
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 1

Online Adaptable Learning Rates for the Game
Connect-4

Samineh Bagheri, Markus Thill, Patrick Koch and Wolfgang Konen

Abstract—Learning board games by self-play has a long tradition in computational intelligence for games. Based on
Tesauro’s seminal success with TD-Gammon in 1994, many successful agents use temporal difference learning today.
But in order to be successful with temporal difference learning on game tasks, often a careful selection of features
and a large number of training games is necessary. Even for board games of moderate complexity like Connect-4,
we found in previous work that a very rich initial feature set and several millions of game plays are required. In this
work we investigate different approaches of online-adaptable learning rates like Incremental Delta Bar Delta (IDBD) or
Temporal Coherence Learning (TCL) whether they have the potential to speed up learning for such a complex task.
We propose a new variant of TCL with geometric step size changes. We compare those algorithms with several other
state-of-the-art learning rate adaptation algorithms and perform a case study on the sensitivity with respect to their
meta parameters. We show that in this set of learning algorithms those with geometric step size changes outperform
those other algorithms with constant step size changes. Algorithms with nonlinear output functions are slightly better
than linear ones. Algorithms with geometric step size changes learn faster by a factor of 4 as compared to previously
published results on the task Connect-4.

Index Terms—Machine learning, board games, self-play, reinforcement learning, temporal difference learning (TDL),
temporal coherence, learning rates, self-adaptation, online adaptation, n-tuple systems.

F

1 INTRODUCTION

HUMANS are very efficient and fast in
learning complicated tasks in new do-

mains. As Sutton [1] has pointed out, informa-
tion theoretic arguments suggest that the learn-
ing progress is often too rapid to be justified
by the data of the new domain alone. The key
to success is, as it is commonly believed, that
humans bring a set of correct biases from other
domains into the new domain. These biases
allow to learn faster, because biases direct them
to prefer certain hypotheses over others or cer-
tain features over others. If machine learning
algorithms shall achieve a performance similar
to humans, they probably need to acquire bi-
ases as well. Where do these biases come from?

Already in 1992 Sutton [1] suggested the
Incremental Delta Bar Delta (IDBD) algorithm

• All authors are with the Faculty of Engineering and Computer
Science, Cologne University of Applied Sciences, Cologne, Ger-
many.
E-mail: wolfgang.konen@fh-koeln.de

Manuscript received March 2nd, 2014; accepted Oct 29th, 2014.

where the biases are understood as learning
rates which can be different for different train-
able parameters of any underlying algorithm.
The key idea of IDBD is that these learn-
ing rates are not predefined by the algorithm
designer but they are adapted as hyperpa-
rameters of the learning process themselves.
Sutton [1] expected such adaptable learning
rates to be especially useful for nonstationary
tasks or sequences of related tasks and he
demonstrated good results on a small synthetic
nonstationary learning problem (featuring 20
weights).

A similar idea was suggested as Temporal
Coherence Learning (TCL) by Beal and Smith
in 1999 [2], [3], who directly modified the
Temporal Difference Learning (TDL) algorithm
to take into account self-tuning learning rates.
Several other online learning rate adaptation
algorithms have been proposed over the years
(see Sec. 2) and it is the purpose of this work –
as a case study in machine learning – to make
a comprehensive comparison on a larger game-
learning benchmark task.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357408082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wolfgang.konen@fh-koeln.de

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 2

Board games and learning how to play them
constitute challenging tasks in machine learn-
ing (ML) and artificial intelligence (AI). They
are challenging, because the action (a move)
has to be taken now, but the payoff (win or loss)
occurs later, at the end of the game. The most
advanced method in ML to address this prob-
lem is well-known TDL, a method based on
reinforcement learning (RL). TDL was applied
as early as 1957 by Samuel [4] to checkers and
gained more popularity through Sutton’s work
in 1984 and 1988 [5], [6]. It became famous
in 1994 with Tesauro’s TD-Gammon [7], which
learned to play backgammon at expert level.

Game learning with TDL constitutes a non-
stationary learning task: For most board posi-
tions the target value will change during learn-
ing (see Sec. 3.3 for details). Thus, RL and TDL
for board games are expected to benefit from
bias learning approaches such as the above-
mentioned IDBD [1].

In this paper we consider the game Connect-
4 as a specific example, which is a solved
game (see Sec. 3.1) but no algorithm to learn
it by self-play was known until recently. In a
previous work [8] we were able to show that it
is possible to learn this game with TDL and
n-tuples [9] just by self-play. We achieved a
playing strength close to the perfect playing
agent. However, the learning process required
several millions of self-play games, thus being
far off human performance. In this work we
investigate whether new strategies can achieve
the same (or even better) strength within fewer
training games. Two solution paths can be con-
sidered here:
a) Tuning, i.e. finding faster-learning solu-

tions by optimizing the hyperparameters
of the learning algorithm. The drawback
of this solution is that the tuning results
usually apply only to the specific learning
task, i.e. Connect-4 with this TDL algo-
rithm. Each new algorithm or each new
game requires a completely new tuning.

b) Self-tuning learning algorithms like IDBD
or others (see Sec. 3), which automatically
adapt certain hyperparameters (here: the
learning rates) as learning progresses. This
avoids manual intervention and there is
hope that the same self-tuning scheme can

be applied to other games as well and that
the insights gained are transferable to other
learning tasks as well.

We follow mainly the second path in this
paper and try to answer the following research
questions:
1) Can online learning rate adaptation be suc-
cessfully applied to problems with millions of
weights?
2) How robust are online learning rate adap-
tation algorithms with respect to their meta-
parameters?
3) Can online learning rate adaptation algo-
rithms speed up learning as compared to TDL?

The rest of this paper is organized as follows:
Sec. 2 briefly reviews related work. Sec. 3 in-
troduces the methods TDL, TCL, and IDBD.
It presents with TCL-EXP our new synthesis
between TCL and IDBD. Sec. 4 describes our
experimental setup and our results on the game
Connect-4. Sec. 5 discusses the parameter sen-
sitivity of the different methods and Sec. 6
summarizes our main findings.

2 RELATED WORK

Several online learning rate adaptation
schemes have been proposed over the years:
IDBD [1] from Sutton is an extension of
Jacobs’ [10] earlier DBD algorithm: it allows
immediate updates instead of batch updates.
Sutton [11] proposed some extensions to
IDBD with the algorithms K1 and K2 and
compares them with the Least Mean Square
(LMS) algorithm and Kalman filtering.
Almeida [12] discussed another method of
step-size adaptation and applied it to the
minimization of nonlinear functions.

