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ABSTRACT 

Linear systems resulting from the electric-field integral 
equation (EFIE) become ill-conditioned, particularly for 
large-scale problems.  Hence, effective preconditioners 
should be used to obtain the iterative solution with the 
multilevel fast multipole algorithm in a reasonable time.  
In this paper, we show that a threshold-based 
incomplete LU (ILU) preconditioner, i.e., ILUT, can be 
used safely for such systems, provided that column 
pivoting is applied for the stability of the incomplete 
factors.  It is observed that the resulting preconditioner 
ILUTP reduces the solution times by an order of 
magnitude, compared to simple Jacobi preconditioner.  
Moreover, we also use the iterative solution of the near-
field system as a preconditioner, and use ILUTP as the 
preconditioner for the near-field system.  This way, the 
effectiveness of the ILUTP is further improved  
  
1. INTRODUCTION 

In this work, we consider the solution of large 
electromagnetic scattering problems involving three-
dimensional targets.  For the geometries having open 
surfaces, only the electric-field integral equation (EFIE) 
can be used to formulate the induced current on the 
target surface.  Then, the integral equation is discretized 
by the method of moments, yielding dense complex 
systems in the form of =Z x y⋅ . Using the multilevel 
fast multipole algorithm (MLFMA) [1], the solutions to 
the dense systems can be obtained with low 
computational complexity.  
 
However, EFIE produces linear systems which are 
difficult to solve iteratively.  In Fig. 1, we show the 
pseudospectra of an EFIE matrix, related to a small 
problem with 930 unknowns.  The matrix properties are 
very unfavorable for the iterative solution.  The 
eigenvalues are scattered, especially along the left half-
plane, making the matrix highly indefinite.  Moreover, 
some pseudospectra include the origin, signalling the 
near-singularity of the matrix.  Hence effective 
preconditioning strategies are indispensable for 
robustness and effectiveness. 
 
To reduce the storage requirement, MLFMA stores only 
the near-field part of the coefficient matrix, denoted by 

NFZ .  Since this is the best available approximation to 
the system matrix Z , we can use it as a preconditioner 
and solve (for example) the left-preconditioned system 
 
 NF -1 NF -1( ) = ( )⋅ ⋅ ⋅Z Z x Z y . (1) 
 

 
Figure 1.  Pseudospectra of an EFIE matrix at the 
levels of 10-0.8, 10-1, and 10-1.2. The black dots are the 
eigenvalues. 
 
The solution of the system with the near-field matrix 
can be performed via LU factorization.  However, 
during the factorization of unstructured sparse matrices, 
fill-in occurs and sparsity is lost.  Nonetheless, by 
sacrificing some (hopefully) unimportant elements 
during the factorization, we end up with an incomplete 
LU (ILU) preconditioner.  These preconditioners work 
well in many areas of scientific computation [2]. 
 
In this paper, we show that among various ILU 
preconditioners, ILUT [3] is effective for EFIE systems. 
However, for some geometries, no progress may be 
observed towards convergence.  We show that this 
occurs because of the instable incomplete factors.  To 
overcome the problem, we apply column pivoting as 
suggested in [4].  The resulting preconditioner is called 
ILUTP.  With this remedy, we achieve convergence 
with iteration counts that are close to those obtained by 
using the exact factorization of the near-field matrix. 
 
To further increase the effectiveness of the 
preconditioner, we can use a flexible solver, which 
allows the preconditioner to vary from one iteration to 
another.  Then, we precondition the original system 
using another iterative solver.  We propose to solve the 
near-field system with the inner solver, and use ILUT as 
the preconditioner.  Our experiments reveal that, by 



 

using only a few iterations for the inner system, the 
number of outer iterations further drops compared to 
using ILUT alone. 
 
ILU preconditioners are used in the context of MLFMA 
before in [7] – [9].  ILU(0) is shown to be successful in 
[7], but it produced discouraging results in another work 
[8].  Later, ILUT was used with the hybrid surface-
volume integral equations and shown to be successful 
on many test problems [9]. However, the study neither 
includes the commonly used EFIE formulation, nor the 
application of pivoting or any other techniques to 
increase the robustness of the preconditioner. 
 
