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Coupled Rocking and Translating 
Vibrations of a Buried Foundation1 

The plane strain model of a rigid building foundation embedded below the surface of an 
elastic half space is treated. The foundation is assumed to be vibrating freely with arbi
trary transient time-dependences U(t) and V(t) in the horizontal and vertical directions, 
respectively, and to be rocking about its mass center with magnitude S,(t). The total re
straining reactions exerted upon the foundation by the surrounding medium are deter
mined exactly during the initial time period for a P-wave to traverse the foundation base 
width. Thereafter the results become approximate. In this manner the coupled equations 
of motion for free vibrations of the foundation are obtained. A numerical example pre
sents the impulse response matrix for U, V, and 0. Peak responses are found to occur 
during the early time period where the results are exact. 

Introduction 

In recent years there has been a mounting interest in improving 
methods for predicting earthquake responses of buildings by tak
ing into account the seismic wave-foundation interaction. By 
evaluating the restraining reactions on a freely vibrating building 
foundation one can obtain the so-called "compliances" of the sur
rounding medium and can thus construct the equations of motion 
for the building which include the soil-structure interaction ef
fects. 

For surface-mounted footings on an elastic half space there 
have been many studies as listed in the recent paper by Jennings 
andBielak[l ] . 2 

However, for the practical case of an embedded foundation 
there are relatively few analytical solutions. Luco [2] and Trifu-
nac [3] have determined the steady-state response of a buried 
semicylinder to harmonic SH-waves; while the present authors [4] 
recently obtained the exact, early-time transient response of a 
buried rectangular foundation to an incident SH-wave. 

The SH-wave or "antiplane strain" model, while being a useful 
initial, approximation, is rather limited. It permits only.an anti-
plane translation response of the building to occur and thus ex
cludes the coupled rocking and translation motions which are ac
tually experienced by seismically loaded structures. 

A plane-strain half-space model with an embedded foundation 

1 The research reported in this paper was supported by the National 
Science Foundation Grant GI-34T81 to the Illinois Institute of Technology. 

2 Numbers in brackets designate References at end of paper. 
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N. Y. 10017, and will be accepted until November 20, 1974. Discussion re
ceived after this date will be returned. Manuscript received by ASME 
Applied Mechanics Division, December, 1973; final revision, January, 1974. 

would thus become the next step for investigating stress-wave-
foundation interaction. Thau [5] has obtained exact, early-time 
results for the coupled rocking and translation of a buried rigid 
strip. More recently, Umek [6] has derived explicitly the transient 
responses for vertical and horizontal translation and rocking rota
tion of an embedded rigid foundation subjected to incident elastic 
waves. 

The present paper reports the work from Umek's thesis [6] on 
the free vibrations of the embedded foundation. The early-time 
transient solution for the soil-structure interaction forces, exerted 
on the foundation during its free vibrations in each of its three 
plane modes of rigid-body motion is derived. The three plane 
modes are the vertical translation and the coupled horizontal 
translation and rocking rotation. Equating the resistive reactions 
caused by the waves radiating from the vibrating foundation to 
the appropriate foundation inertia terms, yields the homogeneous 
equations of rigid-body motion for the buried foundation. The 
equations derived here are exact from the instant the foundation 
would start to move (t = 0) to the time required for a P-wave to 
traverse the base width of the foundation. 

The analytical techniques involve application of Laplace and 
Kontorovich-Lebedev transforms to the governing equations for 
extracting effects at the lower corners of the foundation, and uti
lize previously derived quarter-space solutions from [5] for upper 
corner contributions. These procedures are thus similar to, but 
represent extensions of the short-time solution techniques em
ployed in our previous embedded structure response studies [4, 5]. 

Descr ipt ion of Problem 
The problem model in Fig. 1(a) consists of an elastic half space 

in which a rigid square foundation, 1 X 1 in dimensionless units, 
is embedded. A state of plane strain is assumed so that the foun
dation can experience horizontal and vertical translations and a 
rocking rotation about its mass center. The magnitudes of these 
motions are designated by the arbitrary causal functions U(t), 
V(t), andtt(t), respectively. 
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Fig. 1 Main problem and subproblem models—la) Radiation from lower 
left corner; lb) Radiation from upper right corner 

For convenience in later calculations, the origin of coordinates 
is placed at the lower corner 1 of the foundation. Its mass center 
is taken to lie midway between the side walls, but, as shown, is 
located at an arbitrary distance b above the base slab. 