Schraudolph [13] and, more recently, Li [14]
extended IDBD-variants to the nonlinear case:
Schraudolph’s ELK1 extends K1 and performs
an update with the instantaneous Hessian ma-
trix of a suitable chosen loss function. The
algorithm’s complexity is O(n2) where n is the
number of parameters to learn. Li’s KIMEL
algorithm transforms the nonlinear input data
with a kernel into a high-dimensional but lin-
ear feature space where linear IDBD is applied.
Sutton and Koop [15], [16] developed another

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 3

nice nonlinear extension IDBD-nl of the origi-
nal IDBD algorithm using the logistic sigmoid
function. It was applied for learning the game
Go.

Recently, Mahmood and Sutton [17], [18]
proposed with Autostep an extension to IDBD
which has much less dependence on the meta-
step-size parameter than IDBD. In the same
year, Dabney and Barto [19] developed another
adaptive step-size method for temporal differ-
ence learning, which is based on the estima-
tion of upper and lower bounds. Again, both
methods are proposed only for linear function
approximation. Schaul et al. [20] propose a
method of tuning-free learning rate adapta-
tion especially well-suited for large neural net-
works. RPROP [21] is another earlier version
of a neural network algorithm with individual
learning rates for each weight.

For the game Connect-4 – although weakly
solved in 1988 by Allen [22] and Allis [23]
(Sec. 3.1) – only rather few attempts to learn
it (whether by self-play or by learning from
teachers) are found in the literature: Schneider
et al. [24] tried to learn Connect-4 with a neural
network, using an archive of saved games as
teaching information. Stenmark [25] compared
TDL for Connect-4 against a knowledge-based
approach from Automatic Programming and
found TDL to be slightly better. Curran et
al. [26] used a cultural learning approach for
evolving populations of neural networks in
self-play. All the above works gave no clear
answer on the true playing strength of the
agents, since they did not compare their agents
with a perfect-playing Minimax agent.

Lucas showed that the game of Othello,
having a somewhat greater complexity than
Connect-4, could be learned by TDL within a
few thousand training games with the n-tuple-
approach [9]. Krawiec et al. [27] applied the n-
tuple-approach in (Co-) Evolutionary TDL and
outperformed TDL in the Othello League [28].
This stirred our interest in the n-tuple-approach
and we applied it successfully to Connect-4
in our previous work [8]. The results against
a perfect-playing Minimax agent are summa-
rized in Sec. 4.3.

Fig. 1. Connect-4 board with an example 4-tuple
’3-2-1-1’ (see Sec. 3.2)

3 METHODS

3.1 Connect-4
The game Connect-4 is a two-player game
played on a board with 7 vertical slots contain-
ing 6 positions each (Fig. 1). Player Yellow (1st)
and player Red (2nd) place one piece per turn
in one of the available slots and each piece falls
down under the force of gravity into the lowest
free position of the slot. Each player attempts
to create horizontal, vertical or diagonal piece-
lines of length four. Fig. 1 shows an example
position where Yellow would win if Red does
not block this by placing a red piece into the
right slot.

Connect-4 has a medium state space com-
plexity of 4.5·1012 board positions [29]. A game
is said to be weakly solved if its game theoretic
value and a strategy for perfect play from the
initial value is known. Connect-4 was weakly
solved in 1988 independently by Allen [22] and
by Allis [23]: Yellow (the 1st player) wins, if
she places her first piece in the middle slot.
Tromp [30] solved the game Connect-4 strongly,
i. e. for every intermediate position.

We developed a Minimax agent combined
with a pre-calculated 8-ply1 or 12-ply-opening
database [8], [31] and it finds the perfect next

1. A ply is a single move of one player, Yellow or Red

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 4

move (or moves, if several moves are equally
well) for each board position within fractions
of a second. This agent will be used in our ex-
periments, but only as reference or evaluation
agent. It is by no means used for any training
purpose.

3.2 N-tuples and LUTs

N-tuples in General: N-tuple systems
were first introduced in 1959 by Bledsoe and
Browning [32] for character recognition. Re-
cently, Lucas [9] proposed employing the n-
tuple architecture for game-playing purposes.
The n-tuple approach works in a way similar
to the kernel trick used in support vector ma-
chines (SVM): The low dimensional board is
projected into a high dimensional sample space
by the n-tuple indexing process [9].

N-tuples in Connect-4: An n-tuple Tν
is a sequence [aν0, . . . , aνn−1] of n different
board cells aνj ∈ {0, . . . , 41}. For example, the
four white digits in Fig. 1 mark the cells of
a 4-tuple. Each cell is in one of P possible
states z[aνj] ∈ {0, . . . , P − 1} (the value of the
digits in our example), depending on the cell’s
occupation. Following our earlier work [8] we
use the (P=4)-encoding

0=empty and not reachable, 1=Yellow,
2=Red, 3=empty and reachable.

By reachable we mean an empty cell that can be
occupied in the next move. The reason behind
this is that it makes a difference whether e. g.
three yellow pieces in a row have a reachable
empty cell adjacent to them (a direct threat for
Red) or a non-reachable cell (indirect threat).

An n-tuple of length n thus has P n possible
states kν ∈ {0, . . . , P n − 1} with

kν =
n−1∑
j=0

st[aνj]P
j. (1)

Here, st[aνj] is the state of board cell aνj at time
t. Fig. 1 shows an example board position with
a 4-tuple in the numbered cells. The state of the
4-tuple is k = 3 · 40 + 2 · 41 + 1 · 42 + 1 · 43 = 91.

The number kν for the state of Tν can be used
as an index into an associated look-up table
LUTν , whose parameters are called wν,t[kν].
Equivalently and more similar to standard neu-
ral networks, we can put all weights into one

big weight vector ~wt with elements wi,t, index
i = kνm+ ν, and define a binary input vector

xi[st] =

{
1 if i = kνm+ ν
0 else (2)

for the kν defined in Eq. (1). For a given board
position st at time t, the output of the n-tuple
network with m n-tuples Tν , ν = 1, . . . ,m can
be calculated as:

f(~wt, st) =
m·Pn∑
i=1

wi,txi[st] (3)

Vector ~wt is a function of time t since it
will be modified by the TD learning algorithm
(Sec. 3.3). The vector ~wt combines all weights
from all LUTs. It can be a rather big vector, con-
taining, e. g., 9 million weights in our standard
Connect-4 implementation with 70 8-tuples. It
turns out that only 600 000 - 700 000 of these
weights are active during learning (the others
represent non-realizable states [8]), but this is
still much bigger than the 20 or 25 weights used
by Sutton [1] or Beal and Smith [2].

Further details on n-tuples in Connect-4
(symmetry, n-tuple creation) are found in [8].
For all experiments reported in the following,
we use the same n-tuple network which was
once created by a random-walk selection pro-
cess.

