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The wrench-closure workspace (WCW) of parallel cable-driven mechanisms is the set of
poses for which any wrench can be produced at the end-effector by a set of positive cable
tensions. In this paper, we tackle the dimensional synthesis problem, namely, that of
finding a geometry for a planar parallel cable-driven mechanism (PPCDM) whose WCW
contains a prescribed workspace. To this end, we first recall a linear program to deter-
mine whether a given pose is inside or outside the WCW of a given PPCDM. The relaxa-
tion of this linear program over a box leads to a nonlinear feasibility problem that can
only be satisfied when this box is completely inside the WCW. We extend this feasibility
problem to find a PPCDM geometry whose WCW includes a given set of boxes. These
boxes represent the prescribed workspace or an estimate thereof, which may be obtained
through interval analysis. Finally, we introduce a nonlinear program through which the
PPCDM geometry is changed while maximizing the scaling factor of the prescribed set of
boxes. When the optimum scaling factor is greater or equal to one, the WCW of the
resulting PPCDM contains the set of boxes. [DOI: 10.1115/1.4006952]
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1 Introduction

A PPCDM generally consists of a moving platform (MP) and a
fixed frame, which are connected with multiple cables, as shown
in Fig. 1. Each cable is wound around an actuated reel fixed to the
base, and is attached to the moving platform at its other end. The
cables and the moving platform are assumed to be contained in
the same plane. The actuated reels control the position and orien-
tation of the moving platform in this plane by controlling the
lengths of their corresponding cables.

Generally speaking, cable-driven robots have several advan-
tages as are described in Ref. [1], including remote location of
motors and controls, rapid deployability, high load capacity, reli-
ability, and potentially large workspaces. Because of these char-
acteristics, these robots are ideal for many tasks, such as handling
of hazardous materials and disaster search and rescue efforts [2].
Additionally, cable-driven robots such as the SkyCam [3] have
found success in the fields of sports and entertainment. Recently,
these robots have demonstrated their capabilities for actuated
sensing [4] and [5] aquatic applications as well. Although many
applications involve spatial cable-driven robots, however, there is
also an interest for planar cable-driven robots in several applica-
tions [5–7].

Since the cables can be wound onto reels over long lengths, the
workspace of a cable-driven mechanism can be larger than that of
a conventional parallel mechanism. This is only a potential
advantage, however, as the workspace of a PPCDM is further lim-
ited by the inability of cables to push on the moving platform.
Indeed, there are many poses inside this workspace for which the
cables cannot balance all applied wrenches, because at least one

of them would have to push on the platform. More formally, the
WCW is the set of poses for which all applied wrenches are feasi-
ble. An applied wrench is said to be feasible if it can be balanced
by a set of non-negative cable tensions. This is a special case of
the wrench-feasible workspace (WFW), which is the set of poses
of the moving platform for which the cables can balance any
wrench of a given set of wrenches, such that the tension in each
cable remains within a prescribed range.

The WCW of cable-driven parallel mechanisms has been stud-
ied in several research works. A necessary condition for the
WCW to be nonempty is that the number of cables be greater than
the number of degrees of freedom of the moving platform [8,9].
We refer to these mechanisms as fully constrained, as opposed to

Fig. 1 A prototype of planar parallel cable-driven mechanism
with four cables at Robotics Laboratory of Université Laval [6]
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under constrained cable-driven mechanisms, which use the weight
of the platform to put certain tension on some cables [10]. For
fully constrained cable-driven mechanisms, the WCW depends
only on the geometry of the mechanism, i.e, on the locations of
the attachment points on the fixed frame and on the moving
platform.

