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The Effect of Structural Damping on the Forced 
Vibrations of Cylindrical Sandwich Shells1 

This paper presents an examination of the effects of structural damping on the axisym-
metric vibrations of a cylindrical sandwich shell. It is shown that the use of core mate-
rials with high damping properties can result in large reductions in resonant response over 
conventional materials. The radial vibration of the shell resulting from a time harmonic 
radial load is first calculated by an exact method. The radial vibration is then calculated 
by an approximate formula, which requires only a knowledge of the damping properties 
and the natural (•undamped) modes. In numerical examples the resonant vibrations of 
two steel-faced cylinders are compared. One has a polymeric, the other an elastomeric 
core. The results indicate that for the assumed conditions they are both effective for 
suppressing resonant- vibration, the polymeric core being generally more effective than 
the elastomeric core. 

Introduction 

T H I S paper represents a continuation of an investiga-
tion of the forced vibrations of damped sandwich structures. In 
two previous publications [1, 2]2 the authors investigated the 
effect of structural damping on the forced vibrations of homoge-
neous and sandwich plates, vibrating both in vacuo and in fluid 
media. Various aspects of the problem of sandwich plates with 
structural damping have been investigated also by other authors; 
for example, Keer and Lazan [3] and Y. Y. Yu [4]. It was shown 
in [2] that a considerable reduction in resonant vibration could be 
realized by the use of special high-damping materials as cores in 
sandwich plates. This was indicated by reductions in the quality 
factors (and dynamic magnifications) of about two orders of mag-
nitude over those of conventional sandwich plates. Such reduc-
tions are of particular practical benefit in design applications 
where excitation of the structure at frequencies that coincide with 
its natural frequencies cannot be avoided; as, for example, when 
a structure is subjected to intensive noise. The emphasis in this 
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paper, as in the previous publications, is placed on suppressing 
resonant vibratory motion by the optimal use of structural 
damping. 

The structure considered is an infinitely long circular cylindri-
cal sandwich shell. The sandwich «hell is made up of two thin 
face sheets, usually metal in practice, with a thick high-damping 
core between them. The damping is provided primarily by 
the core, which must be a double-purpose material with both shear 
stiffness and shear-damping properties. Both the facings :>.nd the 
core are elastic materials with linear structural damping The 
sandwich configuration represents one of two configurations that 
were found to be most efficient for damping in the study on plates 
[1, 2]. The other was the sandwich plate with lightweight core, 
e.g., honeycomb, and with damping layers applied to the surfaces. 

The problem considered in this paper can be stated formally 
as that of a damped cylindrical sandwich shell subjected to a time-
harmonic radially symmetric pressure. The pressure is assumed 
to vary sinusoidally in the longitudinal direction. The primary 
objective is to determine quantitatively the damping effectiveness 
of various materials when used as cores in the sandwich shell and 
to show how their effectiveness varies with frequency, wave-
length, and geometric parameters. 

While the shell is assumed to be infinitely long, it will be seen 
that the results apply immediately to a finite-length shell simply 
supported at the ends. Also, the response to a pressure of any 
longitudinal variation can be obtained from the results of this 
problem by superposition. 

-Nomenclature-
x, 6 = coordinates in longitudinal 

and circumferential direc-
tions, respectively 

t = time 
OJ, £2 = angular frequency, fre-

quency parameter 
u, w, = displacement at middle sur-

face in longitudinal direc-
tion; displacement at 
middle surface in radial 
direction; rotation of 
normal in the longitudi-
nal direction 

a — radius of cylinder middle 
surface 

I, X = wavelength in longitudinal 

V 
hi, h2 

Pi, P2 
h 

E, v, G 
E, v, G 

rpi rh 
n, r2 

d 
V, 5 

k 
xh Xj 

direction; wavelength 
parameter 

pressure 
one-lialf core thickness, fac-

ing thickness 
core density, facing density 
hi + hi 
elastic constants 
damping constants 
density, thickness, and elas-