3.3 TDL
The goal of a game-playing agent is to predict
the ideal value function, which returns 1.0 if
the board position is a win for Yellow, and -
1.0 if it is a win for Red. The TDL algorithm
aims at learning this value function. It does so
by setting up an (initially inexperienced) agent,
who plays a sequence of games against itself. It
learns from the environment, which gives a re-
ward R ∈ {−1.0, 0.0, 1.0} for { Red-win, Draw,
Yellow-win } only at the end of each game . The
main ingredient is the temporal difference (TD)
error signal according to Sutton [6]

δt = R(st+1) + γV (~wt, st+1)− V (~wt, st). (4)

Here, V (~wt, st) = σ (f(~wt, st)) is the agent’s
current approximation of the value function2

2. V (~wt, st+1) is set to 0 if st+1 is a final state.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 5

TABLE 1
TDL algorithm for board games. Prior to the
first game, the weight vector ~w0 is initialized

with random values. Then the following
algorithm is executed for each complete board
game. During self-play, the player p switches

between +1 (Yellow) and −1 (Red).

1: Set the initial state s0 (usually the empty board) and p = 1.
2: Use partially trained weights ~w0 from previous games.
3: function TDLTRAIN(s0, ~w0)
4: ~e0 ← ∇~w V (~w0, ~x(s0))
5: for

(
t← 0 ; st /∈ SFinal ; t← t+ 1, p← (−p)

)
do

6: Vold ← V (~wt, ~x(st))
7: Draw random q ∈ [0, 1]
8: if (q < ε) then . Explorative move
9: Randomly select st+1

10: else . Greedy move
11: Select after-state st+1, which maximizes

12: p ·
{
R(st+1), if st+1 ∈ SFinal

V (~wt, ~x(st+1)), otherwise
13: end if
14: Vnew ← V (~wt, ~x(st+1))
15: δt ← R(st+1) + γVnew − Vold . TD error-signal
16: if (q ≥ ε or st+1 ∈ SFinal) then
17: ~wt+1 ← ~wt + αδt~et . Weight-update
18: end if
19: ~et+1 ← ∇~w V (~wt+1, ~x(st+1)) . Recompute (new ~w!)
20: end for
21: end function

on the basis of Eq. (3) and a nonlinear sigmoid
function σ (we choose σ = tanh). The state
st+1 is the best successor of state st. In our
experiments we use γ = 1 throughout.

The weights are trained with the usual δ-rule

wi,t+1 = wi,t + αδt∇wi
V (~wt, st) (5)

= wi,t + α
(
1− V 2(~wt, st)

)
δtxi,

which aims at making the current prediction
match the successor prediction more closely.
The complete TDL algorithm for games, includ-
ing the action selection mechanism, is shown
in Tab. 1.3 This is a control algorithm, since it
includes action selection (thus policy changes)
and learning of the (correspondingly changing)

3. Why is the weight update in Step 17 only done in case
of a non-explorative move (q ≥ ε)? – If an exploratory action
(random move) is taken, it is very likely that the final reward
does not reflect the true potential of the current state before the
random move. E.g. if the current state is a win for Yellow, a
random move is likely to turn it into a situation where Yellow
looses.

TABLE 2
TCL in pseudo code

1: Initialize: Ni = Ai = 0 for all weight indices
i and set the constant parameter αinit.

2: for (every weight index i) do

3: Set αi =
{

1 if Ai = 0
g(|Ni|/Ai) if Ai > 0

4: Replace TD-weight update Eq. (5) with

wi,t+1 = wi,t + αinitαiri,t (6)

where ri,t = δt∇wi
V (~wt, st) is the recom-

mended weight change.
5: Update the counters:

Ni ← Ni + ri,t (7)
Ai ← Ai + |ri,t|

6: end for
Standard TCL uses for the transfer function g
in Step 3 the identity function, while TCL-EXP
uses g(x) according to Eq. (9), see also Fig. 2.

value function.4 More details on TDL in games
can be found in [33] and references therein.5

Eq. (4) shows clearly why TDL imposes
a nonstationary learning task: V (~wt, st+1), the
value for the best successor of V (~wt, st), is the
target for V (~wt, st). But for most board posi-
tions (with the exception of terminal states) this
target again has to be learnt, so it will probably
be at the wrong value initially. Later in training
this target value changes to the correct one and
the weights need to be readjusted.

3.4 TCL
The TCL algorithm developed by Beal and
Smith [2], [3] is an extension of TDL. It has
an adjustable learning rate αi for every weight
wi and a global constant αinit. The effective

4. Note that the learning of the value of state-action pairs,
Q(st, at), as it occurs in Q-learning or Sarsa control algorithms,
can be replaced here by the value of the after state, V (~wt, st+1),
since in a board game all state-action pairs resulting in the same
after state have the same value.

5. We note in passing that we use TDL without eligibility
traces in this paper. While this article was under review, we
published new research combining Connect-4, TDL, and TCL-
EXP with eligibility traces [34].

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 6

learning rate for each weight is αinitαi. The
main idea is pretty simple: For each weight
two counters Ni and Ai accumulate the sum
of weight changes and sum of absolute weight
changes. If all weight changes have the same
sign, then |Ni|/Ai = 1 and the learning rate
stays at its upper bound. If weight changes
have alternating signs, then |Ni|/Ai → 0 for
t → ∞, and the learning rate will be largely
reduced for this weight.

Tab. 2 shows the complete TCL algorithm.
This algorithm is embedded in the game-
playing TDL framework of Sec. 3.3. Steps 2.-
6. are executed in each pass through the main
TDL-loop instead of Step 17 in Tab. 1. With
the help of αi ∈ [0, 1] the individual learning
rate for a weight can be made smaller than
the global αinit. This is the standard TCL for-
mulation named TCL[r] in the following. We
tested also a variant TCL[δ] where we omit the
nonlinear sigmoid function for ri,t in Eq. (7),
i. e. we use

ri,t =

{
δt if xi = 1
0 if xi = 0.

(8)

In both cases, the operational order is impor-
tant, as already stated in [2]: first weight
update using the previous values of Ni, Ai, then
counter update.6

3.5 IDBD
Sutton’s IDBD algorithm [1] introduces – sim-
ilarly to TCL – an individual learning rate
αi = eβi for every weight wi. The algorithm
is shown in Tab. 3. It is again embedded in
the game-playing TDL framework of Sec. 3.3.
Steps 2.-8. are executed in each pass through
the main TDL-loop instead of Step 17 in Tab. 1.

The main idea behind this algorithm is sim-
ple: The memory term hi is a decaying trace
of past weight changes. The increment in βi
is proportional to the product of the current

6. The original TCL implementation [2] has the further
option that the ri,t may be accumulated over a sequence of
steps before a real weight update (Eq. (6)) takes place. This
balances a tradeoff between faster changing learning rates
(short sequences) and accumulation of statistic evidence (long
sequences). We tested this sequence option for our Connect-
4-task as well, but found the immediate update (as in the
formulas above, 1-step sequence) to be better.