The P-waves <j>(x, y, t) and S-waves \j/(x, y, t) radiated into the 
half space from the vibrating foundation are governed by the 
equations of motion 

(V2 s2)<p(x,y) = 0; (V2 - n V f t i j ) = 0 (1) 

in which the Laplace transform in time with parameter s, and de
noted with an overbar, has been introduced. The P-wave speed 
ci is taken as unity so that the S-wave velocity C2 "becomes 1/K 
where, in terms of Poisson's ratio n, 

K = cjc, = [(2 - 2e) / ( l - 2i>)]m. (2) 

Based on our units of distance and velocity, it follows that one 
unit of time is required for a P-wave to traverse the base width or 
embeddment depth of the foundation. 

The transformed displacements u = (u, D, 0) are given by 

u = V^ + V X ^ (3) 

where e2 is a unit, ^-directed vector; while the transformed stress
es (Jy, normalized by the shear modulus of the medium, are given 
in Cartesian tensor notation by 

~SU = U;,,- + Ujj + (K2 - 2)<5,,S^. (4) 

The procedure followed in this analysis is first to solve equa
tions (1) in the half-space medium in Fig. 1(a), subject to the 
boundary conditions specified in the next section. Then, from 
equations (4), the stresses acting along the foundation sides are 
calculated, from which the net reactions acting at and about the 
mass center are derived. Equating these resistive reactions to the 
appropriate inertia terms for the foundation yields the homoge
neous equations for its rigid-body motion. 

Short -Time Ana lys i s and Boundary Condit ions 
Even before the specification of boundary conditions, it is prob

ably apparent that an analytical solution for the radiation prob
lem in Fig. 1(a) is exceedingly difficult to obtain. However, by 

. employing the short-time analysis method, as in our previous em
bedded foundation [4] and rigid-strip [5] studies, we are success
ful in obtaining exact solutions for a finite period of time. Theo
retically, the analysis can be carried out for as long a time inter
val as desired, but the practical problem of performing requisite 
calculations limits the feasibility of the method to a short-time 
period. Here the short-time analysis will be performed in 0 < t 
< 1 where we recall that t = 1 is the time for a P-wave to travel be
tween any two adjacent corners of the foundation. 

Briefly, and with respect to the foundation geometry at hand, 
the short-time analysis consists of obtaining the exact solution for 
the waves radiated locally from each foundation corner, before 
such waves interact with neighboring corners. In this manner, the 
problems for corners 1 and 2 are each equivalent to that for the 
radiation of waves into an infinite elastic medium from the vertex 
of a right angle wedge, Fig. 1(b). Similarly, effects at corners 3 
and 4 are determined from solutions of quarter-space problems 
with rigid vertical boundaries, Fig. 1(c). Since a cylindrical P-
wave emanating from a given corner and traveling with unit 
speed will not reach an adjacent corner at a unit distance away 
for one unit of time, the short-time analysis will provide exact re
sults in Q < t < 1. 

Boundary Conditions. Even with the "simpler" subproblems 
that arise in the short-time analysis method, neither exact nor 
manageable solutions can be derived under the boundary condi
tions of perfect bonding between the half space and foundation. 
This is true both for a quarter-space with a perfectly bonded, 
rigid, vertical boundary [7] and for a rigid wedge with displace
ment boundary conditions [8], 

Therefore we relax the condition of perfect bonding and adopt 
the so-called "rigid-smooth" or "rigid-pressureless" conditions at 
the foundation boundary. By rigid-smooth we mean a boundary 
at which the normal component of motion of the elastic medium 
is equal to that of the foundation, but the shear stress is zero. At 
a rigid-pressureless boundary, the tangential displacement of the 
elastic medium follows that of the foundation under zero normal 
stress. In order to maximize the restraining effects of the half-
space medium, we shall adopt rigid-smooth conditions at a given 
side when that side moves normal to itself and take rigid-pres
sureless conditions when the side moves tangentially. By this ar
rangement, normal or shearing stresses will be generated to resist 
normal or sliding motion, respectively, at each side. Furthermore, 
for both rigid-smooth and rigid-pressureless conditions, the wave 
potentials become uncoupled in the boundary conditions. That 
will render the short-time subproblems mathematically tractable. 

