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The paper deals with Delaunay Triangulations (DT) in Ed space. 
This classic computational geometry problem is studied from the 
point of view of the efficiency, extendibility to any dimensionality, 
and ease of implementation. A new solution to DT is proposed, 
based on an original interpretation of the well-known Divide and 

Conquer paradigm. One of the main characteristics of this new 
algorithm is its generality: it can be simply extended to triangulate 

point sets in any dimension. The technique adopted is very efficient 
and presents a subquadratic behaviour in real applications in E’, 
although its computational complexity does not improve the 
theoretical bounds reported in the literature. An evaluation of the 
performance on a number of datasets is reported, together with a 
comparison with other DT algorithms. 0 1998 Published by 
Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Triangulation is one of the main topics in computational 
geometry and it is commonly used in a large set of 
applications, such as computer graphics, scientific visuali- 
zation, robotics, computer vision and image synthesis, as 
well as in mathematical and natural science. Given a point 
set P, the Delaunay Triangulation (DT) is a particular 
triangulation, built on the points in P, which satisfy the 
empty circum-circle property: the circum-circle (-sphere in 
E3 or -hypersphere in Ed) of each simplicial cell in the 
triangulation does not contain any input point p E P. Man 
a$orithms were proposed for the DT of a set of si$s in E r , 
E or Ed, and most of them are reviewed in Ref. ’ . 

Unfortunately there has been little research into imple- 
mentations and performance evaluations of Delaunay trian- 
gulators. Few papers report evaluations of real 
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implementations or give experimental comparisons of dif- 
ferent algorithms. Worst case time complexities are gener- 
ally given, but such analyses, from the point of view of the 
application programmer, are not always sufficient to make 
the correct decisions. In fact, theoretically better algorithms 
can sometimes be outperformed by more naive methods; the 
theoretical asymptotic worst case complexity sometimes 
fails to consider the optimization techniques that can be 
applied to reduce the expected complexity. 

A new divide and conquer DT algorithm is proposed in 
this paper. The algorithm gives a general and simple solu- 
tion to DT in Ed space and makes use of accelerating tech- 
niques which are specific to computer graphics. 

The paper is organized as follows: definitions and a tax- 
onomy of Delaunay triangulation algorithms are presented 
in the second section. The proposed algorithm is described 
in detail in the third section, together with some optimiza- 
tion techniques. The performances of the proposed solution 
are evaluated on a number of datasets and compared with 
other solutions in the penultimate section. Conclusions are 
drawn in the last section. 

DELAUNAY TRIANGULATION 

Given a point set P in Ed, a k-simplex, with k 5 d, is defined 
as the convex combination of k + 1 affinely independent 
points in P, called vertices of the simplex (e.g. a triangle is a 
2-simplex and a tetrahedron is a 3-simplex). An s-Face of a 
simplex is the convex combination of a subset of s + 1 
vertices of the simplex (i.e. a 2-face is a triangular facet, l- 
face is an edge, O-face is a vertex). 

A triangulation C defined on a point set P in Ed space is 
the set of d-simplices such that: 

(1) a point p in Ed is a vertex of a simplex u in Z if p E P; 
(2) the intersection of two simplices in 1 is either empty or 

a common face; 
(3) the set X is maximal: there does not exist any simplex u 

that can be added to C without violating the previous rules. 

A triangulation C is a Delaunay Triangulation if the 
hypersphere circumscribing each simplex does not contain 
any point of the set P3*4. The Delaunay triangulation of a 
given point set P is unique if these do not exist in P d + 2 
points lying on the same hypersphere. Such cases, also 
known as degeneracies, can be managed by using local 
perturbation schemes 5. 
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Figure 1 Merging of two partial DT in E’ space 