TABLE 3
IDBD in pseudo code

1: Initialize: hi = 0, βi = βinit for all weight
indices i and set θ, the meta-learning rate.

2: for (every weight index i) do
3: Set input xi according to Eq. (2)
4: Set βi ← βi + θδtxihi
5: Set αi ← eβi

6: Replace TD-weight update Eq. (5) with

wi,t+1 = wi,t + αiδtxi

7: Set hi ← hi[1− αix2i]+ + αiδtxi
8: end for

with [d]+ = d if d > 0, 0 else.

weight change δtxi and past weight changes
hi. Accumulated increments correspond to the
correlation between current and recent weight
changes [1]. In case of a positive correlation,
the learning rate can be larger, while nega-
tive correlation indicates overshooting weight
increments where the learning rate should be
reduced.

Note that IDBD in its current form is only
formulated for linear networks. Consequently
we omit the nonlinear sigmoid function σ in
Eq. (4) and in the weight update rule (Step 6
of Tab. 3) for IDBD.

3.6 Modified TCL-EXP

Our modification TCL-EXP brings a new ele-
ment from IDBD into the standard TCL algo-
rithm. Instead of the identity transfer function
g(x) = x we use an exponential function

g(x) = eβ(x−1) (9)

in Step 3 of TCL (see Tab. 2 and Fig. 2).
As pointed out by Sutton [1], an exponential
function has the nice property that a fixed step-
size change in x will change g(x) by a fixed
fraction of its current value, i.e. it allows for
geometric steps. ”This is desirable because some
αi must become very small while others remain
large; no fixed step-size would work well for all the
αi.” [1].

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 7

TABLE 4
Settings for all experiments shown in Fig. 3 – 7. Column TCL denotes, whether we used for TCL

the recommended-weight update [r] or the δ-update [δ]. For all algorithms specifying βinit the
relation αinit = eβinit holds.

Algorithm Fig. αinit αfinal εinit εfinal εIP/10
6 β βinit θ TCL

Former TDL 3, 6, 7 0.004 0.002 0.6 0.1 1.0 – – – –
Tuned TDL 3 – 7 0.004 0.002 0.1 0.1 – – – – –

TCL [δ] 4 – 7 0.04 – 0.1 0.1 – – – – [δ]
TCL [r] 4 – 7 0.04 – 0.1 0.1 – – – – [r]

TCL-EXP 4 – 7 0.05 – 0.1 0.1 – 2.7 – – [r]

IDBD 4 – 7 0.0067 – 0.1 0.1 – – -5.0 3.0 –
IDBD-nl 4 – 7 0.0302 – 0.1 0.1 – – -3.5 3.1 –
Autostep 4 – 7 0.0050 – 0.1 0.1 – – -5.3 10−4 –

K1 4 – 7 0.0090 – 0.1 0.1 – – -4.7 6.0 –
ELK1 4 – 7 0.0111 – 0.1 0.1 – – -4.5 5.0 –

α-bounds 4 – 7 1.0 – 0.1 0.1 – – – – –

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

g(
x)

PieceLinear
Standard TCL
TCL−EXP

Fig. 2. Options for the transfer function g(x).
Standard TCL uses the identity function. TCL-
EXP (Eq. (9)) is shown for β = 2.7 and Piece-
Linear is a piecewise linear function with the
same endpoints as TCL-EXP and same slope
at x = 1.

3.7 Other algorithms

The following other algorithms were used in
our case study for comparison: Koop’s IDBD-
nl [15], [16], Sutton’s K1 [11], Schraudolph’s

ELK1 [13], Mahmood’s Autostep [17], and Dab-
ney’s α-bounds [19]. All algorithms are imple-
mented exactly as described in their original
papers (if not stated otherwise) and then ap-
plied to our Connect-4 task.

Some algorithms (IDBD, K1, Autostep) are
only derived for linear units. We omit in this
case the nonlinear sigmoid function σ = tanh
for the TDL value function (Sec. 3.3). For all
other algorithms we use this sigmoid function.
An exception is Koop’s IDBD-nl [15], [16] being
derived for the logistic sigmoid function, which
we use in this case instead of tanh.

4 RESULTS

4.1 Experimental Setup
The training of our TDL-n-tuple-agents is per-
formed without any access to other agents. It
is done without any other external information
than the outcome of each game. Each agent
is initialized with random weights uniformly
drawn from [−χ/2, χ/2] with χ = 0.001. The
agent plays a large number of games (10 mil-
lions) against itself as described in Sec. 3.3 re-
ceiving no other information from the environ-
ment than win, loss, or draw at the end of each

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 8

●
● ● ● ●

● ● ● ● ● ●
●

●

● ●

●

●

●

●

●

● ●
●

●
● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
games (millions)

su
cc

es
s

ra
te

Algorithm
● Former TDL

Tuned TDL

Fig. 3. Former TDL [8] versus Tuned TDL. The
parameter settings are in Tab. 4. The lines with-
out points show the exploration rate ε.

game. Training is performed with TDL, option-
ally augmented by IDBD- or TCL-ingredients.7
To explore the state space of the game, the
agent chooses with a small probability ε the
next move at random. During training, ε varies
like a sigmoidal function (tanh) between εinit
and εfinal with inflection point at game number
εIP . Every 10 000 or 100 000 games the agent
strength is measured by the procedure de-
scribed in Sec. 4.2. We repeat the whole training
run 20 times (if not stated otherwise) in order
to get statistically sound results.

In TDL, the global learning rate α decays
exponentially from αinit to αfinal. TCL instead
keeps the global parameter αinit at a constant
value, but each weight has its individual learn-
ing rate αi. In TCL-EXP we have the additional
global parameter β, while for IDBD the relevant
parameters are θ and βinit. The precise param-
eter values to reproduce each of our results are
given in Tab. 4.

4.2 Agent Evaluation
A fair agent evaluation for board games is
not trivial. There is no closed-form objective
function for ’agent playing strength’ since the
evaluation of all board positions is infeasible

7. Our software framework in Java used for all experiments
is avaiable as open source from GitHub (https://github.com/
MarkusThill/Connect-Four).

