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ABSTRACT 
 
Standard control charts with control limits determined by the mean and standard error of 
the mean are constructed based on the assumption that the distribution of the quality 
characteristic being monitored follows a normal distribution. However, this assumption is 
not always valid. It is proposed to use a chart based on computing the control limits using 
the process mean and the standard error of the least absolute deviation for the case where 
the process quality characteristics follow a heavy tailed t distribution. Such a control chart 
is more effective than the normal distribution based chart since it has a low out-of-control 
average run length for both small and large values of process shift. 
 

OPSOMMING 
 
‘n Kontrolekaart wat gebruik maak van kontrolelimiete gebaseer op die standaardafwyking 
van die geringste absolute limiet word ontwerp vir ’n t-verdeling met ’n betekenisvolle 
stert. Simulasietoetse vir vergelyking van die voorgestelde kontrolekaart met 
normaalverdeelde kontrolekaarte toon dat korter gemiddelde looplengtes voor diagnose van 
beheerverlies uitgewys word, bereik word. 
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1.  INTRODUCTION 
 
Statistical process control charts such as the Shewhart control chart (Shewhart [8]), the 
cumulative sum control chart (Page [5]), and the exponentially weighted moving average 
control chart (Roberts [6]), are used to monitor product quality and detect special events 
that may be indicators of out-of-control situations. Such charts are designed on the 
assumption that a process being monitored will produce measurements that can be 
modeled with an independent and identically distributed normal distribution, when only the 
inherent sources of variability are present in the system. However, in certain applications 
the process may produce measurements that can be represented with heavy tailed 
distributions. In this case, the standard control charts based on normality assumptions will 
not rapidly detect out-of-control situations, since the control limits will be stretched – 
particularly when the nature of the products is such that one cannot take large samples to 
be able to use the central limit theorem. 
 
Several charts based on outlier resistant statistics have been proposed for use when there 
are outliers in the process measurements. These include, among others, the charts whose 
control limits are calculated using the median midrange and median range by Ferrell [1]. 
Langenberg and Iglewicz [4] proposed charts whose control limits are determined by the 
trimmed mean of the subgroup means and the trimmed mean of the ranges. White and 
Schroeder [11] proposed a chart constructed by plotting subgroup box plots. Such a chart 
uses the subgroup median and subgroup interquartile range. Rocke [7] proposed a series of 
robust control charts that use combinations of subgroup trimmed and untrimmed mean, 
median range and interquartile range. 
 
Most of the charts discussed above use resistant statistics to determine the control limits, 
and then monitor the subgroup means for the occurrence of out-of-control signals. The 
median charts are less sensitive to process shifts since the median is not affected by 
outliers or extreme value. The chart that plots the mean and range with control limits 
determined from the subgroup means and the interquartile ranges is more effective in 
detecting mean shifts. 
 
For a heavy tailed distribution, the extreme observations are not necessarily outliers or 
signs of the presence of assignable causes of variation. Thaga [9] proposed a chart based on 
the least absolute deviation that is effective in monitoring the process whose quality 
measurement follows a heavy tailed distribution. The chart is effective for monitoring 
processes with quality characteristics that are autocorrelated. 
 
It is proposed and shown in this article that, for independent processes, when process 
variables follow a heavy tailed distribution, a chart where control limits are determined 
using the standard errors of the least absolute deviation estimators performs better than 
the chart where control limits are calculated using the standard errors of the ordinary least 
squares estimators. It is also proposed that the ratio of mean deviation to standard 
deviation should be used to determine the appropriateness of this chart in relation to the 
standard normal distribution based control chart. 
 
2. LEAST ABSOLUTE DEVIATIONS ESTIMATORS 

 
 
Consider a regression model of the form 
 

iii XhY   ),(    (1) 

 

The si
,  are assumed to be independent for i = 1, 2,..., n and have a symmetric 

distribution. A least absolute deviation (LAD) estimator of   is a solution to the problem 
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Here the discrepancy between the response variable Yi and its approximation ),( iXh  

provided by the model is measured by the L1 distance instead of the usual L2 distance, when 
studying the least squares estimate. A difficulty with the least absolute deviation method 
arises from the nondifferentiability of the objective function in equation (2). This function, 
however, is continuous and continuously differentiable at every point except at zero, where 
left and right derivatives exist. Because of such properties, an approach similar to that of 
Thavaneswaran and Heyde [10] can be followed, provided that the derivative at every point 
is replaced by the right derivative. This derivative is given by 
 

00 







xx II
x
x

 (3) 

 
i.e. the least absolute deviation estimating function is given by 
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Let f be the conditional density function of Y/X such that f(0)>0. Under suitable regularity 
conditions (Gourieroux and Monfort [2]), it can be shown that the information associated 
with the estimating function is 
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In a simple linear regression model, ),( ixh = ix  and 

 

iii xy    (6) 

  

Then 




 n

i
i

LSE

x
Var

1

2

2

)ˆ(   and .
1

2



n

i
ixI  

Therefore




 n

i
ixf

Var

1

22 )0(4

1)~( , where ̂  is the ordinary least square (OLS) 

estimator and ~  is the least absolute deviation estimator. The least absolute deviation 
estimating function is more efficient than the ordinary least squares estimating function if 
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the distribution of the error term is such that ,/1)0(4 22 f  where 
2 is the variance 

of the error term. For the case with normally distributed errors, the ordinary least square 
estimating function is more efficient than the least absolute deviation estimating function. 