A large body of literature is already available for determining
the workspace of parallel cable-driven robots due to the unilateral
nature of the forces applied by the cables on the mobile platform.
Most of the proposed methods allow to determine the workspace
of these robots, for instance, by means of a discretization method
[11] or by a symbolic method [12]. Fattah and Agrawal [13] pro-
posed a methodology to calculate the workspace of redundant and
nonredundant planar cable-driven robots by means of a discretiza-
tion method. In their method, tensions in the cables are calculated
and conditions are obtained to verify whether a reference point on
the moving platform is reachable with positive tensions. Riechel
and Ebert-Uphoff [14] present a means of analytically deriving
the WFW for the case of a point-mass end-effector and analyze
the characteristics and trends of the WFW. Some authors
apply the antipodal theorem to calculate the WCW of PPCDMs
[15]. All these works pertain to the analysis of the workspace of
cable-driven parallel mechanisms. Very few of them tackle the
difficult design problem of finding a parallel cable-driven mecha-
nism from a prescribed workspace, i.e., the synthesis problem.

Gouttefarde et al. [16] propose an interval-analysis-based
approach to find boxes guaranteed to be fully inside or fully out-
side of the WFW. The proposed approach can be applied to verify
whether a given prescribed workspace is fully included in the
WFW of a given cable-driven mechanism. They also show that
their proposed method can deal with small uncertainties on the
geometric design parameters of a parallel cable robot. This is a
valuable tool for the dimensional synthesis of cable-driven robots,
but because of its computational cost, we do not know that it has
been already applied to such problems. Besides, by their numeri-
cal nature, interval arithmetics cannot provide symbolic condi-
tions that constrain the design parameters within a feasible set, as
is done in this paper.

To the knowledge of the authors, Hay and Snyman [17] were
the first and only researchers to report directly on the synthesis of
parallel cable-driven manipulators. They defined the dexterous
workspace of a PPCDM as the intersection of all constant orienta-
tion workspaces in a given set of rotation angles, while cable ten-
sions are constrained to lie within a given set and cable lengths
are greater than a given minimum. Their main goal is to maximize
the area of the dexterous workspace for a given range of rotation
angles by finding the locations of fixed points of the robot along a
fixed rectangular frame. They begin with a randomly chosen
PPCDM design and maximize the area of its dexterous workspace
by varying its geometry. In this manner, they find a locally opti-
mum configuration of the fixed points of the robot, while the loca-
tions of the attachment points on the platform have already been
assumed. Therefore, this locally optimum robot design corre-
sponds to a dexterous workspace of maximum area, but not for a
prescribed workspace.

In this paper, we seek to obtain the geometry of a PPCDM for a
prescribed workspace. The main goal of this paper is to devise a
method for the dimensional synthesis of planar parallel cable-
driven mechanisms. In order to achieve this goal, we first recall
the kinetostatic model of a fully constrained PPCDM and formally
define its WCW in Sec. 2. In Sec. 3, we introduce a linear program
(LP) to verify whether a given pose is inside or outside of the
WCW of a PPCDM. In Sec. 4, we modify this linear program to
obtain a sufficient condition for a given box to lie inside the
WCW. We do this through convex relaxations, a technique that
has become popular in some fields of applied science [18,19] but
has received less attention from the robotics community. Porta
et al. [20] are the only researchers who have used this technique
for the analysis of robots, to the best of our knowledge. The devel-
oped linear program is then turned into a nonlinear nonconvex

feasibility problem representing the dimensional synthesis of
PPCDMs in Sec. 5. In the same section, this feasibility problem is
turned into a nonlinear program by introducing a scaling factor of
the prescribed workspace as the objective function to be maxi-
mized. We illustrate the proposed formulations with synthesis
examples throughout Sec. 5.

2 Kinetostatic Model

Before searching for the geometry of a PPCDM for a prescribed
WCW, we have to set up a precise mathematical description of the
geometry of such a robot, and of its wrench-closure workspace.
Such a PPCDM is schematically shown in Fig. 2. It consists of an
MP that is connected by m cables to m fixed points Ai, i¼ 1, …, m.
Cable i is attached to the MP at Bi, and winds at Ai around an actu-
ated reel.