● ● ●
●

●

●

● ●

●
●

● ●
●

●
●

●

●

●

● ●

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−5 −4 −3 −2 −1 0
log10(αinit)

tim
e

to
 le

ar
n

(m
ill

io
n

ga
m

es
)

● K1
Autostep
IDBD
IDBD−nl
α−bounds

● ● ● ●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

●

●

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−5 −4 −3 −2 −1 0
log10(αinit)

tim
e

to
 le

ar
n

(m
ill

io
n

ga
m

es
)

● ELK1
TCL−EXP
TDL
TCL[r]

Fig. 4. Sensitivity on the initial learning rate
αinit for all algorithms. For algorithms specify-
ing βinit (like IDBD), we use the transformation
αinit = eβinit. Parameter αinit is screened over a
large range. Each point is the mean of 10 runs
with 2 million training games. For each run we
measure the success rate every 10 000 games
and smooth this curve to dampen fluctuations.
’time to learn’ is the number of games until this
smoothed curve crosses the 80%-line for the
first time. If a run never crosses this line, ’time
to learn’ is set to 2 millions.

and it is not clear, which relevance has to be
assigned to each position. The most common
approach is to assess an agent’s strength by
observing its interactions with other agents,
either in a tournament or against a referee
agent. We choose the Minimax agent to be the
ultimate reference. Note that all the approaches
to Connect-4 found in the literature (cf. Sec. 1)

https://github.com/MarkusThill/Connect-Four
https://github.com/MarkusThill/Connect-Four

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 9

●
●

●

●

●

●

●

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

−4 −3 −2 −1 0 1
log10(θ)

tim
e

to
 le

ar
n

(m
ill

io
n

ga
m

es
s)

● K1
Autostep
IDBD
IDBD−nl
ELK1

Fig. 5. Sensitivity on the meta step size param-
eter θ for algorithms having this parameter (µ in
the case of Autostep). A large range of θ-values
is screened. Other settings as in Fig. 4.

fail to provide a common reference point for
the strength of the agents generated.

Our approach to agent evaluation in
Connect-4 is as follows: TDL8 (Yellow) and
Minimax (Red) play a tournament of 50
games. (Since Minimax will always win
playing Yellow, we consider only games
with TDL playing Yellow.) The ideal TDL
agent is expected to win every game. If both
agents act fully deterministically, each game
would be identical. We introduce a source of
randomness without sacrificing any agent’s
strength as follows: If Minimax has several
optimal moves at its disposal, it chooses one
randomly. For positions in which all possible
moves lead to a defeat of Minimax, the agent
will select that move which delays the defeat
as far as possible to the future. This increases
the difficulty for the TDL-agent which has to
prove that it can play perfect during a longer
game. The TDL agent gets a score of 1 for
a win, 0.5 for a draw and 0 for a loss. The
overall success rate S ∈ [0.0, 1.0] is the mean of
the 50 individual scores. A perfect TDL agent
receives a success rate of 1.0.

There are two criteria for a good agent: (a)
final strength, measured as the asymptotic suc-
cess rate after 2 or 10 million games and (b)

8. or any other of our trainable agents

speed of learning, measured as the number
of games needed to reach a sufficient good
success rate, e. g. 80%.

4.3 Results TDL
It was shown in [8] that n-tuple systems
combined with TDL deliver strong Connect-4
agents. However, 1 565 000 training games were
needed to cross the 80%-success-rate. We made
a more systematic parameter tuning (latin hy-
percube sampling) and found that the tuned
TDL-agent reaches the 80%-success-rate after
670 000 games (Fig. 3), which is faster by more
than a factor of 2. This tuning result emerged
as the optimal result from testing about 60
different parameter configurations. The key dif-
ference to the former TDL result is a suitably
reduced exploration rate ε.

4.4 Sensitivity for all algorithms
All adaptive learning rate algorithms have a
parameter αinit (or equivalently βinit = ln(αinit))
and some of them have a meta step size param-
eter θ. For each algorithm we estimated the best
pair (αinit, θ) by grid search. Then we assessed
the sensitivity by fixing one parameter at its
best value and varying the other over a broad
range. The results are depicted in Fig. 4 for αinit
and in Fig. 5 for θ.

It is clearly seen that the linear step size
algorithm (TDL, TCL[r]) have only a narrow
range of good αinit values (Fig. 4). TCL-EXP
instead has a broader range. In Fig. 5 we see
that Autostep performs well in a broad range of
remarkably small θ values. Its αinit-sensitivity
is however similar to the other algorithms
(Fig. 4).

The results for asymptotic success rates (not
shown in the figures) have somewhat broader
ranges for most algorithms, but show qualita-
tively the same picture.

4.5 Results TCL
Initially, the results with TCL were not better or
even worse than TDL. This came as a surprise,
since Beal & Smith stated, that TCL would
automatically self-adjust the parameters: ”The
parameter αinit can be set high initially, and the

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 10

●

●

●

●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
games (millions)

su
cc

es
s

ra
te

Algorithm
● IDBD−nl

TCL−EXP

ELK1
TCL[δ]

α−bounds

Former TDL
●

●

●

●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
games (millions)

su
cc

es
s

ra
te

Algorithm
● IDBD−nl

IDBD

K1

Autostep

Tuned TDL

TCL[r]

Fig. 6. Final comparison of different algorithms for Connect-4. Every setting is repeated 20 times
with different random initialization and random exploration. The agent strength was measured
every 10 000 games and each point is the mean of 20 runs. For better display of the curves, error
bars are omitted and only a subset of all points is shown in the plots. The sampled points are
connected by straight lines. Note that due to this procedure the visual crossing of the 80% line
may differ somewhat from the exact numbers given in the second column of Table 5.

αi then provide automatic adjustment during the
learning process.” [2]. In Fig. 4 we vary the
parameter αinit over a broad range. We found
TCL[r] not to have a larger area of high success
rates than TDL, it is only shifted to larger
values.

For the best value αinit = 0.04, we got the
result shown as line TCL[r] in Fig. 6: The
agent reaches the same strength as the tuned
TDL agent asymptotically, but much slower.
9 – In any case, standard TCL cannot fulfill
the promise of faster learning for this complex
Connect-4 task.

4.6 Results IDBD

Fig. 6 allows to compare IDBD and TDL on the
Connect-4 task: IDBD is comparable to TDL,
slightly better. There is some dependence on
the right choice of parameters βinit and θ as
Fig. 4 and 5 show. It has to be mentioned, how-
ever, that IDBD runs TDL without the sigmoid

9. It may come as a surprise that TCL[r] crosses the 80% line
only at 1 600 000 games while Tab. 5 has 890 000 games instead.
The reason is that we show in Fig. 6 the mean of 20 runs while
Tab. 5 shows the median. Since two of the TCL[r] runs never
reach the 80% line and thus are set to 2 million games, the
mean is considerably higher.

function, which might counteract any improve-
ments through the individual learning rates. To
make a fair comparison we include also IDBD-
nl, which has a logistic sigmoid function, and
this turns out to be the best algorithm in terms
of learning speed.

4.7 Results TCL-EXP
TCL-EXP is the standard TCL algorithm with
only one detail changed: the exponential trans-
fer function for the learning rate, see Eq. (9).
This brings a remarkable increase in speed of
learning for the game Connect-4, as our re-
sults in Fig. 6 show: TCL-EXP reaches the 80%
success rate after about 385 000 games instead
of 560 000 (Tuned TDL). At the same time it
reaches asymptotically a very good success rate
(Table 5).