This paper is organized as follows.  In the next section, 
we explore ILU preconditioning in more detail.  Then, 
numerical experiments are demonstrated in Section 3.  
Concluding remarks about the numerical results are 
given in Section 4.  
 
2. INCOMPLETE LU PRECONDITIONING 

Two kinds of ILU preconditioners are proposed 
depending on the criteria for the elimination of the 
matrix entries.  The first set of preconditioners, namely, 
the level-of-fill methods, drop matrix entries based on 
their locations.  For example, consider an incomplete 
factorization of the near-field matrix, NFZ L≈ ⋅U . If we 
retain the nonzero values of  L  and U  only at the 
nonzero positions of NFZ , we obtain the most common 
level-of-fill ILU preconditioner, called ILU(0). For 
positive definite or diagonally dominant systems, this 
simple idea works well. 
 
On the other hand, for matrices that are far from being 
diagonally dominant and indefinite, ILU(0) becomes 
ineffective in predicting the locations of the largest 
entries, since it does not consider the numerical values.  
Hence, other ILU preconditioners are developed, which 
are based on the principle of dropping the matrix 
elements depending on their magnitudes.  Among such 
methods, ILUT is successful for systems obtained from 
a wide range of applications [5].  ILUT uses two 
parameters: a threshold τ and the maximum number of 
nonzero elements per row p. During the factorization, 
matrix elements that are smaller than the prescribed 
threshold τ times the 2-norm of the current row are 
dropped. Then, of all the remaining entries, no more 
than the p largest ones are kept.  For ill-conditioned 
matrices, ILUT is known to yield more accurate 
factorizations compared to level-of-fill methods with the 
same amount of fill-in [4]. Moreover, the computational 
requirements can be controlled with the help of the 
parameters. 
 
Despite these advantages, ILUT sometimes suffers from 
instability.  Even if the factorization terminates 
normally, the incomplete factors may turn out to be 

unstable, rendering them useless for preconditioning.  
The common reasons for instability are, in general, 
excessive dropping and small pivots [4].  If the problem 
is related to the small pivots, one can significantly 
increase the robustness of the preconditioner by using 
partial pivoting as in the complete factorization case.  
The resulting preconditioner is called ILUTP. 
 
In order to understand the stability of the 
preconditioner, we can use the norm 
 

1( ) , [1,1, 1]T−

∞
⋅ ⋅L U e e = K ,       (2) 

 
which is called condest (for condition estimate).  The 
condest value gives an idea about the stability of the 
incomplete factors because it provides an upper bound 
for 1( )−⋅L U  [4].  If the condest value is not very high, 
but the preconditioner still does not work, we can 
deduce that fill-in should be increased.  On the other 
hand, if the condest value is high, one should first try 
pivoting for a less expensive remedy. 
 
3. RESULTS 

To test the effectiveness of the ILU preconditioners on 
EFIE systems, we solve several scattering problems. 
Among them, we present results for two representative 
geometries, a patch (P) and a half sphere (HS), which 
are shown in Fig. 2.  
 
 

 
Figure 2.  Patch and half sphere geometries. 

 
We fix the threshold parameter τ at 10-6 and p to be the 
same as the average nonzero elements per row of the 
near-field matrix.  This way, the storage cost of ILUT 
becomes similar to that of ILU(0).  
 
As the iterative solver, we use GMRES with no restart 
for robustness purposes.  Starting with the zero initial 
guess, we stop the iterations when the initial residual 
norm is reduced by six orders of magnitude. 
 
In Table 1, we show the condest values and iteration 
counts for ILU(0),  ILUT, ILUTP, and LU. ‘N’ denotes 
the number of unknowns.  We use 0.5 permutation 
tolerance for ILUTP, which means pivoting is applied if 
the pivot candidate is at least two times larger than the 
diagonal element.  LU denotes the exact factorization of 
the near-field matrix.  This preconditioner does not have 



 

a practical use due to its high cost.  It is shown merely 
as a benchmark to test how well the ILU 
preconditioners approximate the near-field matrix.  
 