The duality between DTs and Voronoi diagrams is well 
known4 and therefore algorithms are given for the construc- 
tion of DT from Voronoi diagrams. However, direct con- 
struction methods are generally more efficient because the 
Voronoi diagram does not need to be computed and stored. 
Direct DT algorithms ’ can be classified as follows: 

local improvement-starting with an arbitrary triangu- 
lation, these algorithms locally modify the faces of pairs 
of adjacent simplices according to the circum-sphere 
criterion; 
on-line (or incremental insertion)-starting with a 
simplex which contains the convex hull of the point 
set, these algorithms insert the points in P one at a 
time: the simplex containing the currently added point 
is partitioned by inserting it as a new vertex. The circum- 
sphere criterion is tested on all the simplices adjacent to 
the new ones, recursively, and, if necessary, their faces 
are flipped; 
incremental construction-the DT is constructed by 
successively building simplices whose circum- 
hyperspheres contain no points in P; 
higher dimensional embedding-these algorithms trans- 
form the points into the Edi’ space and then compute the 
convex hull of the transformed points; the DT is 
obtained by simply projecting the convex hull into Ed; 
for a comparison of the different approaches see63 
divide and conquer (D&C)-this is based on the recur- 
sive partition and local triangulation of the point set, and 
then on a merging phase where the resulting triangula- 
tions are joined. Current algorithms are not generalized 
to Ed space, but limited to E2 space alone. 

On-line methods7.* hold the lower worst case time com- 
plexity, O(n log n + Ad’*’ ). Moreover, these methods in their 
naive implementation are simple to 
generalized to manage point sets in E B 

rogram and can be 
space. 

D&C solutions hold in E* the same complexity as on-line 
methods, but a general D&C Ed (d > 2) solution has not 
been proposed yet. The main problem here is the design of 
the merging phase. Because of the explicit ordering of the 
edges incident in a vertex (Figure I), the merging phase is 
simple in E29, but hard to design in Ed where this ordering is 
not given. 

The algorithm proposed in this paper by-passes this pro- 
blem by reversing the order between the solutions of sub- 
problems and the merging phase. The classical D&C algo- 
rithms recursively subdivide the input points, construct two 
partial DTs and then merge them. Our solution is based on a 
more complex division phase, in which the input dataset P is 

split into PI and P2, and a section of the DT is immediately 
built. This partial triangulation allows the algorithm to 
recursively triangulate the two point sets PI and P2, taking 
into account the border of the partial triangulation and 
avoiding the need for a further merging phase. A “merging” 
simplex set is thus built before the subproblems are solved: 
we partition the problem solution, instead of its instance. 
The partial triangulation can be built very simply using a 
constructive rule similar to McLain’s in its incremental con- 
struction approach lo. This means we can specify a general 
Ed D&C Delaunay triangulator. Its simple structure permits 
an efficient implementation using some well known optimi- 
zation techniques. 

THE DEWALL ALGORITHM 

A new algorithm for the DT of a point set P in E” is 
presented in this section. The algorithm is based on the 
D&C paradigm, but this paradigm is applied in a different 
way with respect previous DT algorithms9,“. The general 
structure of D&C algorithms is: divide the input data into 
subset PI and P2; recursively solve on PI and P2; and merge 
the partial results S, and S2 to build solution S. 

In the case of triangulations, the input point set P can 
easily be divided using a cutting plane such that the two 
associated halfspaces contain two point sets PI and P2 of 
comparable cardinality. The problem is how to implement 
the merging phase, i.e. how to build the union of the two 
solutions Sr and S2. This union requires the triangulation of 
the space separating S1 and S2, and generally also requires a 
number of local modifications to St and S2. As previously 
stated, this problem was efficiently solved for the E2 
case9,*‘, but not for the general Ed case. 

Our approach to D&C is slightly different. Instead of 
merging partial results, we apply a more complex dividing 
phase which partitions the point set and builds, as first step, 
the merging triangulation. The algorithm is then recursively 
applied to triangulate the two subsets of the input dataset P. 