tic-property ratios 
thickness ratio 
damping-loss factors 
shear coefficient 
displacement; amplitude 

of displacement 

fi 
Itlijj kij, C{j 

$ = 
? r , Qr = 

IF = 

Subscripts 

1 , 2 

r, s, p 

load 
inertia, elastic, and damping 

coefficients 
generalized mass, damping 

coefficient, and force 
normal mode number 
normal coordinate, ampli-

tude of normal coordinate 
dimensionless radial dis-

placement 

core, facings 
displacements, forces 
modes 
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A X I S Y M M E T R I C 
L O A D I N G 

ax = (A u e x + Ai2eo) + i(.Buex + B12eg) 

ere = (A2\ex + A22ee) + i(B2,ex + B22ee) 

rxe = Auy.e + iB33yx$ 

An = E Bn = E 

A12 = Ev B12 = Ev 

A 33 = G B33 = G 

(2) 

In equations (2), E is in the simplest eases Young's modulus 
divided by (1 — v2) where v is Poisson's ratio. In some oases, 
however, it varies with frequency [6]. If the elastic constants of 
equations (18) of [5] are replaced by complex constants whose 
real and imaginary parts are given by equations (2), we obtain for 
the three governing equations of motion: 
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2(£i/d + E2h2)u" + (^Ei ^ + 2E2h1h2hj ^ ip" 

+ 2(EiMi + E2v2h2) - w' + 2i(EJn + E2hi)u" 
a 

i [EI ' 
2/ti3 \ 1 _ 1 

+ i I Ex — + 2E2b.Ji2h - \p" + 2i(EiV1h1 + EJJn) — W 
3 / a a 

2h!3 
= 2(Pl7ii + p2h2)a + ( pi — + 2p2h 

2k\Gihi{\p' + w") - 2(ElVlh + E2v2h2) fri' 

Mi) — / a $ (3a) 

h, hi r\ 

Fig. 1 Infinite cylindrical sandwich shell and loading 

Equations of Motion 
The equations of motion for the forced, axisymmetric vibra-

tions of a damped sandwich cylinder, as shown in Fig. 1, have 
been obtained by modifying the displacement equations of motion 
for the free vibration of an undamped sandwich cylinder as given 
by Yi-Yuan Yu in [5]. These equations have been modified by 
adding a time-liarmonic forcing function acting in the radial 
direction, and by replacing the real material constants with com-
plex constants. The latter modification properly introduces 
linear structural damping in the case of forced vibrations under 
simple harmonic motion. 

The pertinent equations for the shell with thin face sheets are 
equations (18) of [5]. The first modification requires the addition 
of a term p(x, t) = p(x)e11on the left-hand side of the second of 
equations (IS). The terms of this equation represent force 
components per unit area in the radial direction. 

The second modification is made as follows: The stress-strain 
equation for each layer of the damped sandwich cylinder can be 
written 

- 2{EJix + E2h2) — w + 2ihGMt' + w") 
a2 

— 2i{E{vlhi + EiVJn) — u' — 2i(Eihi + EM) — w 
a a2 

+ p{x)eia = 2(p,/t, + pji2)w (3 6) 

(E, + 2E2hlh2hj(^ + ^ - 2hGMt + W) 

+ i (Ei ^ + 2EJiMi^j^ -)- xP'^J - 2hOM{t + w') 

= (PI 2~Y + 2 + (3c) 

where dot (•) means derivative with respect to time and prime 
( ' ) means derivative with respect to the longitudinal coordinate x. 
Here, also, the subscript 1 refers to the core while the subscript 2 
refers to the faces of the sandwich. The coefficient k is a shear 
coefficient whose exact value is determined in [5] by matching 
the simple thickness-shear frequency calculated from the sand-
wich-shell theory with that from the theory of elasticity. The 
value of ki is usually near unity; in fact it is shown in [5] that if 
pihi/p2h2 > 2, we may take k = 1 without appreciable error. 