In order to express the boundary conditions in a given corner 
subproblem, we must first refer the foundation rocking to a z-axis 
through that corner. Then the actual kinematics of each side can 
be determined. For example, at corner 1, for infinitesimal rocking 
amplitude the wedge motion consists of horizontal translation 
U + biT; vertical translation V - (l/2)fi; and rocking rotation SI 
about corner 1 as indicated in Fig. Kb). Similarly, when viewed 
to rotate about upper corner 3, the right-side wall of the founda
tion has the rigid-body motions shown in Fig. 1(c). 

At each corner, each mode of motion is considered separately, 
because different boundary conditions apply for different mo
tions. To repeat our convention: the displacement along each side 
must follow the given rigid-body foundation motion while the 
stress in the perpendicular direction to the motion is taken to 
vanish. With reference to corner 1, Fig. Kb) and in terms of the 
polar coordinates (/', 9), the following boundary conditions are im
posed: 

Horizontal Translation 

u„(r,7r/2) = - 0 7 + bQ); <rJr,w/2) = 0 
.(5a) 

!/,.(?-, 2TT) = U + 6fi; oJr,2w) = 0 
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Vertical Translation Vertical Motion (Rigid-Pressureless) 

u,.(r,w/2) = V ~ ^fi;' a„(r,Tr/2) = 0 

u(r,2w) = V ~ 5fi; ~ov,y(r,27r) = 0 

(56) 

Rocking Rotation 

u„(r,ir/2) = rfi; or,/,r,w/2) = 0 

«»(;•, 2?r) = rfi; oM,2w) = 0 
(5c) 

Note that rigid-smooth and rigid-pressureless conditions are 
mixed in the translation problems, whereas only rigid-smooth 
conditions occur for the rocking problem. 

When conditions (5) are expressed in terms of the wave poten
tials they reduce to the simple forms: 

Horizontal Translation 

Mr, IT/2) = -r(U + 6fi); </>(>', 2w) = 0 

i/<(r,7r/2) = 0; 

Vertical Translation 

4>(r,w/2) = 0; 

i/<„(r,27r) = r(U + 6ft) 
(6a) 

Ur,2ir)= r(v - ~QJ 

Mr,ir/2) = r\V - | f i \ 4>(I;2T) = 0 

(66) 

Rocking Rotation 

Mr,*l2) = Ur,2w) = r'fi 

^(r,ir/2) = "^(r,2ir) = - 2 f i / W 
(6c) 

in which subscripts on the potentials indicate partial differentia
tion. 

The potentials are thus uncoupled in the boundary conditions 
as they are in the equations of motion (1). However, at the vertex 
of the wedge the "edge condition" which requires that the dis
placements (not potentials) be finite will, through equation (3), 
couple the potentials. This is an important point because it 
means that the finite, scalar, wedge radiation solutions are not 
the physically correct solutions to our problems. Instead, addi
tional singular solutions of (1) will have to be superimposed to 
render the displacements finite at the vertex. This phenomenon 
in elastodynamic wedge and strip problems with relaxed bounda
ry conditions has been discussed previously by Kostrov [9] and 
Thau [5]. 

The boundary conditions for the appropriate wedge problems at 
corner 2 are deduced in analogous fashion. It can be seen from the 
symmetry however, that the solutions for corner 2 can be directly 
obtained from those for corner 1. 

To illustrate boundary conditions at an upper corner, we refer 
to corner 3 in Fig. 1(c). The surface of the half space (y' = 0) is 
free of traction, i.e., 

a//(x',0) = oy/U'.O) = 0. (7a) 

Along the vertical wall (x' = 0) conditions again depend on the 
type of motion. 

Horizontal Translation and Rocking (Rigid-Smooth) 

that 

< M 0 , / ) = [/ + ( / - a)Q 

H0,y') = 2n/KV 

u = U + ( / - a)fi; oy,., = 0 

(76) 

where a is the distance of the center of mass below the surface of 
the half space, Fig. 1(a). 

that is 

0 ( 0 , / ) = 0; i fv (0 , / ) = -\V + 9«) 

u = -(v + | f i ) ; w = 0 

(7c) 

Subproblem Solutions 
At each of the four corners of the foundation there are three 

subproblems, one each for horizontal and vertical translation, and 
for rocking about the corner. However, because of symmetry and 
previously derived upper corner radiation solutions [5], only three 
new boundary-value problems need to be solved: horizontal trans
lation and rocking at corner 1 and vertical translation at corner 3. 