In order to analyze the motion of the MP, we have to consider
two frames: the reference frame A, which is fixed to the base, and
the moving frame B, which is attached to a reference point of the
MP. We use the following notation for the analysis of a generic
PPCDM:

• Vector ai 2 R2 represents the position of the actuated reel Ai

in the fixed frame A.
• Vector bi 2 R2 is a constant vector and represents the posi-

tion of the attachment point Bi of the ith cable in frame B.
• Vector p 2 R2, which is expressed in A, represents the posi-

tion of the point P with respect to point O.
• Vector ci points from Bi to Ai, and its norm represents the

length of the ith cable.
• / is the angle between the fixed axis X and the moving axis

X0 .

Vector ci representing the ith cable is obtained as

ci ¼ ai � p�Qbi (1)

where Q is the rotation matrix taking the fixed frame onto the
moving frame and can be expressed as

Q ¼ 12�2 cos /þ E sin / (2)

where, E ¼ 0 �1

1 0

� �
and 12�2 2 R2�2 is the 2� 2 identity

matrix. The wrench applied at P, the origin of the moving frame,
by the ith cable is

Fig. 2 Sketch of an m-cable PPCDM
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vi ¼ ½ fT
i ni �T ¼

ti
li

cT
i det Qbi

ti
li

ci

� �� �T

(3)

where fi and ni are, respectively, the force and moment about P
produced by the ith cable, and li and ti are the length and tension
of the same cable, respectively. If we assume that points Ai and Bi

do not coincide, then the wrench applied to the platform by cable

i is ti
li

wi, with wi defined as wi ¼ cT
i cT

i EQbi

� �T
.

This definition shows that wi is a function of the geometric
parameters of the mechanism and the orientation angle of the MP.
We define the wrench matrix and tension vector of the mechanism

as W ¼ w1 w2 � � � wm½ � and t ¼ t1
l1

t2
l2
� � � tm

lm

� �T
, respec-

tively. Upon substituting Eq. (1) into the expression for wi, we
obtain

wi ¼
ai � p�Qbi

ðai � p�QbiÞTEQbi

" #
¼

ai � p�Qbi

aT
i EQbi � pTEQbi

" #

Because wi, i ¼ 1;…;m, are the columns of the wrench matrix
W, we can rewrite this matrix in the compact form

W ¼
A� p1T

m �QB

fT � pTEQB

" #
(4)

where

A � a1 � � � am½ � 2 R2�m; B � b1 � � � bm½ � 2 R2�m

f � bT
1 QTETa1 � � � bT

mQTETam

� �T 2 Rm (5)

For the purposes of this work, we must explicit the relationship
between W and /. Therefore, we substitute Eq. (2) in Eq. (5)
which leads to

f ¼ cos /uþ sin /v (6)

where u� bT
1 ETa1 ��� bT

mETam

� �T2Rm and v�� bT
1 a1 ��� bT

mam

� �T
2Rm, and, consequently, the wrench matrix can be rewritten as

W ¼W0 þW1 cos /þW2 sin / (7)

where W0 ¼ AT � 1mpT 0m

� �T 2 R3�m, W1 ¼ �BT u
�

�BTETp�T 2 R3�m, and W2 ¼ �BTET vþBTETp
� �T 2R3�m.

Then, the static equilibrium of the moving platform may be
expressed as

Wtþ wP ¼ 03 (8)

where 03 is the three-dimensional zero vector and wP is the
wrench applied on the MP at P and is equivalent to the system of
external forces and moments. These external loads may include
gravity forces, for example. We can now define the WCW of
PPCDMs as follows.
Definition 1. The WCW.

The WCW of planar parallel cable-driven mechanisms is for-
mally defined as the set of poses for which

8wP 2 R3; 9t 2 Rmjt � 0m and Wtþ wP ¼ 03

where the symbol � denotes the component wise inequality. In
other words, this workspace is the set of PPCDM MP poses for
which any external load applied to the MP can be balanced by a
set of non-negative cable tensions.

3 Verifying Whether a Pose Lies in the WCW of a

PPCDM

We restate the Theorem 1 introduced in Ref. [21] in order to
determine whether a given pose is inside the WCW of the
mechanism.

Theorem 1. Primal WCW membership condition [21].
If there is a left null vector of wrench matrix W with strictly

positive components, then the robot can achieve static
equilibrium.