We varied the parameter β systematically
between 1 and 7 and found values in the range
β ∈ [2, 3] to be optimal.

4.8 Overall Results
Tab. 5 and Fig. 7 measure the learning time
with respect to two metrics: ’games to train’
and computation time. IDBD-nl and TCL-EXP

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 11

●

●

●

●

●

●●

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

IDBD−nl

TCL−EXP K1
IDBD PL

Autostep
ELK1

α−bounds
TDL

TCL[δ]
TCL[r]

Former TDL

Algorithm

tim
e

to
 le

ar
n

(m
ill

io
n

ga
m

es
)

Fig. 7. Learning speed for different algorithms.
The boxplots show the results from 20 runs.
’time to learn’ is defined as in Fig. 4. TCL[r]:
the original TCL as in [2] using recommended
weight changes, TCL[δ]: using the δ-signal in-
stead. PL: Piecewise linear, Former TDL from
[8], TDL: Tuned TDL. There are one and two
runs in TCL[δ] and TCL[r], resp., which never
reach the 80% success rate. ’time to learn’ is
set to 2 million games for these runs (not shown
in the figure).

are on the first ranks for both metrics. The
boxplot in Fig. 7 indicates that TCL-EXP has a
much smaller variance than TCL[r] or TCL[δ].

Tab. 5 shows in addition the asymptotic suc-
cess rate (ASR) after 2 and 10 million games.
IDBD-nl and TCL-EXP are on the first ranks
for this metric as well, but the others are not
very far off. It has to be noted that a few runs
for IDBD and IDBD-nl had a breakdown after
more than 5 million games. ASR[10 millions]
is set to 0 in these cases. The median in Tab. 5
is not influenced by these outliers. We assume
that the large value of θ (being beneficial for
fast learning) is responsible for the breakdown.

5 DISCUSSION

5.1 Survey of algorithms

We conducted in this case study a compari-
son of several online step size adaptation al-
gorithms on TDL for the task Connect-4 as
compared to plain TDL without step size adap-

TABLE 5
Training times for the algorithms presented in

this work. The median of ’time to learn’ (Fig. 7)
is given in the second column. The third

column depicts the computation time in minutes
(including evaluation every 10 000 games).
Time is measured on a standard PC (single

core of an Intel Core i7-3632QM, 2.20 GHz, 8
GB RAM). The fourth and fifth column show the

asymptotic success rate ASR (median of 20
runs), after 2 and 10 million games, resp.

time to learn ASR

2 10

Algorithm [games] [min] [%] [%]

Former TDL 1 565 000 102.0 91.7 91.6
TCL[r] 890 000 67.2 83.9 90.4
TCL[δ] 670 000 50.3 89.4 91.4

Tuned TDL 560 000 39.7 90.7 92.5
α-bounds 560 000 39.2 90.8 92.4

ELK1 500 000 39.5 92.5 92.8
Autostep 490 000 38.7 91.5 92.6

PL 460 000 36.3 90.4 90.4
IDBD 415 000 33.1 92.5 92.7

K1 390 000 30.8 92.0 92.7
TCL-EXP 385 000 30.1 92.5 93.1
IDBD-nl 350 000 27.7 92.8 93.5

tation. Some general consequences can be de-
duced from Fig. 6 and 7:

Algorithms with geometric step size changes
and individual learning rates (IDBD, IDBD-
nl, K1, ELK1, TCL-EXP, Autostep) are superior
to algorithms with one learning rate (TDL, α-
bounds) and both groups are superior to step
size adaptation algorithms with linear step size
changes (TCL[δ], TCL[r]).

The nonlinear algorithms IDBD-nl and TCL-
EXP perform best, but the other algorithms
with geometric step size change are not far
away. Surprisingly, some purely linear algo-
rithms (K1 and IDBD) perform nearly as good
as their nonlinear variants (ELK1 and IDBD-nl)

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 12

Autostep, as expected, performs well for a
large range of the meta step size parameter θ ∈
[10−6, 10−2] (Fig. 5). However, it has a sensitivity
to the parameter αinit which is comparable to
the other algorithms.

Dabney and Barto’s α-bounds algorithm [19]
performs poorly in its original linear version
(6 out of 20 runs never pass the 80%-line and
’time to learn’ has a median of 1.9 million
games, not shown in the figures). A purely lin-
ear TDL would perform similarly. We extended
α-bounds to the nonlinear case by making a
linear expansion of the sigmoid function and
deriving a slightly modified rule

αt = min
(
αt−1, |σ′(f)~et · (γ~xt+1 − ~xt|−1

)
which has an additional σ′(f) as compared
to Eq. (15) in [19]. With this version and the
nonlinearity σ = tanh the results for α-bounds
are slightly better than TDL (Fig. 7) but inferior
to the algorithms with individual learning rates
for each weight. It would be interesting to
extend α-bounds to the individual learning rate
case, as Dabney and Barto already suggested in
their conclusion [19].

As Fig. 4 shows, α-bounds has a remarkable
stability with respect to large αinit. It will how-
ever show a breakdown for αinit < 10−3.

5.2 TCL algorithms
When we started the TCL experiments, we
expected that the individual and adaptable
learning rates for each weight would free the
user from tuning these rates. In particular, we
expected that a too large αinit would easily
be corrected by the individual αi during the
initial training phase, as pointed out by Beal &
Smith [2]. After that, the training should pro-
ceed equivalently to a setting where a smaller
αinit had been chosen directly. In contrast to
this expectation, we observe for TCL[r] and all
αinit 6= 0.04 a rapid decrease in performance
(Fig. 4). Why is this the case?

An inspection of the n-tuple network showed
that for αinit 6= 0.04, shortly after the initial
phase, the responses to most board positions
are driven into saturation of the sigmoid func-
tion. If αinit is too large, subsequent learning
steps fall with high probability in regions of the

sigmoid function with different slopes. Then,
alternating weight changes will not cancel be-
cause the gradient of the sigmoid function dif-
fers. Thus Ni/Ai will not approach 0 (although
it should for a too large αinit). If finally the
network response is in saturation, learning vir-
tually stops (due to 1 − tanh2(f) ≈ 0 in the
gradient).

A too small αinit < 0.04 leads to a decreasing
TCL-performance as well. This is partly un-
derstandable since TCL can only reduce but
not increase the global αinit. If we start with
the optimal αinit = 0.04, we reach with TCL[r]
a good asymptotic success rate and time to
learn, but the learning speed is slower than for
Tuned TDL (Fig. 6 and 7). The reason for this
is not yet fully understood. It might be due to
the learning rate change proportional to Ni/Ai
being suboptimal.