The splitting plane a separates the point set P into two 
subsets P, and P2. Analogously, the splitting plane (Y 
divides a triangulation C into three disjoint subsets: the 
simplices that are intersected by the plane, which we call 
the simplex wall X:,, and the two sets of simplices 2, and C2 
that are completely contained in the two halfspaces defined 
by (Y (Figure 2). Za can be chosen as a valid merging trian- 
gulation: (a) each u E I.a is also in IX and (b) subtracting Ea 
from C generates two disconnected simplicial complexes Xl 
and IX:. 
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Function DeWall (P : pointset, AFL : (d-l)face_list) : d-simplexlist; 

var f : (d-1)face; AFL,, AFL1, AFL2 : (d-l)face_list; 

t : d-simplex; C : d-simplexlist; a : splittingplane; 

begin 

AFL,, AFL1 , AFL2 : =emptylist ; 

Pointset_Partition(P, a, PI, P2); 

/* Simplex Wall Construction */ 

if AFL = 0 then 

t:=HakeFirstSimplex(P, a) ; 

AFL:=(d-l)faces(t); Insert(t,C); 

for each f E AFL do 

if IsIntersectedcf ,cu) then Insert (f , AFL,) ; 

if Vertices(f) C PIthen Insert (f , AFLI) ; 

if Vertices(f) C Pz then Insert (f , AFL2) ; 

while AFL, # 8 do 

f : =Extract (AFL,) ; 

t : =MakeSimplex (f , P) ; 

if t # null then 

c:=c u {t}; 

for each f’: f’ E (d- l)faces(t) AND f’# f do 

if IsIntersected(f’,a) then Update(f’,AFL,) 

if Vertices(f’) C PI then Update(f’,AFLl) 

if Vertices(f’) C Pz then Update(f’,AFLz) ; 

/* Recursive Triangulation */ 

if AFL1 # 

if AFL2 # 

DeYall : =c ; 

end ; 

Procedure Update 

begin ; 

8 then C:=C U DeUall(P~,AFL1); 

8 then C:=C U DeWall(&,AFL2); 

(f 

if Member (f , L) then Deletecf, L) 

:face, L : face-list) 

end ; 

else Insert (f , L) ; 

Figure 3 DeWall algorithm 

current triangulation progress status. As soon as all of the 
simplices incident in p were built, p may be removed from P 
and it will no longer be tested in the further invocations of 
MakeSimplex. The control on the number of incident 
simplices was implemented with a counter associated with 
each vertex p, increased each time a new face incident in p is 
built and decreased for each invocation of MakeSimplex on 
an incident face; as soon as the counter returns zero, p may 
be deleted from P. 

Construction of simplices in C, alone 
A slight modification to the canonical incremental 
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construction approach is needed to build only those 
simplices intersected by the splitting plane CY. Instead of 
using a single list of active faces (AFL), the algorithm uses 
three disjoint lists containing: 

l AFL,: the (d - 1)-faces intersected by plane a; 
l AFL,: the (d - I)-faces with all of the vertices in P,; 
l AFL,: the (d - 1)-faces with all of the vertices in P,; 

For each simplex O, the algorithm inserts its (d - 1)-faces 
in the suitable face list. It then extracts faces (on which the 
next simplices will be built) from the AFL, alone; this 
ensures that each simplex built is part of the simplex wall ,X:,. 
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Figure 4 Incremental construction of the simplex wall (first steps in a 2D example) 

The simplex wall construction process terminates when Uniform grid 
AFL, is empty. This process returns both xa and the pair of 
active face lists AFL1 and AFL*. DeWall is then recursively 
applied to the pairs (P,,AFL,) and (P2,AFL2), unless all the 
active face lists are empty. The splitting plane (Y is cyclically 
selected as a plane orthogonal to the axes of the Ed space 
(X, Y or Z in E3), in order to recursively partition the 
space with a regular pattern. Two-dimensional examples 
of the simplex wall construction and of the recursive appli- 
cation of the algorithm are shown in Figures 4 and 5, 
respectively. 