Corner 1—Horizontal Translation. The boundary conditions 
for the wedge in Fig. 1(6J translating in the x-direction, are given 
by equations (6a) although for convenience we shall replace 
U + oil by unity to obtain the response for a unit (transformed) am
plitude motion. 

As in our previous foundation analysis [4], we apply the Konto-
rovich-Lebedev transform (abbreviated by K-L) in r to the equa
tions of motion (1) to obtain 

v*(t>* = 0; ^ vhp* = 0 (8) 

where v is the K-L transform parameter and the asterisk denotes 
this transform as defined in [4], 

K-L transforms with different kernels must be applied sepa
rately for <j> and <f because of their different wave speeds. This 
hinders us from mixing these functions in boundary conditions, 
which as equations (6a) indicate is not required. However, it does 
explain why the perfectly bonded wedge problem has so far been 
unsolved. 

The solutions of (8) satisfying the transformed boundary condi
tions (6a) are found as 

rf>* = n— sech -pr sech —^- sinh v(2w — 8) (9a) 
2vs 2 2 

— IT VTV 3l>7T 
\p* = =— sech - y sech - ~ - sinh v(8 - TT/2) (96) 

where complete details of the derivation are given in the thesis 
[6]. 

To isolate the cylindrical waves radiating from the corner, we 
subtract from the foregoing solutions the K-L transforms of the 
planar radiated waves which emanate from the sides of the 
wedge. The latter can be identified as 

1 

• / , ( / > > = — „ » s r sin S 
Y KS 

< 8 < w 

s4 <e < 
(10) 

which satisfy the inhomogeneous portions of the boundary condi
tions (6a). The K-L transforms of the cylindrical waves thus be
come 

coth vir sech 
vs 

3J/7T 
cosh {e - |); \ 

^ , < l - > * = _ coth VTT sech -K- cosh V(2TT — 8); -jr-
KVS 2 2 

< 8 < w 

< 8 < 2TT 

(11) 

In the remaining angular sectors not specified in (11) the cylindri
cal wave potentials are equal to the total wave fields (9) because 
no plane waves for</> ori/< occur there. 

Inversion of the cylindrical wave potentials in the appropriate 
angular sectors shows that the edge condition is not satisfied. 
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Consider the cylindrical waves along the vertical side 0 = 7r/2. By 
performing the inverse K-L transforms with contour integration 
techniques [6], we obtain familiar integral representations for the 
modified Bessel functions Kn(p). In particular, at 8 = 7r/2, we 
find 

;,.«> = ^[Ki(P) + K0(P)] 

(p = sr) (12) 

±if,«> = ^[Kilxp) - K0(KP)1 

Summing equations (15) to produce the radial displacement ur 

and expanding the modified Bessel function for small argument 
produces the singular behavior as/j -* 0, 

_2_ 
33/2 (fi '

31 + K-W 

TCI/3) 
+ g^lra/t + CXp2'3) (13) 

To rectify this situation we add the following cylindrical waves 
to the field: 

4>ic> = AK1/3(P) cos I (fl - | ) 

^ > = BKi/3Up) sin I (0 - | ) 
(14) 

These singular potentials satisfy the wave equations (1), satisfy 
the homogeneous version of boundary conditions (6a), and repre
sent outgoing waves. They produce singular displacements of 
order p ~ 4 / 3 and p _ 2 / 3 as p = sr —• 0. Consequently, the coeffi
cients A and B can be determined from the condition that both 
singular terms in the total displacement must vanish. This yields 
the values 

B = K1'3A = -lOirs*1/3)-1 (15) 

It can be shown rigorously [6] that the additional waves (14) 
with coefficients (15) renders both displacements finite at r = 0 
for any choice of 6. Hence the solution is now completed. 

The reactions on the wedge due to the cylindrical waves from 
corner 1 (denoted with subscript 1) are calculated from 

Fix"' = f ~ [<rrr
uir,ir/2) + orl}

cKr,2-K)W 

M10<" = f 
(16) 

rar}
c\r, ir/2)dr; F^'1 = 0 

where the moment is taken about the vertex, being positive in the 
counterclockwise sense. 

