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Abstract

With the growing demand of databases outsourcing and its security concerns, we investigate privacy-preserving set
intersection in a distributed scenario. We propose a one-round protocolfor privacy-preserving set intersection based on
a combination of secret sharing scheme and homomorphic encryption.We then show that, with an extra permutation
performed by each contacted server, the cardinality of set intersectioncan be computed efficiently. All protocols con-
structed in this paper are provably secure against an honest-but-curious adversary under the Decisional Diffie-Hellman
assumption.

Keywords: Privacy-preserving Set Intersection, Homomorphic Encryption.

1 Introduction

Privacy-preserving set intersection protocols [7] are cryptographic techniques allowing two or more parties, each holding
a set of inputs, to jointly calculate set intersection of their inputs without leaking any information to each other. Consider
that two companiesC1 andC2 want to discover the consumption pattern of their shared customers. That is, they want to
determine the likelihood that a customer buying a productP1 from C1 is also buying a productP2 from C2. To obtain
this information, they would like to perform a set intersection operation on their private datasets. In order to preserve
confidentiality of the companies business and to protect thecustomers’ privacy, the purchase details of customers mustnot
be revealed. There are many other examples of privacy-preserving set intersection applications such as when two hospitals
conduct a study where they wish to analyze patients records anonymously.

With the growing demand of databases outsourcing and security requirements imposed on its applications, we in-
vestigate privacy-preserving set intersection in a distributed environment. We call thisprivacy-preserving distributed set
intersection. To illustrate the security problem, we consider the following scenario. Assume that a provider owning a
dataset wishes to outsource it to commercial servers and make it available to his clients. If he outsources his dataset toa
single server then he has to fully trust that server and risk the privacy of his data. Alternatively, he can encrypt his dataset
before sending it to the server but querying and evaluating on such encrypted data are very inefficient.

In order to protect the dataset privacy at an acceptable efficiency cost, we could let the provider distribute the dataset
to w servers using a(t, w)-threshold secret sharing scheme. As such, anyt− 1 or less servers should not able to find out
the original data. Now, assume that a client holding her private dataset, wishes to compute the set intersection of the two

∗The original version of this paper appears in the proceedings of the 2nd International Workshop on Advances in Information Security (WAIS 2008)
which are included into the proceedings of the 3rd International Conference on Availability, Security and Reliability(ARES 2008), p. 1332-1339, IEEE
Computer Society.
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sets held by the provider and herself. In order to do this successfully, the client interacts witht or more servers. In our
settings, we require that this interaction is done with minimum possible disclosure of information, that is, the clientlearns
nothing except the final result of the set intersection.

In general, privacy-preserving set intersection can be implemented using secure multi-party computation protocols
[3, 24]. However, such solutions are generally inefficient.More specialized protocols on privacy-preserving set intersection
are needed to improve its efficiency.

1.1 Related Work

A specialized private set intersection protocol recently developed by Freedman, Nissim and Pinkas (FNP) [7] is based
on the representation of datasets as roots of a polynomial and the technique of oblivious polynomial evaluation [17]. To
briefly describe the FNP construction, supposeCS = (K,Epk,Dsk) is a semantically secure public-key homomorphic
encryption scheme. Assume that Alice has the datasetA = {a1, . . . , an} and Bob owns the datasetB = {b1, . . . , bm}.

To evaluateA ∩ B, Alice constructs the polynomialf(x) =
∏

ai∈A

(x − ai) =
n∑

i=0

αix
i. Then, she encrypts each coef-

ficient asEpk(αi) using an homomorphic cryptosystemCS such as Paillier’s [19] or the standard variant of the ElGamal
encryption scheme (see [4]). Note that an homomorphic cryptosystem allows a party knowingEpk(x) andEpk(y) to com-
puteEpk(x+y) = Epk(x) ·Epk(y) andEpk(x · c) = Epk(x)c wherec is any constant. The reader is referred to Section 2.1
for a formal definition. Note that we only use the standard variant of the ElGamal encryption scheme in our protocols due
to our distributed setting.