This is supported by our finding that TCL-
EXP with ’geometric’ step sizes is a faster
learning agent than Tuned TDL (Fig. 6). The
reason for this was explained in Sec. 3.4. To
test the importance of geometric step sizes, we
did another experiment: We replaced the TCL-
EXP transfer function by a piecewise linear
function (PL) as shown in Fig. 2 having the
same endpoints and same slope at x = 1. The
results for PL in Fig. 7 and Tab. 5 are worse than
TCL-EXP. Therefore, it is not the slope at x = 1
but the geometric step size which is important
for success.

Given the above results and discussion, it is
quite natural that we would choose on a new
problem among all investigated online adap-
tive step-size algorithms in first place the algo-
rithm IDBD-nl, however, closely followed by
TCL-EXP as a nearly equivalent choice. IDBD-
nl is an algorithm with striking simplicity since
the choice of nonlinearity (logistic function)
leads to a simple gradient.

6 CONCLUSION

We investigated a complex learning task for the
Connect-4 board game. It is remarkable that an
agent can learn this complex game solely from
self-play. Our previous work [8] has shown
that a large number of features (in our case:
more than half a million of n-tuple states) is a

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 13

necessary prerequisite to learn such a task. The
agent in [8] was slow in learning, so we studied
several alternatives, namely tuning and online
adaptation of learning rates (IDBD and TCL).
It was hoped that IDBD and TCL with their
self-adaptation capabilities could make tuning
unnecessary.

Initially, we could improve our previous re-
sult [8] by tuning the exploration rate (see
Sec. 4.3). This increased the learning speed by
a factor of 2.

Our research question 1) from Sec. 1 was
answered positively: We demonstrated that the
learning algorithms IDBD, TCL, and others
work for such big learning tasks with more
than half a million of weights. (To the best
of our knowledge, this has not been tested
before.)

Research question 2) has a negative answer:
We found that IDBD and TCL do not free
the user from parameter tuning. If the meta-
parameters (αinit and β in case of TCL; βinit and
θ in case of IDBD) are not set to appropriate
values, results are worse than with tuned TDL.
The other algorithms show a similar behavior.
Even Autostep, which is quite tuning-free with
respect to the meta step size parameter θ, re-
quires tuning for its parameter αinit.

Research question 3) received a positive an-
swer again: Online learning rate adaptation
schemes with geometric step size and individ-
ual learning rates are significantly faster than
pure TDL. Our modified variant TCL-EXP is
among the fastest algorithms, but not signifi-
cantly faster than other algorithms in the same
group. The fastest algorithms (IDBD-nl and
TCL-EXP) incorporate nonlinear learning units.
So we are led to the conclusion that geometric
step sizes plus nonlinear units are important
ingredients for fast learning. Compared to
the earlier published, non-tuned TDL agent [8]
(1 565 000 games to reach 80% success), these
algorithms exhibit a large improvement by a
factor of 4.

Thus, the route to self-adapting agents for
game learning looks promising: Some of these
agents learn faster than those with fixed learn-
ing rates. At the same time, it is our impression
that more research is needed to better un-
derstand the interaction between self-adaptive

learning rates and nonlinear output functions.
In our ongoing research we plan to inves-

tigate the role of different nonlinear output
functions for online learning rate adapatation
algorithms and whether it is possible to aug-
ment those learning algorithms with eligibility
traces. Both aspects could increase the robust-
ness and speed of learning.

ACKNOWLEDGMENTS

The authors would like to thank the anony-
mous reviewers for their helpful comments and
for pointing out important adaptive learning
references. They would like to thank Boris Nau-
joks for critical review of an earlier draft. This
work has been partially supported by the Bun-
desministerium für Bildung und Forschung
(BMBF) under the grant SOMA (2009 - 2013).

REFERENCES
[1] R. S. Sutton, “Adapting bias by gradient descent: An

incremental version of delta-bar-delta.” in AAAI Conf. on
Artificial Intelligence, W. R. Swartout, Ed. AAAI Press,
1992, pp. 171–176.

[2] D. F. Beal and M. C. Smith, “Temporal coherence and
prediction decay in TD learning,” in Int. Joint Conf. on
Artificial Intelligence (IJCAI), T. Dean, Ed. Morgan Kauf-
mann, 1999, pp. 564–569.

[3] ——, “Temporal difference learning for heuristic search
and game playing,” Information Sciences, vol. 122, no. 1,
pp. 3–21, 2000.

[4] A. L. Samuel, “Some studies in machine learning using
the game of checkers,” IBM journal of Research and Devel-
opment, vol. 3, no. 3, pp. 210–229, 1959.

[5] R. S. Sutton, “Temporal credit assignment in reinforce-
ment learning,” Ph.D. dissertation, University of Mas-
sachusetts, Amherst, MA, 1984.

[6] ——, “Learning to predict by the method of temporal
differences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[7] G. Tesauro, “TD-gammon, a self-teaching backgammon
program, achieves master-level play,” Neural Computation,
vol. 6, pp. 215–219, 1994.

[8] M. Thill, P. Koch, and W. Konen, “Reinforcement learning
with n-tuples on the game Connect-4,” in PPSN’2012:
Parallel Problem Solving From Nature, C. Coello Coello, Ed.
Springer, Heidlberg, 2012, pp. 184–194.

[9] S. M. Lucas, “Learning to play Othello with n-tuple
systems,” Australian Journal of Intelligent Information Pro-
cessing, vol. 4, pp. 1–20, 2008.

[10] R. A. Jacobs, “Increased rates of convergence through
learning rate adaptation,” Neural networks, vol. 1, no. 4,
pp. 295–307, 1988.

[11] R. S. Sutton, “Gain adaptation beats least squares,” in
Proc. Yale Workshop on Adaptive and Learning Systems, 1992,
pp. 161–166.

[12] L. Almeida, T. Langlois, and J. D. Amaral, “On-line step
size adaptation,” INESC, 1000, Lisboa, Portugal, Tech.
Rep. RT07/97, 1997.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 14

[13] N. N. Schraudolph, “Online learning with adaptive local
step sizes,” in Neural Nets WIRN Vietri-99. Springer, 1999,
pp. 151–156.

[14] C. Li, Y. Ye, Q. Miao, and H.-L. Shen, “KIMEL: A kernel
incremental metalearning algorithm,” Signal Processing,
vol. 93, no. 6, pp. 1586 – 1596, 2013.

[15] R. S. Sutton, A. Koop, and D. Silver, “On the role of
tracking in stationary environments,” in 24th Int. Conf.
on Machine Learning. ACM, 2007, pp. 871–878.

[16] A. Koop, Investigating Experience: Temporal Coherence and
Empirical Knowledge Representation, ser. Canadian theses.
Univ. of Alberta (Canada), 2008.

[17] A. Mahmood, “Automatic step-size adaptation in incre-
mental supervised learning,” Ph.D. dissertation, Univer-
sity of Alberta, 2010.

[18] A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pi-
larski, “Tuning-free step-size adaptation,” in IEEE Interna-
tionalConference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 2121–2124.