In other words, a given pose is inside the WCW of a PPCDM if
and only if there exists a set cable tensions such that

Wt ¼ 03; t � 0m (9)

According to Theorem 1, the WCW of a PPCDM can be com-
puted by solving the feasibility problem (9) for each pose of the
MP. Therefore, the WCW of a PPCDM is the set of poses for
which Eq. (9) is satisfied. We may as well use Stiemke’s theorem
[22] to verify whether a given pose is inside or outside the WCW.
We recall this theorem as follows.

Theorem 2 (Stiemke’s Theorem). Dual WCW membership
condition [12].

A pose is outside the WCW of a PPCDM if and only if there
exists a small-displacement screw k 2 R3 such that

WTk � 0m

WTk 6¼ 0m

(10)

We can now introduce the following feasibility problem to cal-
culate the WCW of a PPCDM:

WTk � 0m

1T
mWTk ¼ 1

(11)

where 1m ¼ ½ 1 1 � � � 1 �T 2 Rm. This problem yields a feasi-
ble solution whenever the given pose is outside of the correspond-
ing WCW and is infeasible otherwise. In other words, the given
pose is outside of the WCW if the problem admits a feasible solu-
tion and inside if it does not. Hence, this equation can be used to
estimate the WCW of a given PPCDM by discretizing the exam-
ined region. This linear feasibility problem is to serve as the cor-
ner stone of the proposed formulation of the dimensional
synthesis of PPCDMs.

4 Verifying Whether a Box Lies Inside the WCW

The formulations developed in the previous sections provide us
with the proper tools to address our main concern: the dimen-
sional synthesis of PPCDMs. We wish to determine whether a
given small box lies completely inside the WCW of a given
PPCDM for a given range of orientation angles. To this end,
notice that the problem (11) can be turned into a phase-one prob-
lem as in the following Lemma.

Lemma 1. Linear program WCW membership condition.
Consider the linear program

d	 ¼ maximize d

subject to WTk � 0m

1T
mWTk 
 d

over k and d:

(12)

Then, we have

d	 ¼
þ1 if the pose lies outside the WCW

0 otherwise

�
(13)
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Proof. First, consider the case where the MP pose lies outside the
WCW. From Eq. (11), we then have a k such that W

Tk � 0m and
1T

mWTk ¼ 1. Thus, the point (k, d)¼ (k, 1) lies in the feasible set
of problem (12), and so do the points (kk, k), where k 
 0. In this
latter case, the objective to be maximized, k, can be chosen arbi-
trarily large, so that the optimization problem (12) becomes
unbounded.

Second, we treat the case where the MP pose lies inside
the WCW. Then, from Theorem 2, there exists no k such that
W

Tk � 0m and W
Tk= 0m. Conversely, any k 2 R3 satisfying

WTk � 0m also satisfies WTk¼ 0m. Substituting these results in
Eq. (12) inevitably leads to d¼ 0, provided that there exists a fea-
sible k. Notice that (k, d)¼ (03, 0) is always a feasible point of
problem (12), so that its optimum is always 0 when the pose lies
inside the WCW. h

Consider now a box B with the lower-left and upper-right cor-

ners (/, p) and ð �/;pÞ, respectively, i.e., B ¼ fð/;pÞ 2 R�R2 :

/ � / � �/; p � p � pg. In order to find a necessary condition

for B to be outside of the WCW, we substitute Eq. (7) in problem
(12), we let p in the decision variables of the problem, while con-
fining it to B. This leads to

maximize d;

subject to 0m � ðAT � 1mpT � BT cos /� BTET sin /Þl
þ ðu cos /þ v sin /� BTETp cos /

þ BTp sin /Þl0

d � 1T
mððAT � 1mpT � BT cos /� BTET sin /Þl
þ ðu cos /þ v sin /� BTETp cos /

þ BTp sin /Þl0Þ
/ � / � �/; p � p � p

(14)

where k � lT l0

� �T
.