Thus, given encrypted coefficients, Bob can obliviously evaluateEpk(f(bi)) for each elementbi ∈ B. Note that if
bi ∈ A thenf(bi) = 0. Since Bob does not want to reveal any other information whenbi /∈ A, he randomizes all his
oblivious evaluations by a random nonzero valuer asEpk(f(bi))

r = Epk(r · f(bi)). Consequently, iff(bi) = 0 then
the encryption ofEpk(r · f(bi)) = Epk(0). Otherwise,Epk(r · f(bi)) is some random value. This hides any information
about elements inB which are not inA. To enable Alice to check whetherbi also belongs to her dataset, Bob sends all
the cryptogramsEpk(r · f(bi) + bi)’s to her. She decrypts them and tests whether any of the resulting plaintexts are inA
asDsk(Epk(r · f(bi) + bi)) = bi if and only if bi ∈ A.

Inspired by FNP, Kissner and Song [12] propose a solution to various privacy-preserving set operations such as set
union, set intersection, cardinality of set intersection and multiplicity testing. Based on a threshold homomorphic cryp-
tosystem, Sanget al. gave protocols for the set intersection and set matching problems with an improved computation and
communication complexity in [21].

Protocols for testing the subset relation in a two-party setting are discussed in [11, 14] while the set disjointness test are
introduced in [10, 9]. Note that checking the equality of twodatasets is a special case of the private disjointness problem,
where each party has a single element in the database. Such protocols were considered in [6, 17, 15].

1.2 Our Results

Our distributed solution is based on homomorphic encryption and secret sharing. This paper builds on the recently devel-
oped FNP private set intersection protocols and offers a newconstruction in two-party private set operations where one
dataset is distributed.

Contrary to the previous two-party privacy-preserving setintersection protocols based on the one-client-one-server
setting, we deal with the distributed case relying on secretsharing described earlier. Our construction may be of great
value where the privacy of unencrypted dataset outsourced in a single server is a great concern.

We first compute thew shares of the datasetB of the providerP by constructing a bivariate polynomial and evaluating
it at w points to get the shares. This approach is to make the share construction more efficient. Our construction only needs
to use Shamir’s secret scheme [22] a single time to compute the shares of the whole dataset.

In our set intersection protocol, we will use our observation that
t∑

j=1

cj (b − bℓj
) = 0 where thecj ’s are Lagrange

interpolation coefficients,b is a value and thebℓj
’s are the shares ofb. Using this relation, one can obliviously check that

an elementb′ is equal tob by collectingt valuesr(b′− bℓj
) wherer is a randomizer common to all participants. As a con-

sequence, if the clientC interacts in parallel witht servers with her whole datasetA, she is able to computeA∩B privately.

We then extend our privacy-preserving distributed set intersection solution to a one-round protocol evaluating|A∩B|
only. To prevent the client from learning the intersectionA∩B, each server will permute the cryptograms before sending
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them back to the clientC. Thus, after decryption and computation, the client only learns|A ∩B|.

Our protocols are secure against an honest-but-curious adversary. By definition, such an adversary follows the steps
of the protocol execution but tries to learn extra information from the messages received during its execution. Our ho-
momorphic encryption is based on the ElGamal cryptosystem [5] which is semantically secure provided theDecisional
Diffie-Hellman(DDH) assumption holds [23]. The security of this building blockwill imply the security of our protocols.
Note that, as in [7, 10], our protocols reveal the size of the datasets of both the client and the provider. As suggested in
[10], "dummy" elements can be used for dataset padding in order to hide the size of the original dataset. But, in this case,
the protocols reveal an upper bound on the number of elementsin the sets.

The complexity of the communication cost for each of these two constructions isO(t |A| |B| × log2 p) bits. The
computation cost complexity isO(t |A| |B| × log3

2 p) bits for our two protocols. These complexity results are efficient
considering our distributed setting.

Our paper is organized as follows. In Section 2, we introducethe cryptographic primitive used in our protocols, de-
scribe the distributed environment in which our protocols are run, and give the adversary model. In Section 3, we present
our two protocols for the set intersection problem and the cardinality of set intersection problem. The security and effi-
ciency of these two schemes are analyzed in that section as well. Finally, in Section 4, we give concluding remarks.

2 Preliminaries

2.1 Additive Homomorphic Encryption

We will utilize an additive homomorphic public key cryptosystem. Following Adida and Wikstrom [1], we use the follow-
ing definition.