The DeWall algorithm is simple and easy to implement 
although in its naive implementation the asymptotic time 
complexity is not optimal nor is its practical efficiency 
good. An analysis of the algorithm shows that the main 
inefficiency is in the MakeSimplex function, 

Each simplex is constructed from an adjacent simplex 
face, by finding the dd-nearest point (i.e. the nearest accord- 
ing to the dd metric). This search entails performing an O(n) 
test for each simplex, where n is the number of sites in P. 

Figure 5 Some steps of the DeWall algorithm on a point set in E2 
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VG visiting order 

RI first 

La second 

pJ third 

Figure 6 On the left, a 2D example of the cell visiting order of Maus (sphere scan conversion) and. on the right, our technique (based on the analysis of all the 
UG cells contained in the bounding box of each sphere) 

However, the construction of a new simplex in expected edge length) the discretized circumsphere and the circum- 
constant time is possible. cube are identical. 

The concept of local processing is often adopted in com- 
puter graphics either to speed up sequential algorithms or to 
achieve parallelism. The speed-up technique proposed here 
is based on the Ed extension of the uniform grid (UC) 13: for 
simplicit 

Y? 
the use of the UC is described here for the case of 

DT in E-, supporting a regular partition of the space into 
hexahedral cells: 

The choice of the right resolution for the uniform grid 
space crucially affects the efficiency of the algorithm. In the 
reported implementation, the resolution of the UG is defined 
such that the number of cells is equal to the number of sites. 

DeWall time complexity 

UG= (C,jk); i,j,k E [O..N] (1) 

The main reason why uniform grid techniques are effective 
in geometric computations is that two points, which are far 
apart, generally have little or no effect on each other. A 
large class of geometric algorithms possesses this property, 
ranging from visibility, to modeling (boolean operations, 
intersection detection, etc.) and computational geometry 
(point location, triangulation, etc.) 14. 

The uniform grid is used as an indexing scheme for the 
fast detection of the dd-nearest point. A similar technique 
was also used by Fang and Piegl 1 .” to speed up incremental 
2D and 3D Delaunay triangulation. 

The worst-case time complexity of the DeWall algorithm 
may be misleading: neither of the two techniques used 
(D&C strategy and Uniform Grid optimization) guarantee 
worst case optimality whilst they do offering good 
performances in practical situations. It is possible to 
define patological datasets which cancel the efficiency of 
both the D&C strategy and the UG: if DeWall is applied to 
the dataset depicted in Figure 7, the construction of the first 
wall originates the entire triangulation (all the simplices in 
the triangulation intersect the splitting plane a); analo- 
gously, it is possible to choose site distributions that make 
the Uniform Grid not useful at all. In these pathological 

The space E” is partitioned into cubic cells following a 
regular pattern. The UG structure is built in a preprocessing 
phase, by computing for each cell Cijk the subset of points in 
P contained in cljk. 

The MakeSimplex function is designed such that, analo- 
gously to Maus’s proposal “, the UG is scanned in order of 
increasing distance from f. Given this partial ordering of the 
sites, not all the points in P have to be analyzed for each face 
f. In fact, given a point p, such that dd(f,p,) = d ,, all the 
points which are not contained in the sphere around f and p , 
will certainly have a dd value greater than d,, and it is 
pointless to evaluate their dd value. The analysis of the 
cells of UG can be stopped when there are no more 
cells contained in the circumsphere around f and the current 
dd-nearest point (Figure 6). 

The cells scanning order used is simpler than that pro- 
posed by Maus. Indeed we do not test the cells contained in 
circumspheres with increasing radius (the sphere to cells 
conversion is not a simple task) but we simply select and 
test all of the cells contained in the smallest cube circum- 
scribed to each circumsphere. This method is simpler 
because it avoids the scan-conversion of spheres, and the 
number of cells selected is not much higher. Note that if the 
sphere radius selected is small (up to three times the cell Figure 7 The worst-case input dataset for the DeWall algorithm 
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Figure 8 Spatial distribution of the sites: uniform dataset on the left, bubbles on the right 

situations the DeWall algorithm reduces itself to an 
incremental construction algorithm, yielding a O(nrd”‘+ ’ ) 
worst case time complexity. In spite of this result, the 
algorithm behaves well in practical cases (as shown in 
Section 4) yielding, in the three-dimensional case, a plain 
subquadratic behaviour versus a 0(n3) worst case 
complexity. 