The foregoing reactions can be evaluated in closed form. Details 
are presented in reference [6] for deriving the results, 

F L„"'» = g p [ ( l + «")(! + Q - K2'3U + K2'3)] 

M10l
l f l = (27s)-'[54 + 18K-' + 12K"/3 - 9.5K2 - 72K~1>3] 

(17) 

where a third subscript is appended to indicate reactions caused 
by x-directed unit motion. 

Since the cylindrical waves from corner 1 do not reach either 
adjacent corner of the foundation before t = 1, the foregoing reac
tions, when multiplied by the actual horizontal translation of cor
ner 1, U + 6fl, become the total reactions on the full foundation 
contributed from corner 1 in 0 < t < 1. 

It is apparent from symmetry that, if the wedge modeling cor
ner 1 were assumed to move in the y-direction with unit magni
tude, then the cylindrical waves would exert the reactions 

Similarly, from symmetry, we can evaluate the reactions at cor
ner 2 due to cylindrical radiated waves caused by unit magnitude 
x and y directed translations: 

F «•) = F « F <c> = F 
(19) 

where the moments for the corner 2 problems are taken about 
corner 2. 

Corner 2—Rocking Rotation. To complete the lower corner 
radiation studies, we consider the wedge modeling corner 1, Fig. 
1(b), to be rotating about its vertex with infinitesimal amplitude 
!I(s). The boundary conditions for the radiated waves are rigid-
smooth along each face as given by equations (5c) or equivalently 
(6c). 

The solution of this problem is constructed from the outgoing 
wave solution to the following wedge radiation problem: 

(V2 - s2)S(r,8;s) = 0 in 0 < r < <*>; TT/2 < 6 < 2ir (19a) 

with boundary conditions 

S(r,8;s) = 1 at 0 = x / 2 and 8 = 2x (196) 

and S remains finite as r —* 0. 
It is clear from equations (6c) that in terms of S, 

\P 2iKS)-iQS(r,6;Ks) 

and we shall show that 

4> = s-2fiS„(r,0;s) 

(20) 

(21) 

To prove the latter result (21) we note first that the ^-derivative 
of a solution of the Helmholtz equation (19a) is itself a solution. 
Then from (19a) and (196) we have along the wedge faces, 
6 = ; r / 2and0 = 2x, that 

V2S = r-2S e s = s2S = s2 (22) 

Consequently 

<p„ = s_ 2fiS„ = r2fi at d = TT/2 and 2?r (23) 

and so the boundary conditions (6c) for cj> are indeed satisfied. 
The solution S is identical to that for radiation of SH-waves 

from the wedge which was derived in our previous paper [4]. The 
plane _waves, radiating from the wedge sides can be subtracted 
from S leaving the cylindrical waves radiating from the vertex. 
They are given by equations (34) in [4]. 

Again, however, it is found that additional singular potentials 
must be superimposed here to render the displacements finite at 
the vertex. These are found to be [6], 

with 

tf>«-> = DKm(p) cos g(fl - Yj 

r> = EK2/3(KP) sin \{e - | ) 

16(3 - K^itt 
E = K*'3D = 97rg2(s.2/3 + K2) 

(24> 

(25) 

M„ -M„ (18) 

which completes the solution. 
The reactions on the wedge due to the total cylindrical wave 

field can be determined explicitly as [6] 

Fuir> = -FljS1i''> = (54S)"1Q[5K2 - 108(1 - 2K"1) 

+ 96(3K2/3 - «2X1 + x4'3)""1] (26) 

Mml'
c> = 16(311/2s2)-ln[(33/27r)-1(K2 - 3K-2) 

- 4(5/c2 - 27/c"2) - 36(3 - V /3)2(K2/3 + K 2 ) ' 1 ] (27) 
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where the first subscript on the reactions indicates the corner 
number; the second indicates the direction of the force or the 
point about which the moment is taken; while the third refers to 
the type of motion causing the reactions, 

By symmetry the reactions at and about corner 2 caused by 
rocking about this corner would become 

F 2l(!«> = F2yir> = ~Fua{c) 

_ _ (28) 
Mm<*> - Mmf> 

Corner 3—Translation and Rocking. Fig. 1(c) shows the 
waves radiating into the quarter-space formed by the intersection 
of the right side wall of the foundation and the surface of the half 
space. With the rocking axis taken at corner 3, the vertical wall 
has the translations, U ~ aQ and -V - (1/2)17, in the x' and y'-
directions, respectively. From corner 3, in addition to cylindrical 
P and S-waves, the planar von Schmidt or "head" wave plus a 
Rayleigh surface wave will radiate. 