Definition 1 ([1]) A cryptosystem with key generatorK and security parameterχ, encryption algorithmEpk and decryp-
tion algorithmDsk is said to behomomorphicif for every key pair(pk, sk) ∈ K(1χ):

1. The message spaceM is a subset of an Abelian groupG(M) written additively.

2. The randomizer spaceR is an Abelian group written additively.

3. The ciphertext space is an Abelian group written multiplicatively.

4. The group operations can be computed in polynomial time givenpk. For everym,m′ ∈M andr, r′ ∈ R, we have
Epk(m, r)⊙ Epk(m

′, r′) = Epk(m + m′, r + r′).

5. The cryptosystem is said to beadditiveif the message spaceM is the additive modular groupZn for some integer
n > 1.

When such operations are performed, we require that the resulting ciphertexts be re-randomized for security. During
such a process, the ciphertexte of the plaintextm is transformed intoe′ such thate′ is still a valid cryptogram for the
messagem but relying on a different random string frome’s.

We note that all our protocols can be based on the standard variant of the ElGamal encryption scheme (see [4]) which
recently was used for constructing privacy-preserving setoperation protocols in [10, 2, 15]. In our protocols, the compu-
tations are carried out overZp wherep is prime. We assume thatp = 2 q + 1 whereq is also prime.

Let g, h andf be three random generators of orderq in Z
∗
p, m1,m2,m ∈ Zq and correspondingr1, r2, r

R
← Zq. We

denote⊙ the multiplication overZp × Zp defined as follows.

Epk(r1,m1)⊙ Epk(r2,m2) := (gr1+r2 , hr1+r2fm1+m2)
= Epk(r1 + r2,m1 + m2)

If we repeat this operationc times for a single encryption, then we have

Epk(r,m)c = Epk(r,m)⊙ Epk(r,m)⊙ . . .⊙ Epk(r,m)
︸ ︷︷ ︸

c times
:= Epk(c r, cm)

For simplicity, we useEpk(m) to representEpk(r,m) in the rest of the presentation as we assume that there is always a

correspondingr
R
← Zq.
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2.2 Distributed Environment

The players are a clientC, a providerP, andw serversS1, S2, . . . , Sw. We assume that the provider holds a dataset
B = {b0, b1, . . . , bn−1} which is distributed tow servers using(t, w)-Shamir’s secret sharing scheme.

The providerP does not directly interact withC for the operation of the set intersection. Instead,C contacts at leastt
servers to discover the set intersection. Note that this distributed setting was first proposed by Naor and Pinkas [18].

Our homomorphic encryption system is based on a variant of the ElGamal cryptosystem where the message space is
overZq whereq ≥ n. For simplicity, we omit modulusq within the computation of shares construction in this section.

Initialization and Share Distribution Phase. P constructs a polynomialF (y) whose coefficients represent his dataset
B, i.e.:

F (y) =

n−1∑

i=0

bi yi

Then,P generates a random masking bivariate polynomialH(x, y) as:

H(x, y) =

t−1∑

j=1

n−1∑

i=0

αj,i xj yi whereαj,i
R
← Zq

Note that we haveH(0, y) = 0 for any y. Using the polynomialH(x, y), P defines another bivariate polynomial

Q(x, y) = F (y) + H(x, y). Note that we get:∀y Q(0, y) = F (y). For 1 ≤ ℓ ≤ w, P sendsQ(ℓ, y) =
n−1∑

i=0

βi,ℓ yi

to serverSℓ where∀i ∈ {0, . . . , n − 1} βi,ℓ = bi + ϑi,ℓ with ϑi,ℓ =
t−1∑

j=1

αj,i ℓj . The serverSℓ receives a set of shared

coefficients{β0,ℓ, . . . , βn−1,ℓ} of the polynomialF (y) (see [16]).