We set 

. , , 2 T r 
p(x) = po sin — x (4) 

( 1 ) 

In equations (1), both the A and B may be frequency and tem-
perature-dependent quantities. The manner in which these quan-
tities vary with temperature and frequency is quite different for 
different materials. Therefore, in the present derivation we shall 
assume for generality that they are constants, and for specific 
cases later, we use the appropriate values for the temperature and 
frequency ranges concerned. We shall let 

where I is the wavelength. Then the equations of motion can be 
reduced to ordinary differential equations by the following sub-
stitutions : 

27T 

u{x, t) = u{t) cos — x 

2?r 

w{x, t) = w(t) sin — x ( 5 ) 

27T \p(x, f) = \f/(t) cos — X 
The equations of motion are more useful in dimensionless form. 
We therefore introduce the ratios P_2 

Pi 
h2 

h 
n 

Ei 
Gi 

E<i 

<?1 
G, Vi 

_ Ei 
Ei 

_ i* (6) 

h X 2ira n 2 2 — — a2 a)2 
Ei a 

X = T n 2 2 — — a2 a)2 
Ei 

With the foregoing ratios substituted into equations (3), and after 
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some manipulation, the equations can be written in the following 
form: 

j-i 

where 

3 

E 
3 = 1 

E
 m

u
£
i + E + = heiat i = 1, 2, 3 (7) 

niji — ffljj, kji — kjj, Cji — Cjj 

The coefficients are given by the following expressions: 

20 
mil = m22 = - (1 + r„rh)d 

rpW 

ma = ma = 0 

2 0 
m13 = «i33 = ; [1 + 3r„i-k(l + >\)]d3 

3rpco2 

\2d 

(8a) 

fcn = 2(r, + r2»>) 
r 2 

A-|2 = — 2 ( r i f i + J W j ) 
Atf 

2 , X2d3 
«i3 = — [f'i + 3?V/,(1 + '',,)] 

3 )'2 

fc22 = 2[fcX2 + (r, + r,r,)] 

= 2k — 
»"2 

2 r , X2tf3 d 
= - [»'i + 3r2r,(l + »•,,)] + 2 h -

3 r2 r2 

Cll = 2(7/1?-! + Vi'Vh) 
X2d 

Ci2 = — 2(?)i?'ii'i + 7 /2 'W, , ) 
Ad 

2 T i?2 1 cZ3X2m 
'•13 = - + 3 f /2<»(l + »,,) 1 " 

f ! r 2 

c22 = [2/c,X25i + 2(7jir, + ?)2)'2rA)l — 
r2 

Xd „ 
c23 = 2fci -

r2 

X2d3 
c33 = [f?/ ir , + 2^r,rh(l + r A ) ] + 2fci 

)-2 f 

The dimensionless displacements and loadings are 

u{t)E2 

p«u 

w(t)E-, 
Poa 

Xl 

x2 = 

/ . = 0 

/ . = 1 (8d) 

®3 
Po 

/ . = 0 

The quantities »»,;, c(j-, and fciy are thus functions of the elastic 
properties (n, r2, vi, p2) as well as of the damping-loss coefficients 
(rj 1, i]2, and Si), the damping-coupling coefficients (Pi and V2), the 
density parameter (rp), the geometric parameters (rh and d), the 
wavelength parameter (X), the shear coefficient ( h ) , and the fre-
quency parameter (0 ) . 
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Solution for Radial Displacement 
Exact Solution 

With the equations of motion reduced to ordinary differential 
equations, we can obtain an expression for the radial displace-
ment in a straightforward manner. As a solution to equation (7) 
we let 

x, = Xjemt (9) 

where A", is complex. Substitution into equation (7) yields 
3 

E {(fc.7 - fr>2'".v) + < } X j = /••> i = 1, 2, 3 (10) 
3=1 

The solution can be developed more conveniently from this 
point using matrix algebra. Introducing the following matrices 
defined by their ith, jth-terms 

ktj - whiiij [B\ Xj - {,Y«} + i { X ' } 

cu [C] /,- - { / } 

Equation (10) becomes 

( [ B ] + i [ C ] ) ( { X " ! + / ( X ' j ) = { / } 

(11) 

(12) 

(8b ) 

Expanding the left-hand side of equation (12) and equating real 
and imaginary parts, we can write 

[ j b | C ] [ X « ] [ 0 ] 

verse of the 6 X 6 matrix of 

f z c l a - l - _ [ A l ® . ! 