[19] W. Dabney and A. G. Barto, “Adaptive step-size for online
temporal difference learning.” in 26th AAAI Conference on
Artificial Intelligence, 2012.

[20] T. Schaul, S. Zhang, and Y. LeCun, “No More Pesky
Learning Rates,” in International Conference on Machine
Learning (ICML), 2013.

[21] M. Riedmiller and H. Braun, “A direct adaptive method
for faster backpropagation learning: The RPROP algo-
rithm,” in IEEE Int. Conf. on Neural Networks, 1993, pp.
586–591.

[22] J. D. Allen, “A note on the computer solution of connect-
four,” in Heuristic Programming in Artificial Intelligence 1:
The First Computer Olympiad, D. Levy and D. Beal, Eds.
Ellis Horwood, London, 1989, pp. 134–135.

[23] V. Allis, “A knowledge-based approach of Connect-4. The
game is solved: White wins,” Master’s thesis, Department
of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands, 1988.

[24] M. Schneider and J. Garcia Rosa, “Neural Connect-4 - a
connectionist approach,” in Brazilian Symposium on Neural
Networks, 2002, pp. 236–241.

[25] M. Stenmark, “Synthesizing board evaluation functions
for Connect-4 using machine learning techniques,” Mas-
ter’s thesis, Østfold University College, Norway, 2005.

[26] D. Curran and C. O’Riordan, “Evolving Connect-
4 playing neural networks using cultural learning,”
National University of Ireland, Galway, NUIG-IT-081204,
2004. [Online]. Available: http://www2.it.nuigalway.ie/
publications/TR/abstracts/NUIG-IT-081204.pdf

[27] K. Krawiec and M. G. Szubert, “Learning n-tuple net-
works for Othello by coevolutionary gradient search,” in
GECCO’2011: Genetic and Evolutionary Computation Confer-
ence. ACM, New York, 2011, pp. 355–362.

[28] S. Lucas and T. P. Runarsson, “Othello competition,” http:
//algoval.essex.ac.uk:8080/othello/League.jsp, 2011, last
access 18.02.2014.

[29] S. Edelkamp and P. Kissmann, “Symbolic classification
of general two-player games,” http://www.tzi.de/
∼edelkamp/publications/conf/ki/EdelkampK08-1.pdf,
Technische Universität Dortmund, Tech. Rep., 2008, last
access 18.02.2014.

[30] J. Tromp, “Solving Connect-4 on medium board sizes,”
ICGA Journal, vol. 31, no. 2, pp. 110–112, 2008.

[31] M. Thill, “Using n-tuple systems with TD learning for
strategic board games (in German),” Cologne University
of Applied Science, CIOP Report 01/12, 2012.

[32] W. W. Bledsoe and I. Browning, “Pattern recognition and
reading by machine,” in Eastern Joint Computer Conference,
New York, 1959, pp. 225–232.

[33] W. Konen and T. Bartz-Beielstein, “Reinforcement learn-
ing: Insights from interesting failures in parameter selec-
tion,” in PPSN’2008: Parallel Problem Solving From Nature,
G. Rudolph, Ed. Springer, Berlin, 2008, pp. 478–487.

[34] M. Thill, S. Bagheri, P. Koch, and W. Konen, “Temporal
difference learning with eligibility traces for the game
connect four,” in IEEE International Conference on Compu-
tational Intelligence and Games. IEEE, 2014, pp. 586–591.

Samineh Bagheri received her B.Sc. de-
gree in electrical engineering specialized in
electronics from Shahid Beheshti Univer-
sity, Tehran, Iran in 2011. She is currently
master student and research assistant at
Cologne University of Applied Sciences in
Industrial Automation and IT.
Her research interests are machine learn-
ing, evolutionary computation and self

adaptive learning strategies for board games or optimization
tasks.

Markus Thill studied Computer Engineer-
ing at Cologne University of Applied Sci-
ences (CUAS) and received his B.Sc. de-
gree in 2012. Currently he is a master
student in Industrial Automation and IT and
research assistant at CUAS.
Markus already worked on artifical intel-
ligence in board games for his bachelor
thesis, in particular Temporal Difference

Learning and tree-based algorithms. With this thesis he won the
Opitz Innovation Price 2013.

Patrick Koch received his Diploma in
Computer Science from the University of
Paderborn, Germany in 2008 and his Ph.D.
from the University of Leiden, The Nether-
lands in 2013. Since 2009 Patrick is a
research associate at Cologne University
of Applied Sciences, where he works at the
research center for Computational Intelli-
gence, Optimization & Data Mining (http:

//www.gociop.de). Patrick’s research concerns efficient tuning in
machine learning and the application of evolutionary algorithms
for single and multi-criteria problems. In the Computational
Intelligence in Games (CIG) area, he is especially interested in
finding improved agents for board-games with Temporal Differ-
ence Learning and n-tuples.

http://www2.it.nuigalway.ie/publications/TR/abstracts/NUIG-IT-081204.pdf
http://www2.it.nuigalway.ie/publications/TR/abstracts/NUIG-IT-081204.pdf
http://algoval.essex.ac.uk:8080/othello/League.jsp
http://algoval.essex.ac.uk:8080/othello/League.jsp
http://www.tzi.de/~edelkamp/publications/conf/ki/EdelkampK08-1.pdf
http://www.tzi.de/~edelkamp/publications/conf/ki/EdelkampK08-1.pdf
http://www.gociop.de
http://www.gociop.de

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, DECEMBER 2014 15

Wolfgang Konen received his Diploma in
physics and his Ph.D. degree in theoretical
physics from the University of Mainz, Ger-
many, in 1987 and 1990, resp. He worked
in the area of neuroinformatics and com-
puter vision at Ruhr-University Bochum,
Germany, and in several companies. He is
currently Professor of Computer Science
and Mathematics at Cologne University of

Applied Sciences, Germany, founding member of the Research
Centers Computational Intelligence, Optimization & Data Mining
(http://www.gociop.de) and CIplus (http://ciplus-research.de).
His research interests include, but are not limited to: understand-
ing how humans and computer learn, the dynamics of learning
systems, computational intelligence in games, game physics,
data mining, and computer vision.

http://www.gociop.de
http://ciplus-research.de

	Introduction
	Related work
	Methods
	Connect-4
	N-tuples and LUTs
	TDL
	TCL
	IDBD
	Modified TCL-EXP
	Other algorithms

	Results
	Experimental Setup
	Agent Evaluation
	Results TDL
	Sensitivity for all algorithms
	Results TCL
	Results IDBD
	Results TCL-EXP
	Overall Results

	Discussion
	Survey of algorithms
	TCL algorithms

	Conclusion
	References
	Biographies
	Samineh Bagheri
	Markus Thill
	Patrick Koch
	Wolfgang Konen