Secret Reconstruction Phase.We now show how anyt-subset of servers can recoverF (y). DenoteSℓ1 , . . . , Sℓt
the t

servers contacted by the client. Using Lagrange interpolation formula, we know that the coalition oft or more servers can
reconstruct the original polynomialF (y). Thet polynomialsQ(ℓj , y) for j ∈ {1, . . . , t} verify the following system:

V −1








Q(ℓ1, y)
Q(ℓ2, y)

...
Q(ℓt, y)








=














F (y)
n−1∑

i=1

α1,i yi

...
n−1∑

i=1

αt−1,i yi














whereV is the t × t Vandermonde matrix [13] defined as:V :=
(
ℓj
ι

)j=0,...,t−1

ι=1,...,t
. Since we are only interested in the

reconstruction ofF (y), we simply need to know the first row ofV −1, (v1,1 · · · v1,t). Then, we have:

t∑

j=1

v1,j Q(ℓj , y) = F (y)

As a consequence, we obtain:

∀i ∈ {0, . . . , n− 1}

t∑

j=1

v1,j βi,ℓj
= bi (1)

Lemma 1 shows how to construct the first row ofV −1 whose proof can be found in Appendix A.

Lemma 1 We have:

∀j ∈ {1, . . . , t} v1,j =
∏

1≤k≤t

k 6=j

ℓk

ℓk − ℓj

and
t∑

j=1

v1,j = 1

From the previous lemma, we deduce:

∀i ∈ {1, . . . , n− 1} bi =

t∑

j=1







∏

1≤k≤t

k 6=j

ℓk

ℓk − ℓj







βi,ℓj
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Note that our reconstruction technique can be seen as a particular case of Lagrange interpolation. Notice that we use
the variant of ElGamal that is defined overZp. Further in our paper, the computations are being done modulo p and we
simplify the notation by skipping the modulus in the congruences. If we use a different modulus, the congruence will be
written in full to avoid confusion.

2.3 Adversary Model

We consider an honest-but-curious adversary model. Due to space constraints, we only provide the intuition and informal
definitions of this model. The reader is referred to [8] for a more complete discussion.

In this model, there is no direct interaction betweenC andP. Instead the clientC andw servers are assumed to follow
the steps defined in the protocol. The security definition is straightforward that only the clientC learns the result of the
protocol.

Definition 2 (t-security) A distributed protocol is said to bet-secureif amongw servers any subset oft − 1 corrupted
servers learn no information about the provider’s dataset and the protocol result.

Following [17, 18] our model should meet the following threerequirements:

1. Correctness.A protocol is correct if the clientC is able to compute the valid result from shares obtained fromt
servers assuming that each server and the client honestly follow the protocol.

2. Client’s security. A protocol should guarantee the client privacy, i.e. the servers learn nothing about either the client
inputs or its corresponding computed output. In other words, a server is not able to distinguish the client inputs from
uniform random variables.

3. Provider’s security. A protocol should not give out to the client any information about the function held by the
provider apart from the output of the function assuming thatno server colludes with the client. Also, the provider
privacy ist-secure.

3 Protocols for Privacy-Preserving Distributed Set Intersection

In this section, we address the problem of designing protocols for privacy-preserving distributed set intersection related
issues. Those targeted in this paper are the privacy preserving set intersection problem and the cardinality of set intersection

problem. Let the datasetA of the clientC be{a0, . . . , am−1}. The providerP broadcastsλ
R
← Zq − {0} to thew servers

S1, . . . , Sw, and also distributes the shares of his datasetB = {b0, . . . , bn−1} to w servers as in Section 2.2. Note that it
is assumed that|A| = m and|B| = n are publicly known.

3.1 Determination of the Set Intersection

Algorithm 1 represents a protocol which enables the clientC to compute the intersectionA ∩B by contacting any subset
of t serversSℓ1 , . . . , Sℓt

.

Algorithm 1 Privacy-Preserving Set Intersection

Input: The clientC has a set of dataA. Each serverSℓ (1 ≤ ℓ ≤ w) knows the random valueλ and the shared coefficients
{β0,ℓ, . . . , βn−1,ℓ} of the polynomialF (y) (whose coefficients are the elements of the provider’s datasetB).

1. C generates a new key pair(pk, sk) ← K(1χ), and then broadcasts{Epk(a0), . . . , Epk(am−1)} with her public key
to t serversSℓ1 , . . . , Sℓt

.

2. Forj = 1, . . . , t, each contacted serverSℓj
computes and sendsEpk(λ(aι − βi,ℓj

)) to C for ι ∈ {0, . . . ,m− 1} and
i ∈ {0, . . . , n− 1}.