Considering p, the operation-point-position and /, the MP ori-
entation as optimization variables, we obtain a nonlinear optimi-
zation problem. If one were able to solve this complex problem,
then it would be possible to determine whether there is at least
one pose of B that is not inside the WCW. Conversely, if the
global optimum of (14) is d?¼ 0, then box B is completely inside
the WCW. This global optimum, however, is very difficult to
compute in general. Instead, we resort to convex relaxations,
where by we relax the nonconvex constrained of (14) into convex
ones, over the box B. To this end, let us consider the trilinear
terms of Eq. (14), i.e., p cos /l0 and p sin /l0 and define the new
variables

a � p cos / and b � p sin / (15)

Substituting these new variables in Eq. (14) reduces the degree
of the constraints to 2, while adding four equality constraints. For
the given box B, we can obtain upper and lower bonds on these
new variables a and b, as they are the multiplications of the inter-
val variables [23] p, cos /, and sin /. For a given interval of ori-
entation angles, / � / � �/, we have

c� cos / � �c and s� sin / � �s (16)

so that

a � a � a and b � b � b (17)

where a ¼ minðSaÞ; a ¼ maxðSaÞ; b ¼ minðSbÞ; b ¼ maxðSbÞ;
and Sa ¼ pc p�c pc p�c

� �
2 R2�4, Sb ¼ ps p�s ps p�s

� �
2 R2�4. Let us now separate the bilinear terms appearing in Eq.
(14) when considering l, l0, p, a, b, cos /, and sin / as optimiza-
tion variables and define the following variables:

g � diagðlÞp; q � l cos /; s � l sin /; v � al0;

w � bl0; q0 � l0 cos /; and s0 � l0 sin /
(18)

While the variables p, a, b, cos /, and sin / are bounded, the
variables l0 and l remain unbounded. For the sake of this analy-
sis, let us assume that the signs of l0 and l are known in advance
and label them

r0 � sgnðl0Þ and r � sgnðlÞ (19)

where sgn() represents the signum function. Knowing the signs of
l0 and l enables us to generate the following bounds on the newly
defined variables of Eq. (18):

diagðrÞdiagðpÞl � diagðrÞg � diagðrÞdiagðpÞl

c diagðrÞl � diagðrÞq � �cdiagðrÞl

s diagðrÞl � diagðrÞs � �sdiagðrÞl

r0l0a � r0v � r0l0a

r0l0b � r0w � r0l0b

cr0l0 � r0q0 � �cr0l0

sr0l0 � r0s0 � �sr0l0

(20)

When treating r0 and r as constants, the set formed by Eq. (20)
represents a convex polyhedron, which approximates the noncon-
vex surfaces of Eq. (18). Therefore, replacing the latter with the
former, we obtain a convex relaxation of Eq. (18). This approxi-
mation converges to the exact relationship as box B is shrunk to a
point. This approach is called the reformulation–linearization
technique, and was originally proposed by Sherali and Tuncbilek
[24]. Hence, the relaxed form of problem (14) is

maximize d;

subject to 0m �ATl� 1m1T
2 g�BTq�BTETsþ q0uþ s0v

�BTETvþBTw

d� 1T
mATl�m1T

2 g� 1T
mBTq� 1T

mBTETs

þq01T
muþ s01T

mv� 1T
mBTETvþ 1T

mBTw

diagðrÞdiagðpÞl� diagðrÞg� diagðrÞdiagðpÞl

cdiagðrÞl� diagðrÞq� �cdiagðrÞl
sdiagðrÞl� diagðrÞs� �sdiagðrÞl

r0l0a� r0v� r0l0a

r0l0b� r0w� r0l0b

cr0l0 � r0q0 � �cr0l0

sr0l0 � r0s0 � �sr0l0

r0 ¼ sgnðl0Þ;r¼ sgnðlÞ

(21)

The only nonconvex constraints in problem (21) are the latter
two equations, which yield exactly eight possible combinations of
r0 and r, namely, the solutions to

r2
0 ¼ 1 and diagðrÞ2 ¼ 12�2 (22)

Let us label these solutions r0,j and rj, j¼ 1, …, 8. As a result, the
solution to problem (21) is the maximum of the outcomes of the
eight resulting linear programs. This leads to Lemma 2.

