 

Fig. 10 Contour plots of the maximum value of 9*'§o a s a function of a 
and S for four loading combinations specified by y. The shaded regions 
correspond to (8*'8o)max = 1 w i , n "—0-

(1981b). These authors consider a very special crack geometry 
and account for crack surface contact. 

4 Concluding Remarks 

The results for the kinked crack can be used to assess 
whether an interface crack will propagate in the interface or 
whether it will kink out of the interface. The simplest ap-
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Fig. 11 For loading combinations y = tan_ 1 (K2 /Ki) satisfying 
0 < 7 S 7 m a x the crack will not kink out of the interface into material 2. 
Assuming a propagation criterion based on maximum energy release 
rate, the dependence of ymax on the ratio of material 2 toughness to in
terface toughness is shown for various a, all with 0 = 0. The insert figure 
shows the minimum value of this toughness ratio needed to ensure that 
the crack will not kink into material 2 for all loading combinations. 

proach is to assume that the condition for propagation in the 
interface is So = Soc a n d that for propagation in material 2 is 
g = Q2c. If Q2c is sufficiently large, compared to g0c, the crack 
will never kink into material 2. When g2c is comparable to Sue 
there will still be a loading range, i.e., 0<7<7 m a ! i , such that 
the crack stays in the interface, while for 7 > 7 m a x , the inter
face crack will kink into material 2. Figure 11 displays the 
dependence of ymax on S2c/Qoc f ° r various a-values, all with 
(3 = 0. When material 2 is the more compliant material g2c 

must be greater than the interface toughness 80c, by as much as 
2.5 (for a = .75) if the crack is to stay in the interface for all 7. 
On the other hand, when material 2 is relatively stiff (a = 
- .65), the crack will stay in the interface as long as 82c = Soc-
The plot in the insert in Fig. 11 gives the minimum value of the 
toughness ratio, (Q2C

/QQC)M> needed to ensure that the crack 
will not leave the interface and propagate in material 2 for all 
combinations of loading. 

A similar analysis can be carried out when Soc depends on 
7. This can be expected when the fractured interface has some 
roughness, with Q0c increasing with 7. Curves similar to those 
in Fig. 11 can be plotted from the basic results in Section 3. 
The important point is that the level of 82c required to prevent 
kinking out of the interface will depend on the interface 
toughness Q0c at the loading angle 7 applied. 

When there is no dissimilarity in the elastic properties of the 
materials across the interface, the directions of kinking 
associated with the maximum energy release rate and with Kn 

= 0 are virtually the same (cf. Fig. 7). This is also true when 
the crack kinks into the more compliant material (a>0) , at 
least when /3 = 0. However, when the crack kinks into a 
material 2 which is substantially stiffer than material 1, there 
exist ranges of loading where the maximum energy release rate 
occurs at small kink angles while the kink angle associated 
with Kn = 0 is around 45 deg or larger. When a < - .67 (with 
/3 = 0) the direction u associated with Kn = 0 is quite different 
from the direction of maximum energy release rate (&> = 0) for 
all loading combinations. It is an open question as to the 
criterion for crack kinking out of an interface when o> and <S 
differ considerably. When the crack has penetrated well into 
material 2 a criterion based on Kn = 0 is expected to hold. A 
choice of criterion for the initial kinking step will have to be 
guided by experiment. 

Pathological crack tip behavior associated with nonzero /3 
(i.e., nonzero e) has stood in the way of the development of an 
interfacial fracture mechanics for some years. This is in spite 
of the fact that there does not appear to be any compelling ex
perimental evidence that the unusual behavior associated with 
nonzero /3 is essential to interfacial fracture phenomena. As a 
way to break the impasse, a tentative proposal put forward in 
the body of the paper is that the role of j3 be downplayed by 
arbitrarily taking 13 = 0 in the use of analytical results to inter
pret tests and make predictions, especially when /3 is small 
anyway. Such an approach seems sensible where the primary 
fracture variables of interest depend weakly on /3, as is the case 
for most quantities examined in this paper. Obviously, a con
tinual monitoring for any possible essential role of /3 should go 
on if this proposal is adopted. 
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A P P E N D I X 

The basic solution for an edge dislocation at z0 (z0 = ve~'") 
in material 2 interacting with a semi-infinite, traction-free 
crack extending along the interface to the origin (Fig. 3) was 
obtained by using complex variable methods. If the traction 
on the radial line through z (z = te~la)is written as (24), the 
functions H^ and H2 are given by 

Hl(f,ri) = Hi0(t,il)+Hii{t,r,) 

H2(t,r,) = H20(t,v)+H2l(t,r,) (41) 

where 

H , o = - « ( 
1 

H 

and 

z-z0 

1 
Z-ZQ 
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, (Zo-ZQ) _ 
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1+13 

+ ^r^F(z,Z0)j. 
P dz0 

The functions Hl0 and H20 are for a dislocation below the 

bimaterial interface without the crack. The functions Hu and 
H2l are the additional terms to satisfy the traction-free condi
tion on the semi-infinite crack. In the above 

|S-c 
l+t 

X = 
a + P 

0-1 

and 

£(4>(z))=4>(z)+4>(z)+e-2i"\[(z-z)<t>'(z) 
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The formula for o%,(t) + ia% (t)in (26) is 

o& + ia% = ^ ( z ) + 0^(z) +e~2inz<t>S(z) + x6(z)] 

where 
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