L B IC J ~~ L g | h J 

(13) 

If we denote the inverse of the 6 X 6 matrix of real coefficients by 

(14) 

we have for the solution for the ith-displacement 

|X,|2 = (X , ' ) 2 + (X,-s)2 

= ( E + ( E Gilfl 

(15a) 

(15b) 

(8c) 

Using f j from equations (8d), and denoting the amplitude of the 
radial displacement |X2| as II7, we can write 

W = 
wE2 

poa 
(A 2 . 2

2 + G 2 .2 2 ) l / 2 (16) 

Approximate Solution 

In man}' practical cases the normal modes are only slightly af-
fected by damping. In such cases the response can be determined 
from a simpler calculation. If we express the displacements in 
terms of the normal mode numbers $ / r ) and the normal coordi-
nates qT(t) we can put the equations of motion, equations (7), in 
modal form by following the standard procedure. Thus we ob-
tain the following three modal equations replacing equations (7): 

3 

Mrqr + Ur'MrHr + i £ = Treiut r = 1, 2, 3 
s= 1 

where 

Cn, = E E C . v S i ^ / " 
1 = 1 3 = 1 

i\ = E 
< = i 

(17) 

and Mr and ojr are the rth generalized mass and natural frequency, 
respectively. As a solution to equations (17) we let 
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Table 1 Table of material properties 

Example A Example B 
Facing material steel steel 

Young's modulus, E*, psi 30 X 106 30 X 10s 

Extensional damping modulus, E, psi 10s 105 

Extensional loss factor, r, 0.0033 0.0033 
Poisson's ratio, c 0 .3 0.3 
Density, p, lb-sec2/in.4 7 .8 X 10~4 7 .8 X 10~4 

Core material Polymer Elastomer 
Shear modulus, G, ps i . . . . _ 104 102 

Shear damping modulus, G, psi 103 50 
Shear loss factor, S 0 .1 0 .5 
Poisson's ratio, v 0 .4 0 .4 
Density, p, lb-sec2/in.4 1.4 X 10"4 1.1 X 10"4 

<lr = Qre 
i(<t)( — $r) (18) 

With equation (18) substituted into equation (17), and with u 
equal to one of the natural frequencies, saj', wp, the first two terms 
of the pth of equations (17) cancel. If, in addition, the motion is 
assumed to be entirely in the pth-mode, then g, = 0 for s ^ p, and 
the pth-equation reduces to 

iCp„Q„e'(">l-*<>'> = r p e ' » 

Thus we find that (j>p — 7t/2 and 

E 
Qp = 

E E c , -^, '" '<£>/" ' 
>=1 3=1 

(19) 

(20) 

If the normal modes are normalized with respect to the radial 
displacement x2, then the radial displacement at the pt-h-reso-
nance, Wp, becomes simply Qp: 

Q„ = IF,, = 
wE, 

Vol 
(21) 

It has been shown [7] that if the damping matrix is a linear 
combination of the mass and stiffness matrices, then the normal 
modes of undamped vibration are unaffected by damping. In 
such cases the radial displacement given by equations (20) and 
(21) is exact. 

For nonresonant vibration, structural damping usually has a 
negligible effect. Thus, if we neglect the damping terms of 
equations (17), we obtain the following solution using equation 
(18): 

Qr = 
rr 

Mr{o>r2 - CO2)' 
r = 1, 2, 3 (22) 

With the modes normalized with respect to the radial displace-
ment x2, the nonresonant radial displacement is simply 

W - e 
r = l 

Qr (23) 

Thus equations (21) and (23) form an alternate solution to equa-
tion (16) for calculating the radial displacement; equation (21) 
for resonant vibration and equation (23) for nonresonant 
vibration. 