3. Forι = 0, . . . ,m− 1, the clientC does the following:

3.1. He computesdι,i,j ← Dsk(Epk(λ(aι − βi,ℓj
)) for i ∈ {0, . . . , n− 1} andj ∈ {1, . . . , t}.

3.2. He computesdι,i ←

t∏

j=1

(dι,i,j)
cj for i = 0, . . . , n− 1, wherecj ’s are the Lagrange interpolation coefficients.

3.3. He concludesaι ∈ B, if dι,i = 1 for i ∈ [0, . . . , n− 1]; otherwisedι,i is a random integer.

Output: The clientC learnsA ∩B.
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Correctness of the Protocol.In order to prove the soundness of our construction, we need the following lemma.

Lemma 2 Let cj =
∏

1≤k≤t

k 6=j

ℓk

ℓk−ℓj
be the Lagrange interpolation coefficient in Algorithm 1. Then:

t∑

j=1

cj(bi − βi,ℓj
) = 0

Proof.
Note that the coefficientcj corresponds to thejth coefficient of the first row of the matrixV −1 denotedv1,j in Section 2.2.

From Lemma 1, we get that
t∑

j=1

cj = 1. Thus, Equation (1) provides our result.

�

In the above protocol, the clientC first encrypts each elementaι of her dataset by using her public key asEpk(aι) for
ι ∈ {0, . . . ,m − 1} and broadcasts all these encrypted elements tot servers. For each encrypted elementEpk(aι), the
serversSℓj

(1 ≤ j ≤ t) computeEpk(λ(aι − βi,ℓj
)) for i ∈ {0, . . . , n− 1}, and send all theEpk(λ(aι − βi,ℓj

))’s back to

C. The clientC then decrypts thoseEpk(λ(aι−βi,ℓj
))’s and computesdι,i = f

λ
t∑

j=1

cj (aι−βi,ℓj
)

for eachi = 0, . . . , n− 1.

Note that ifaι = bi then
t∑

j=1

cj (aι−βi,ℓj
) = 0. Therefore, the clientC learns thataι ∈ B if there existsi ∈ {0, . . . , n−1}

such thatf
λ

t∑

j=1

cj (aι−βi,ℓj
)

= 1. When all the steps are finished,C learnsA ∩B.

Security of the Construction. The two theorems given below characterize the security of the set intersection protocol.
Their proofs can be found in Appendix B and Appendix C.

Theorem 1 Given the set intersection protocol described in Algorithm1 and assuming that the underlying homomorphic
encryption is semantically secure, then each of the contacted servers cannot distinguish inputs generated by the client C
from random integers with a non-negligible probability.

Theorem 2 Assuming that the discrete logarithm problem is hard, the client C cannot compute any information about
shared coefficients{β0,ℓ, . . . , βn−1,ℓ} (1 ≤ ℓ ≤ w) distributed by the providerP. In addition,P ’s privacy ist-secure.

3.2 Computation of the Cardinality of Set-Intersection

By introducing a permutation into our privacy-preserving distributed set intersection protocol, we develop an algo-
rithm only computing the cardinality of the datasets’ intersection|A ∩ B|. DenotePm n the set of all permutations of
{1, . . . ,mn}. Assume thatP has a private permutation functionπ, chosen uniformly at random fromPm n, which is
given to thew servers. This scheme is represented as Algorithm 2.

This protocol works in the same way as the distributed set intersection protocol with the addition that all servers run
the same permutation functionπ on their computed cryptograms. This is to prevent the clientC from learning the set
intersectionA ∩B.

Security of the Construction.The security model and the proof of this protocol are similarto our set-intersection protocol
presented in Section 3.1 as the permutationπ was chosen uniformly at random fromPm n.

3.3 Efficiency of our Protocols

In this part, we study the communication and computation cost of our two constructions.

Communication Cost.For both protocols,C broadcasts a set ofm encrypted values tot servers while each contacted
serverSℓj

responds withmn messages. Thus, the complexity of the communication cost for both constructions are
O(tmn× log2 p) bits.

Computation Cost. It should be noticed that operations inZp can be done inO(log2
2 p) bit operations.

For our first protocol,C needsm + 2 modular exponentiations andm modular multiplications to encrypt her dataset,
tmn decryptions,tmn modular exponentiations andmn (t − 1) modular multiplications for Lagrange interpolation.
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Algorithm 2 Privacy-Preserving cardinality of Set Intersection

Input: The clientC has a set of dataA. Each serverSℓ(1 ≤ ℓ ≤ w) knows the random valueλ, the permutation function
π and the shared coefficients{β0,ℓ, . . . , βn−1,ℓ} of the polynomialF (y) (whose coefficients are the elements of the
provider’s datasetB).