In a previous paper [5] on the motion of a finite rigid strip in a 
half space, the radiation problems for horizontal motion and 
rocking were solved and the reactions exerted on the wall by the 
waves radiated from the corner were obtained. For unit magni
tude horizontal translation the reactions are 

iV,/<> = K2(K2 ~ 2fh ( 2 9 ) 

M3oV,c» = S-KK1 - 2)[K2(K2 - \)h - U2 + K> -1] 

while for rocking about corner 3 the reactions are 

FWC> = S~1[KHK2 - 1)(K2 - 2)/2 - (K - 1) 

X (0.5K3 + K2 - 2K - 2) • (K2 + K)~1] (30) 

MW 1 ' 1 = 4 « V - If his2 

where, as usual, the moments are taken about the corner being 
treated. The integrals h,2,3, defined in [5] with details for their 
numerical evaluation, are constants depending only on K . 

To solve the problem for vertical translation of the vertical wall 
with rigid-pressureless boundary conditions (7c) we follow the 
same procedures used in solving the horizontal translation and 
rocking problems in [5]. Complete details are given in [6] where 
the resultant reactions are shown to be 

with 

4 = ^ ^ (31) 
A = (/?* + X2)2 - 4A'2a/6

> 

a2 = A2 4- 1; 02 = A2 + K2 

U is rendered a proper integral by the substitution X = K tan 0 
and it can then be evaluated numerically. 

By symmetry, the reactions contributed by the waves radiating 
from corner 4 due to unit magnitude motions of the left wall can 
be deduced as 

Fix'/
C> = F3x'/<>; ~Fiy./<-> = ? . . , / / " 

Ft/ir = * W » ; ~M«//« = Mrf/o (32) 

Plane Wave Reactions—Base and Side Walls. So far we 
have extracted the plane wave fields in all of the foregoing radia
tion subproblems and have omitted their contributions to the 
reactions. It is not only more convenient to calculate the plane-
wave reactions along the three sides of the foundation separately, 
but also these reactions, unlike those due to the cylindrical 

waves, are exact for all time. That is because the plane waves 
which issue from the sides are deduced solely by the given motion 
of the side and are not affected by the corners. As they radiate 
from the foundation, the plane waves do not interact with any 
corners. 

To calculate the plane-wave effects is straightforward. For a 
given side we place the axis of rocking at the point where the nor
mal projection of the mass center intersects that side. Then, with 
this point as origin, the exact horizontal and vertical translations 
of the side can be deduced. Finally, subject to the appropriate 
boundary conditions, rigid-smooth or rigid-pressureless, we can 
construct the plane radiated waves from the plane, rigid bounda
ry. 

For example, at the right side wall the translation becomes 

u = U - yH; v = V + |fi (33) 

where we refer to Cartesian coordinates parallel to those in Fig. 
1(a), but with origin on the right wall at a distance b above the 
base slab. It is then straightforward to verify that the radiated 
plane waves caused by the motions (33) become 

*"" = --(U ~ yn)e-» 
(34) 

The reactions produced by these waves are calculated by inte
grating the appropriate stresses over the actual length of this 
side, i.e., from -b <y < a. 