A common measure of damping effectiveness is the quality 
factor of the system. For the rth-mode, this factor is given by 

QF = 
wrmT 

These calculations illustrate the effectiveness of typical damping 
materials for controlling the resonant vibrations of a shell. 

In the first case, labeled example A, the core was given proper-
ties that are typical of a high-damping polymeric material. 
These properties were obtained by taking representative experi-
mental data from [8]. These properties approximate those for 
polystyrene and some methacrylates. The elastic and damping 
properties for the facings, which are steel, were also obtained from 
experimental data of [8]. 

In example B, the same steel facings were used but the core 
was given properties representative of an elastomeric, or rubbery 
material. These properties correspond to experimentally derived 
data on butyl rubber and Thiokol rubber. The significant ma-
terial properties for both shells are summarized in Table 1. Notice 
that while the stiffness and damping moduli of the elastomer are 
much lower than those of the polymer, the loss factors of the 
elastomer are much higher. The significance of this is seen later 
in the results. 

The geometric properties used were as follows: 

hi h2 2wa 
— = 0.045 — = 0.10 = — = 1.0 
a hi l 

Thus the total shell thickness 2(lh + h2) was one tenth of the 
radius and the core was ten times as thick as the facings. The 
half-wavelength 1/2 was equal to ir times the radius. 

The radial displacement parameter IF is plotted against the 
forcing frequency parameter il for example A in Fig. 2. Shown 
for comparison (as a dashed line) is the response curve for the 
shell with the damping moduli set equal to zero. The curve for 
example B is of similar shape. Several observations regarding the 
response can be made from these curves: 

(a) While the sandwich shell under a longitudinally sinu-
soidal loading has three degrees of freedom and three natural 
modes, there are only two peaks in the response curve. This is 
because only two natural modes, the lower two, involve the radial 
displacement. This is clear from an examination of the natural 
modes, which are shown in Fig. 3 for example A. The 
natural modes for B are quite similar. 

(b) The undamped natural frequency parameters (S2„) for 
the steel/polymer shell (example A) and the steel-elastomer shell 
(example B) are shown in the following: 

Mode No. 
1 
2 
3 

A 
23.60 
53.14 

148.8 

-S2„ X 102 

B 
22.53 
52.64 
64.43 

(24) 

Numerical Examples 
Numerical calculations were performed for two sandwich 

cylinders with quite different high-damping materials as cores. 

It is seen that only the third natural frequencies are substantially 
different. Examination of the associated mode shapes gives an 
explanation for this. In the first two modes there is relatively 
little shear deformation while the third mode is predominantly 
shear. Thus the shell with the stiffer core, shell A, has the higher 
third natural frequency. 

(c) The peak values of radial displacement are as follows: 
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S A N D W I C H C Y L I N D E R 

M O D E S FOR ?.= I 

v.; J . - - -
L A T E R A L S H E A R 

A N D B E N D I N G 

4 I I 1 - 4 -

S T 
I M O D E 

ND 
2 M O D E 

RD 
3 M O D E 

T H I C K N E S S SHEAR I 

Fig. 3 Axisymmetric modes of vibration for an infinite cylindrical sand-
wich shell 

3 30 

0 I 
01 0 3 1 0 3 . 0 

W A V E L E N G T H PARAMETER - X 

Fig. 4 Variation of natural frequency with wavelength for an infinite 
cylindrical sandwich shell—example A 

JFma* A B 
IF, 14220 24240 
TFa 6920 12900 

The results indicate that core A (polymeric) is more effective for 
suppressing vibration in this particular example for wavelength 
X = 1. 

(rf) A comparison of the response of the structure with damp-
ing and without damping shows that damping becomes significant 
only near resonance. This indicates that for nonresonant vibra-
tions, damping will not reduce the vibration amplitudes sig-
nificantly. 