DeWall space complexity 

The algorithm space requirements are bounded by the space 
complexity of: 

the point set P; 
the active fact list AFL; each AFL(n,d) is always a set of 
connected (d - 1)-faces forming a unique (d - 1) surface 
in Ed. Recalling that the number of (d - I)-faces of 
a polytope in Ed of II vertices is at most O(nkd’z’), 
the worst case space complexity of AFL(n,d) is O(n’d’2’); 
the outcoming triangulation; however, like the incre- 
mental construction algorithms, DeWall can return 
each simplex as soon as it is built, avoiding explicitly 
storing the triangulation at run time. 

Therefore, the worst case space complexity of DeWall is 
0(n’d’2’), so it is interesting to note that the maximum 
space required by the algorithm in this worst case is lower 
than (or at most equal to in E2) the size of the outcoming 

triangulation. In contrast, on line triangulators need the 
current triangulation to be stored which is generally repre- 
sented by the use of a hierarchical structure which holds the 
history of the construction process for fast point-in-triangle 
computations. 

RESULTS AND EMPIRICAL EVALUATION 

The performance of the algorithm was tested on two classes 
of datasets. The first class consists of uniform datasets, 
where the locations of sites are generated using a uniform 
probability distribution function (Figure 8). In the second 
dataset class, the sites are organized into a number of 
bubbles with the density of sites decreasing as the distance 
from the bubble center increases (Figure 8). The sites in 
each bubble are generated using an approximation of a 
normal probability distribution function. 

For each dataset class and for each resolution (number 
of sites), a number of different datasets were generated in E3; 
the times reported in Table I and Table 2 are the means 
of the run times measured on each dataset. The machine 
used for the timings was an SGI Indigo workstation 
(MIPS R4000 CPU); the times include the uniform 
grid preprocessing. The results obtained show an 
empirically estimated complexity which is clearly subqua- 
dratic in E3. 

Table 1 Processing times, in seconds, required to triangulate the uniform dataset with various triangulations, plus statistical information. [#(o E Z): number 
of tetrahedra in the final triangulation; #(a E jrst Z.): number of tetrahedra on the first simplex wall; #(eels visited): mean number of cells visited to build a 
single tetrahedra; ma.x(si?es per cell): maximum number of sites contained in each UG cell] 

Uniform dataset 
(No. of sites) 

2000 4000 6000 8000 10000 

De Wall 
times (no opt.) 
times (UG opt.) 
#(a E Z) 
#(CJ E $rst Z,) 
#(cells visited) 
ma.x(sifes per cell) 
Incode 
times (no opt.) 
times (UG opt.) 
Qhull 
times 
Detri 
times 

32.1 100.3 211.1 352.1 516.4 
4.4 9.4 14.8 20.1 26.5 
12642 25 136 39 024 52 390 65 469 
1497 2396 3106 3666 4385 
12.86 13.15 14.43 14.15 14.15 
8 8 9 8 10 

218.8 976. 2306. 4433. 
5.8 13.8 22.1 32.6 

5.34 23.33 29.88 44.64 71.96 

33.11 64.59 101.36 144.87 169.41 

43.1 
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Table 2 Triangulation of the bubble datasets using different triangulators (processing times in seconds) 

Bubble dataset(No. of sites) 2000 4000 
De Wall 

times (UG opt.) 8.3 20.6 
#(cells visited) 14.70 13.55 
maafsites per cell) 250 496 
Incode 
times (UC opt.) 10.7 33.0 
Qhull 
times 5.10 12.00 
Detri 
times 32.55 67.5 I 

200 

150 

100 

50 

0 

<f 

. . 