1. C generates a new key pair(pk, sk) ← K(1χ), and then broadcasts{Epk(a0), . . . , Epk(am−1)} with her public key
to t serversSℓ1 , . . . , Sℓt

.

2. Forj = 1, . . . , t each contacted serverSℓj
does the following:

2.1. He computesτυ,i,j ← Epk(λ(aι − βi,ℓj
)) for ι ∈ {0, . . . ,m− 1} andi ∈ {0, . . . , n− 1}.

2.2. He gets{τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j} ← π(τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j).

2.3. He sends{τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j} to C.

3. Forι′ = 0, . . . ,m− 1, the clientC does the following:
3.1. He computesdπ(ι′,i),j ← Dsk(τπ(ι′,i),j) for i ∈ {0, . . . , n− 1} andj ∈ {1, . . . , t}.

3.2. He computesdπ(ι′,i) ←
t∏

j=1

(
dπ(ι′,i),j

)cj for i ∈ {0, . . . , n − 1}, wherecj ’s are Lagrange interpolation coeffi-

cients.

4. When this process concludes,C learns|A ∩B| as it is the number ofdπ(ι′,i)’s equal to1.

Output: The clientC learns|A ∩B|.

Note that each decryption represents one modular multiplication and one modular exponentiation. Each serverSℓj
exe-

cutesmn modular exponentiations and multiplications when processing its shares. So, this protocol usesO(tmn×log2 p)
modular multiplications considering that a single modularexponentiation takes at most⌊log2(p− 1)⌋ modular multipli-
cations using the Fast Exponentiation algorithm presentedin [20].

The cost of our second protocol is the cost of the first one plust executions of the permutationπ. Assuming that
π is represented by its binary permutation matrixMπ, each of theset queries has a negligible cost sinceπ is a simple
reordering of its inputs (Mπ has a single coefficient equal to1 per row).

Therefore, the complexity of computation cost of these two constructions isO(tmn× log3
2 p) bits.

4 Conclusion and Future Work

In this paper, we have proposed a protocol for the privacy-preserving set intersection computation in a distributed environ-
ment. Our construction was based on Shamir’s secret sharingscheme and homomorphic encryption. With our construction,
each server only held the shares of the original provider dataset, and consequently the privacy of that dataset was protected.
Moreover, we have shown that, using a permutation, we could efficiently compute the cardinality of the set intersection.

Further research will be to focus on providing a solution of the above distributed set intersection and the cardinality of
set intersection problems against an active adversary.
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A Proof of Lemma 1

Assume thatt participants pool their shares together. The Vandermonde matrix V corresponding to these participants is
constructed as follows:

V =






1 xi1 . . . xt−1
i1

...
...

. ..
...

1 xit
. . . xt−1

it




 .

Sincexij
’s are pairwise distinct,V is invertible. LetV −1 = (vi,j)1≤i,j≤t. By taking first row ofV −1 and first column of

V , we obtain
t∑

j=1

v1,j = 1 asV −1 × V = Idt where Idt denotes thet× t identity matrix.

Let P1(x), . . . , Pt(x) be t polynomials, such thatPj(x) :=
∏

1≤k≤t

k 6=j

x−xik

xik
−xij

for any 1 ≤ j ≤ t. Note that these

polynomials have a nice property, namely:

∀j ∈ {1, . . . , t} Pj(xij′
) =

{
1 if j = j′

0 otherwise

Those polynomials also can be rewritten as:∀j ∈ {1, . . . , t} Pj(x) =
t∑

k=1

γj,k xk−1 where eachγj,k ∈ Zp. We now build

a t× t matrix:

D =






γ1,1 γ2,1 · · · γt,1

...
...

. . .
...

γ1,t γ2,t · · · γt,t




 .

Thejth column ofD represents the coefficients ofPj(x). We claim that:V −1 = D. It is sufficient to prove thatV ×D
is a identity matrix.