Lemma 2. Sufficient conditions for a box to lie inside the WCW
within a given range of orientation angles.

Consider the eight distinct linear programs
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maximize dj

subject to Gjnj � 0mþ25

j ¼ 1;…; 8

(23)

where Gj �
gT 1

RT
j 0mþ24

� �
2 Rðmþ25Þ�16, Rj and vector g are

given in Appendix, and nj ¼ l0;j q0;j s0;j lT
j gT

j qT
j

�
sT

j vT
j wT

j dj�T 2 R16. Then, the given box

B ¼ fð/;pÞ 2 R�R2 : / � / � �/; p � p � pg is fully inside

the WCW if all of the problems (23), j¼ 1, …, 8, yield zero.
Proof. First, consider a box which is outside of the WCW.

According to Lemma 1 for all positions p inside this box, problem
(14) is unbounded. Since this is a maximization problem, the solu-
tion of its relaxed form in Eq. (21) provides an upper bound to its
solution, which means that problem (21) is also unbounded when-
ever the box is outside the WCW. On the other hand, the solution
to problem (14) is the maximum outcome of the eight linear
programs of problem (compact primal). Hence, at least one of
the eight distinct linear programs in Eq. (23) is unbounded
whenever the box is outside of the WCW. Second,

l0 q0 s0 lT gT qT sT vT wT d
� �T ¼ 016 is always

feasible for problem (21), which implies that whenever all posi-
tions p of the given box are inside the WCW, problem (21) yields
zero. Since the solution to problem (21) is the maximum outcome
of the eight distinct LPs of Eq. (23) and nj¼ 016, j¼ 1, …, 8 is
always feasible, then a given box is fully inside the WCW when-
ever all these LPs yield zero.

Hence, problem (23) provides a sufficient condition for a box to
lie completely inside the WCW. This condition may be used to
compute a contracted WCW, namely, a subset of the Cartesian
workspace that is guaranteed to lie inside the WCW. To illustrate
this, consider Fig. 3, which shows a sample PPCDM drawn from
an article by Stump and Kumar [12]. The parameters of the con-
sidered PPCDM are given in Table 1.

We then divide the Cartesian space into boxes that cover the
interval� 0.03 rad � / � 0.03 rad along the / axis and that have
edge of length 0.1 m along the x and y axes. We solve problem
(compact primal) for each of these boxes and keep only those for
which the maximum is 0. We obtain the contracted WCW, which is
shown in Fig. 4, along with cross sections of the exact WCW. Evi-
dently, this contracted WCW is the intersection of the constant orien-
tation WCWs (COWCWs) corresponding to all orientations within
the given range. Smaller boxes would have lead to a closer estimate
of the WCW, as the convex relaxation (20) then forms a tighter
approximation of (18) and more close to real dexterous WCW.

As they were obtained in problem (23), the inequality con-
straints can always be satisfied by choosing nj¼ 016. For the pur-
pose of later assembling them, we would like these constraints to
be feasible only if a given box is fully inside the WCW. To this
end, we compute the Lagrange dual [25] of problem (23). In the
case of linear programs, recall that either of the following cases
may occur [26]:

(1) The primal problem admits a feasible solution and has an
unbounded objective value, in which case the dual problem
is infeasible.

(2) The dual problem admits a feasible solution and has an
unbounded objective value, in which case the primal prob-
lem is infeasible.

(3) Both problems admit feasible solutions, in which case both
problems have equal optimal values.

(4) Both problems are infeasible.