(e) The circles in Fig. 2 give the peak response as calculated 

by the approximate formula, equation (20). These values are 
practically the same as the exact values. 

The response curve in Fig. 2, the mode shapes in Fig. 3, and the 
foregoing discussion are all associated with wavelength parameter 
X = 1. Figs. 4 through 6 show how the response varies with wave-
length of applied load. Figs. 4 and 5 give the variation in natural 
frequency with wavelength and Fig. 6 gives the variation in the 
damping effectiveness with wavelength as measured by the ratio 
of IFmax to the static value W,t. This ratio is numerically equal 
to the quality factor of the system, which is given by equation 
(24). 

Some points worth noting regarding these results are as follows: 
(a) For example B, the curves for natural frequencies corre-

M O D E 3 

T H I C K N E S S -
SHEAR 2 

L A T E R A L 
B E N D I N G ' 

SHEAR S. 

3 2 2 / A U G U S T 1 9 6 6 Transactions of the AS M E 

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1000 

Fig. 5 Variation of natural frequency with wavelength for an infinite 
cylindrical sandwich shell—example B 

spending to the modes identified in Fig. 3 as 2 and 3 actually 
cross, so that for long wavelengths (X < 0.85) the thickness shear 
mode, formerly the third mode, becomes the second. The 
possibility of this occurring was pointed out previously by 
Yi-Yuan Yu [5]. It can be accounted for in this case by the low 
shear modulus of the elastomeric core in shell B. Note also that 
at X = 0.85 the two modes have the same natural frequency. 

(6) The quality-factor curves for the two shells are quite 
similar in shape. The curves show that shell A is superior for 
suppression of resonant vibration for any wavelength. 

(c) The response curves show, as expected, that mode 2 be-
comes highly suppressed at short wavelengths; (QF)2 small for 
large X. As shown in Fig. 3, this mode is largely lateral shear 
deformation. Owing to the large shear-damping capacity of the 
core, this deformation is heavily damped. 

(d) It is well known that the resonant amplitudes of vibration 
(or quality factors) of actual structures cannot be predicted 
accurately by a theory such as the present one which considers 
only material damping, since an additional amount of damping of 
possibly the same order of magnitude as the material damping 
can result from friction in bolted or welded joints, shear in the 
adhesive between the core and facings, and so on. However, the 
importance of the present results is that they indicate the re-
ductions in resonant vibration (for example, as measured by the 
QF, or quality factors) that are possible resulting from material 
damping alone. By comparing the QF for the damped sandwich 
shell, Fig. 6, with the theoretical QF for conventional structures 
not especially designed for damping (which have been calculated 
to be of the order of 101 for homogeneous shells and 103 for 
honeycomb sandwiches), we can measure the effectiveness 
of the present design concept. Such a comparison shows that the 
present configuration, with QF of about 102, gives at least an 
order-of-magnitude reduction over conventional structures. 

The discrepancy between theoretical values such as those ob-
tained here, based only on material damping, and measured QF 
seems to be from one to two orders of magnitude, depending on 
the nature and amount of friction in the structure. If the present 
results are to be used in connection with design, this fact should 
be taken into account on the basis of experience or tests pending 
analytical examination of the problem. 
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Fig. 6 Quality factor versus wavelength for an infinite cylindrical sand-
wich shell 

Conclusions 
This paper has accomplished the following: 
It has presented a solution for the steady-state response of a 

damped cylindrical sandwich shell under a radially symmetric 
time-harmonic pressure. 

It has given a formula for the approximate calculation of 
resonant peak responses, based on the classical mode shapes, and 
demonstrated its accuracy in some typical cases. 

It has illustrated, by way of examples, the relative responses of 
cylinders with polymeric and elastomeric cores, also including the 
effects of these core materials on natural frequencies and modes. 

With the reduction of radial displacement by means of damp-
ing established for the axisymmetric modes, the authors intend 
to extend the analysis to the study of lobar modes and ultimately 
to the determination of the reduction resulting from damping of 
sound radiation from sandwich cylinders submerged in fluid 
media. 
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