Let V ×D = W = (ως,η) 1 ≤ ς ≤ t
1 ≤ η ≤ t

. Fixing ς, η ∈ {1, . . . , t}, the coefficientως,η is obtained by using theςth row

of V along with theηth column ofD asως,η =
t∑

ρ=1
xρ−1

iς
γη,ρ. Notice thatως,η = Pη(xiς

). Using the previous property

of the polynomial, we obtain:

ως,η =

{
1 if η = ς
0 otherwise

This property demonstrates thatW is an identity matrix, which proves thatV −1 = D as the inverse is unique.

Since the sum of the coefficients of the first row ofV −1 is 1, we get:

t∑

j=1

v1,j =
t∑

j=1

γj,1 = 1
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Notice thatγj,1 is the constant coefficient ofPj(x), so:

∀j ∈ {1, . . . , t} γj,1 = Pj(0) =
∏

1≤k≤t

k 6=j

xik

xik
− xij

Combining the previous two results, we deduce:

t∑

j=1







∏

1≤k≤t

k 6=j

xik

xik
− xij







= 1

B Proof of Theorem 1

Denote〈g〉, the subgroup ofZ∗
p generated byg. By definition, the order of〈g〉 is q.

The clientC sends the group oft servers the encrypted valuesEpk(a0), . . . , Epk(am−1) where:

∀ι ∈ {0, . . . ,m− 1} Epk(aι) = (gr, hr faι)

Thus, the group oft servers obtains:
gr, hr fa0 , . . . , hr fam−1

The elementsg andh are two generators of the multiplicative group〈g〉. As r is chosen uniformly at random over〈g〉, gr

andhr are two elements uniformly distributed over〈g〉.

As theaι’s are all distinct, we get:faι 6≡ faι′ modp whenι 6= ι′. If hr 6≡ 1 modp then each elementhr faι modp
is uniformly distributed over〈g〉 and we have:

Prob(hr 6≡ 1 modp) = Prob(r 6≡ 0 modq) = 1−
1

q

So, we deduce thathr fa0 , . . . , hr fam−1 arem pairwise distinct elements uniformly distributed over〈g〉 with probability
1− 1

q
as the same valuer is used for each of these elements.

As the discrete logarithm problem is assumed to be hard overZp (DDH assumption), the group oft servers cannot
computer from gr with non-negligible probability in polynomial time as a function of the bit size ofp. Therefore, given
the above analysis, we deduce that thet servers cannot distinguish them elementshr fa0 , . . . , hr fam−1 from m distinct
elements of〈g〉 drawn uniformly.

C Proof of Theorem 2

We first consider thatC contactst servers. At the end of Step3.2, we have:

∀ι ∈ {0, . . . ,m− 1} ∀i ∈ {0, . . . , n− 1} dι,i = f
λ

t∑

j=1

cj (aι−βi,ℓj
)

Using the proof of Lemma 2, we get:

dι,i = f
λ

(

aι−

(
t∑

j=1

cj βi,ℓj

))

Using that lemma, we deduce that, for eachaι from A, we have:

aι ∈ B ⇐⇒ ∃i0 ∈ {0, . . . , n− 1} aι −





t∑

j=1

cj βi0,ℓj



 = 0

Now, assume thataι is not an element ofB. We have:

∀i ∈ {0, . . . , n− 1} aι −





t∑

j=1

cj βi,ℓj



 6= 0
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Sinceλ has been chosen uniformly at random fromZq − {0}, we deduce that the elementλ

(

aι −

(
t∑

j=1

cj βi,ℓj

))

is

uniformly distributed overZq − {0} as well. As the discrete logarithm problem is assumed to be hard overZp (DDH
assumption), this exponent is not computable in polynomialtime with non-negligible probability byC and thus the co-
efficientsdι,0, . . . , dι,n−1 appeared to be uniformly drawn from〈g〉 to the clientC asf generates that multiplicative group.

We now assume thatC only contactedt− 1 serversSℓ1 , . . . , Sℓt−1
. In this situation, the polynomialF (y) representing

the provider datasetB cannot be reconstructed uniquely to the secret polynomial of a (t, w)-Shamir secret sharing scheme
when onlyt − 1 participants work together. As a consequence, the missing participant involves thatF (y) can takep
equally probable values where a single one is correct. Thus,C cannot recoverA∩B even if he colludes witht− 1 servers
as he cannot reconstructF (y) and use Equation (1) at Step3.2.
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