Uniform Dataset 
I I I I I I t 

Detri +- 
Qhull -t-- 

Incode -D-- 

zoo0 3om 4ooo 5otKI 6ooo 7ooo %ooo 9ooo KJooo 

site number 

6000 8000 10000 

24.6 31.1 56.0 
13.21 12.40 16.47 
1.178 536 200 

38.9 53.3 96.2 

18.04 23.15 30.47 

105.82 156.00 188.14 

2ooo 3ooo 4oMl 5a.lo 6ooo 7ooo 8ooo 9000 loo00 

site number 

Figure 9 The algorithm times in seconds: uniform datasets on the left, bubble on the right 

Another way to empirically evaluate DeWall is to com- 
pare it with other implementations. We tested DeWall 
against two efficient Delaunay triangulators that are pub- 
licly available: 

Incode: a totally incremental construction algorithm, 
with and without the use of the UG optimization tech- 
nique*. Incode was implemented by using most of the 
DeWall’s code; 
Qhull: a general dimension code for computing convex 
hulls and Delaunay triangulations. It is an implementa- 
tion of the Quickhull algorithm I9 for computing the 
convex hull?. It was chosen because it qualifies as the 
fastest convex hull code for large datasets defined in low 
dimension spaces; 
Detri: as part of the alpha-shape software, Detri builds 

* Incode and DeWall are available in public domain at the address http:// 
miles.cnuce.cnr.it/cg/swOnTbeWeb.html 
t Qhull is provided by the Geometry Center, University of Minnesota; the 
Qhull software may be downloaded from the WWW site http://freeabel- 
geom.umn.edu/software/download/qhull.html 
f Detri is provided by the Software Development Group at the National 
Center for Supercomputing Applications (NCSA); info may be downloaded 
from the WWW site http:Nwww.ncsa.uiuc.edu/SDG/Software/Brochure/ 
Overview/ALVIS.overview.html 

the 3D DT by adopting an incremental insertion andflip 
approach’+. 

The results in Table I and their graphical representation 
in Figure 9 show that DeWall is the most efficient of the 
four software programs on regularly distributed datasets, 
while it gives slightly slower times than Qhull on the 
bubble datasets. This is justified by the lower speed-up 
obtained by adopting a UG on irregularly distributed data- 
sets; the bubble datasets contain the worst distribution of 
sites for algorithms that use a UG (and therefore the DeWall 
algorithm). 

Some statistics on the execution of the DeWall algorithm 
on the uniform dataset are also reported in Table 1. The total 
number of tetrahedra returned is considerably lower than the 
theoretical upper bound in E3, O(n’): it was linear with the 
number of sites (approximately 7*n) in our experiments. 
The growth of the number of tetrahedra in the first wall is 
clearly sublinear (approximately 0(n2’3)). 

The mean number of cells visited for the construction of 
each simplex is not constant but shows a low increase with 
the dataset resolution. This is because for each face f on the 
ConvexHull all of the cells contained in the positive half- 
space off have to be tested. 

The simplices which do not lie on the ConvexHuZl(P) 
need, on average, a constant number of cell tests. The 
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increase in the mean number of cells visited is therefore 
justified by the increase in the faces on the ConvexIMl(P). 
Finally, the maximum number of sites per cell is reported in 
Tables I and 2. 

CONCLUSIONS 

The DeWall algorithm was presented as an original solution 
to Delaunay triangulation, based on a particular interpreta- 
tion of the D&C paradigm. This new approach has greatly 
simplified the merging phase and makes it possible to define 
a general D&C solution for point sets defined in any 
dimension. 

Optimization techniques were designed to speed up the 
proposed algorithm. Our results show how common com- 
puter graphics techniques (e.g. data indexing and optimized 
point selection) can dramatically increase the efficiency of a 
typical computational geometry task. The optimality of the 
DeWall algorithm from the viewpoint of asymptotic com- 
plexity is hard to prove. However, the experimental results 
are interesting and show an empirical1 estimated complex- 
ity which is clearly subquadratic in E Y . 
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