When the errors have a Cauchy distribution, it can be shown that 0)0(4 2 f  
(Gourieroux and Monfort [2]), and the least absolute deviation estimating function is more 
efficient than the least squares estimating function. 
 
3. THE NEW CONTROL CHART 
 
When the observations are independent identically distributed normal random variables, 

the observation at time t can be represented as .tty    The Shewhart control chart 

for the process mean is developed with the following control limits: 
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where ̂  is the process mean and 
n


is the standard error of the ordinary least square 

estimator̂ . 
 
As mentioned earlier, when the process measurements follow a heavy tailed distribution, 
the ordinary least square estimator has a greater standard error than the least absolute 
deviation estimator. Therefore a control chart based on the standard error of the ordinary 
least square estimator has wide control limits. A chart based on the least absolute deviation 
estimator is proposed as follows: The control limits for the chart are given as: 
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where 
nf )0(2

1
 is the standard error of the least absolute deviation estimator. The 

chart may be constructed by plotting the subgroup means against time or sample number 
with control limits given in equation (8). If the process measurements have a t distribution 
with v degrees of freedom, then 
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The variance of the error term is finite for 3v  and is given by ./)2(/1 2 vv   It 

can be shown that for v = 1, the variance is infinite and )0(4 2f = ./4 2  Similarly, for 

v = 2 the variance is infinite and )0(4 2f  = 0.5 (Thavaneswaran and Heyde [10]). This 
shows that for heavy tailed t distributions with infinite variance, the least absolute 

deviation approach is superior. It can also be shown that for v = 3, 54.0)0(4 2 f  and 

for v = 4, 6. In these cases, the least absolute deviation estimating function provides more 
information than the ordinary least squares estimating function. For a t distribution with 

5v  with thin tails the least squares estimating function provides more information. 
 
Table 1 shows the control limits for data simulated for a process that follows a t 
distribution with various degrees of freedom. 15,000 subgroups of three observations each 

have been simulated. The statistic x  is the sample ordinary least square estimator, and x~  
is the sample least absolute deviation estimator. It can be seen that the least absolute 
deviation estimator has a small standard error when the process produces measurements 
that follow a heavy tailed t distribution, while the ordinary least square estimator has a 
small standard error for a t distribution with five or more degrees of freedom. Therefore, 
for heavy tailed data, the control limits for charts based on the normality assumption are 
wider than those computed using the least absolute deviation estimator. Wider control 
limits result in the control chart not being able to detect process shifts rapidly – particularly 
small shifts. Therefore the chart based on ordinary least square estimators is not 
recommended for heavy tailed distributions. 
 
     OLS LAD 
df. x  x~  s.e( x ) s.e( x~ ) LCL UCL LCL UCL 

1 
2 
3 
4 
5 
6 
7 

2.19 
2.50 
1.26 
1.26 
1.06 
1.04 
0.82 

1.13 
1.17 
1.02 
0.91 
0.84 
0.82 
0.72 

1.24 
0.86 
0.73 
0.61 
0.45 
0.40 
0.30 

0.71 
0.63 
0.61 
0.60 
0.59 
0.58 
0.58 

0 
0 
0 
0 
0 
0 
0 

5.91 
5.08 
3.45 
3.09 
2.41 
2.24 
1.72 

0.06 
0.61 

0 
0 
0 
0 
0 

4.32 
4.39 
3.09 
3.06 
2.83 
2.78 
2.56 

 
Table 1: Control limits for the charts based on OLS and LAD estimators for a 

process following t distributions. 
 
To decide which procedure to use, it is recommended that one should first calculate the 
ratio of the mean absolute deviation to the standard deviation. When the process quality 
characteristic follows a normal distribution, one expects this ratio to be 0.707. However, 
since the least absolute deviation estimator performs better than the ordinary least square 
estimator for a t distribution with four or less degrees of freedom, it is recommended that 
the chart based on the least absolute deviation estimator be used when the ratio is 0.707 or 
less. When the quality characteristic follows a t distribution with four degrees of freedom, 
the ratio of the mean deviation to the standard deviation is 0.707. For a t distribution with 
three degrees of freedom, the ratio is 0.637 (Johnson and Kotz [3]). 

 
The average run lengths, which are the average number of points that must be plotted by 
the chart before a point falls beyond the control limits, are commonly used statistical 
process control measures for comparing the performance of control charts. When a point 
falls outside the control limit(s), the chart issues an out-of-control signal, indicating the 
possible presence of an assignable cause of variation in the process. It is therefore desirable 
for a chart to have a small average run length when the process has shifted, and a large 
average run length when the process is in control. 
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