Geom- ILU(0) ILUT ILUTP LU

etry 
N 

cond iter cond iter cond iter iter

P 137,792 6.E+09 - 1398 82 1350 81 53

HS 116,596 6.E+05 - 2.E+15 - 582 110 93
Table 1.  condest and iteration counts.  “-” denotes that 

convergence is not attained in 1500 iterations. 
 
The condest values in Table 1 indicate that ILU(0) 
produces highly unstable factors for large problem sizes. 
For smaller sizes, ILU(0) may be successful as in [7] 
because of two reasons. First, the near-field matrix is 
not very sparse for small problems. For example, a 930 
unknown problem contains, on the average, 224 
nonzero elements per row if the size of the smallest 
cluster is fixed as 0.25λ, which is a common choice. 
Secondly, it is known that, as the problem size becomes 
larger, EFIE produces increasingly ill-conditioned 
matrices [6], for which ILU(0) is less likely to become 
successful.  
 
ILUT works well for the patch problem, but for the half 
sphere, it produces instable factors as can be noticed 
from the very high condest value.  With pivoting, the 
difficulty is removed, and convergence is attained with 
low iteration counts. 
 
For a deeper understanding of the effect of the 
preconditioners on the EFIE systems, we also show in 
Figs. 3 and 4 the distribution of the approximate 
eigenvalues for the no-preconditioning, Jacobi, ILUTP, 
and LU cases. These eigenvalues are obtained as a by-
product of the GMRES solver. The approximation to the 
outer eigenvalues are better. As seen in the figures, 
ILUTP preconditioner clusters the eigenvalues on the 
right half-plane with a reasonably small radius. Hence, 
GMRES iteration converges a lot faster [10].  
 
Even though the iteration numbers of ILUTP are not far 
from those of the LU preconditioner, we can provide a 
better approximation to the near-field matrix by using 
the iterative solution of the near-field system as a 
preconditioner.  For this purpose we use a flexible 
solver to solve the EFIE system, which allows the 
preconditioner to vary at each iteration.  Hence, this 
approach results in a two-level iterative solver. The 
outer solver is used for the solution of the original 
system, and the inner solver is used for preconditioning 
the original system.  We propose to solve the near-field 
system with the inner solver, and use ILUTP as the 
preconditioner. We use GMRES again as the inner 
solver since it is effective for reducing the residual norm 
in the early iterations.  Our experiments reveal that only 

three iterations suffice to obtain a good approximation 
to the exact solution of the near-field matrix.  We name 
this preconditioner NF/ILUTP.  
 

 
Figure 3.  Approximate eigenvalues for the patch. 

 

 
Figure 4.  Approximate eigenvalues for the half sphere. 
 
In Figs. 5 and 6, we show iterations versus residual 
norm for the patch and the half sphere, respectively.  
We compare the aforementioned preconditioners with 
the simple Jacobi preconditioner to show that, in the 
absence of a strong preconditioner, it is difficult to solve 
these systems even with a robust solver.  We also note 
that both ILUTP and NF/ILUTP iteration counts turn 
out to be close to the LU preconditioner.  
 
Since the main goal in preconditioning is to reduce the 
total solution time, we compare the total solution times 
(setup + iterative phase) of the preconditioners in Fig. 7.  
ILUTP reduces the total solution time by nearly an 
order of magnitude with respect to the Jacobi 
preconditioner.  NF/ILUTP further drops the total time 
compared to ILUTP. 
 



 

 
Figure 5.  Residual error for the patch. 

 

 
Figure 6.  Residual error for the half sphere. 

 

 
Figure 7.  Total solution times for the two geometries. 

 
4. CONCLUSION 

In this work, we show that a thresholding-based ILU 
preconditioner, namely, ILUTP, can be safely applied to 
electromagnetic scattering problems.  We use no more 
storage with respect to the near-field matrix, and the 
resulting preconditioner accelerates the iterative solver 
dramatically.  

 
As a further improvement, we apply ILUTP to the 
iterative solution of the near-field system, and then use 
this solution as a preconditioner to the original EFIE 
system.  This approach increases the effectiveness of the 
preconditioner.  It is also applicable to parallel 
implementations, because it requires only sparse matrix-
vector products, which can be efficiently parallelized.   
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