Below are listed the total plane wave reactions from the three 
sides exerted at and about the mass center: 

l > > = -(K + 2K2)SU + [KHO - b) - Kb^H 

Fv'"> (K2 + 2K)SV (35) 

M>> = [K2(U - b) - Kb]sU - [ | f 2 ( a 2 + b2 - ab + | ) 

+ K(&2 + |)]sfi 

Equat ions of Mot ion 

The equations of motion for the foundation are constructed 
by equating the total reactions at and about its mass center to 
the appropriate inertia terms. The contributions of the cylindrical 
Waves, equations (17)-(19), (26)-(32) are weighted by the actual 
translation magnitudes occurring at each respective corner and 
are then combined with the plane wave reactions (35). Numerical 
values are obtained with K2 = 3 (i.e., v = y4) and for b = 0.3880. 
The latter value is not only physically realistic, but it also causes 
the plane wave coupling terms in (35) between rocking and slid
ing to vanish. Finally, we choose the foundation material density 
to be 1.5 times that of the soil, but the foundation is taken to oc
cupy one sixth of a unit soil cube. With a unit shear modulus and 
unit P-wave speed, the mass of a unit soil cube becomes K2 = 3. 
Thus the dimensionless foundation mass and polar (rocking) mo
ment of inertia are calculated as 0.75 and 0.21, respectively. 

With coefficients abbreviated here to two decimal places, the 
foundation equations become 

(0.75s2 + 7.73s + 1.35)E7(s) + (0.84 - c a O r ^ s ) = 0 (36a) 

(0.84 - 0.24s-1 X7(s) + (0.21s2 + 1.95s + 0.35 + 0.71s'1 

- 0.11s-2)fi(s) = 0 (366) 

(0.75s2 + 6.46s + 0.90 )V(s) = 0 (36c) 

Note that the coupling compliances between U and U are not 
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Fig. 2(a) Directly induced responses Gu(t) 
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Fig. 2 Impulse responses of foundation 

symmetric because different relaxed boundary conditions at the 
lower corners are used for rocking than for horizontal translation. 
This phenomenon has also been reported for a surface mounted 
vibrating footing when different relaxed boundary conditions are 
used in the evaluation of the restraining reactions [10]. 

The uncoupled equation for V is identical to that for a damped^ 
simple oscillator. The more complicated, coupled equations for U 
and S2 also manifest radiation damping and soil-spring terms, but in 
addition, they contain memorylike 1/s and 1/s2 terms. Such terms 
have been interpreted physically in reference [5] in connection 
with their occurrence in the equations of motion for an embedded 
rigid strip. Their presence causes the characteristic determinant 
of equations (36a) and (366) to have six roots. Unfortunately, just 
as in the strip problem [5], one of them is positive, indicating that 
the long-time limits of the solutions are unstable. While this fea
ture has no significance at early times when the results are exact 
(0 < t < 1), it does prevent an accurate estimate of long-time re
sponses. 

To illustrate the characteristics of the foundation—half-space 
system, numerical results are presented for the impulse responses 
Gij(t), where i = 1, 2, 3 corresponds to U, Q, and V, respectively, 
and j = 1, 2, 3 corresponds to a delta function applied on the 

right-hand side of equation (36a), (36b), and (36c), respectively. 
These results, shown in Figs. 2(a,b), constitute the temporal 
Green's function matrix for the system and illustrate free vibra
tions due to initial velocities. . 

D i s c u s s i o n of R e s u l t s and Conclus ions 
It is seen from Fig. 2(aJ that the diagonal responses Gtl peak in 

the initial time period where they are exact and then begin to 
decay as would be expected physically. Because their coefficients 
are so small, exponentially unstable terms in G n and G22 are still 
insignificant up to t = 7. Hence, these results appear to be valid 
approximations well beyond the first unit of time. The V = G33 

response is overdamped. However, the coupled system for U and 
H has one pair of complex characteristic roots providing oscilla
tions with a period of about 10. However, the coefficient of this 
damped oscillation in G22 is over 30 times greater than that in 
G n . Consequently, the rocking oscillations in G22 are strikingly 
demonstrated, while the oscillations in G n can barely be exhibited 
on the graphs. In fact the directly induced rocking response is 
considerably larger than that for translation—thus indicating 
the possible importance of rocking motion in building vibrations. 

The coupling responses G12 and G2i, shown in Fig. 2(b), agree 
quite well at early times where their values are predicted most 
accurately. The average value of these responses would probably 
serve as a useful approximation for estimating the coupling com
pliance of the half space with an embedded foundation. 

Since the Green's functions found here appear quite valid on 
physical grounds for a considerable length of time it follows that 
they can be used through the convolution integrals Gu * Fj (sum
mation implied) to estimate the early to moderate time responses 
of the foundation to arbitrary loadings Fj(t), including those pro
duced by the scattering of incident seismic waves. 
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