Fig. 3 A PPCDM with four cables

Table 1 Geometric parameters of the assumed PPCDM

i 1 2 3 4

aT
i [0 0] [6 0] [6 5] [0 5]

bT
i [�0.5 0] [0.5 0] [0.5 0.5] [�0.5 0.5]
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Let us start by writing the Lagrangian of problem (23)

Lðxj; njÞ ¼ xT
j ðGjnjÞ � dj (24)

where xj 2þ Rmþ25 is the vector of Lagrange multipliers and Rþ
represents the non-negative real numbers. Hence, the Lagrange
dual of our problem is that of maximizing h(xj), where

hjðxjÞ ¼ infnj
ðxj; njÞ; j ¼ 1;…; 8 (25)

Considering dj ¼ eT
16nj, where e16 ¼ ½0T

15 1�T 2 R16, and sub-
stituting Eq. (24) into Eq. (25) gives

hjðxjÞ ¼ infnj
ðxT

j Gj � eT
16Þnj (26)

Clearly,

hjðxjÞ ¼
0 if GT

j xj ¼ e16

�1 otherwise

(
(27)

Hence, the dual problem of problem (23) can be stated as the fol-
lowing feasibility problem:

satisfy GT
j xj � e16 ¼ 016;

xj � 0mþ25; j ¼ 1;…; 8

over xj

(28)

The last equality constraint of this linear program implies
xj,1¼ 1, j¼ 1, …, 8, where xj,1 represents the first element of the
Lagrange multiplier xj. Substituting this in Eq. (28) eliminates xj,1

as a variable and reduces the number of the equality constraints
from 16 to 15 which yields

satisfy Rjyj þ g ¼ 015;

yj � 0mþ24; j ¼ 1;…; 8

over yj

(29)

where yj 2 Rmþ24
þ represents the vector of Lagrange multipliers

after eliminating the last equality constraint of Eq. (28).
Problem (29) is equivalent to its primal problems (23) but it is

feasible when all problems (23) are zero and infeasible when any
of those is unbounded. These correspond to cases 3. and 1.,
respectively, of the primal–dual relationships enumerated above.
We may combine all of these problems just into one in order to
verify whether a given box B is inside the WCW of a given
PPCDM for a given range of orientation angles. This can be done
by summing the objective values of these problems while consid-
ering all of their constraints together as follows:

satisfy Rjyj þ g ¼ 015; j ¼ 1;…; 8

yj � 0mþ24; j ¼ 1;…; 8

over yj; j ¼ 1;…; 8

(30)

Notice that Eq. (29) represents eight distinct linear programs
while Eq. (30) represents only one. Equation (30) may now be
regarded as a single feasibility problem of 120 equality constraints
and 8mþ 192 non-negative variables. If there is a feasible solu-
tion to this problem, then the given box B is inside the WCW.
Having this information, we can now turn our attention to the syn-
thesis problem.

5 A Formulation for the Problem of Synthesizing a

PPCDM

Problem (30) serves as a building brick to solve the dimensional
synthesis of PPCDMs. Suppose, we are interested in finding a
PPCDM geometry whose WCW contains a given box B within a

Fig. 4 Contracted WCW and cross sections of the exact WCW of the PPCDM geometry found in
Ref. [12]
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given range of orientation angles. In order to solve this problem,
we introduce the nonlinear feasibility problem

satisfy Rjyj þ g ¼ 015; j ¼ 1;…; 8

yj � 0mþ24; j ¼ 1;…; 8

a � ai � a; b � bi � b; i ¼ 1;…;m

over yj 2 Rmþ24; ai 2 R2;bi 2 R2

(31)

Here, a, a, b, and b are lower and upper bounds on the positions
of the base and MP attachments points, which would otherwise be
drawn to infinity during the solution process. If it exists, the asso-
ciated solution of problem (31) yields a PPCDM geometry whose
WCW is guaranteed to include the prescribed box B. On the other
hand, the absence of a solution to this problem does not imply that
there is no possible PPCDM geometry containing B. Hence, this
method lacks practicality, since failing to obtain a feasible solu-
tion does not provide any information regarding a good but not
perfect geometry. For this reason, we add an objective function
over the constraints, which is thought to be more attractive to the
designers. This is the main concern of Sec. 5.1.

5.1 Introducing an Objective Function. Suppose, we want
to find the geometry of a PPCDM whose WCW includes a given
box. Evidently, if we use a scaled version of this box in problem
(31) and can find a geometry of a PPCDM whose WCW allows
for a scaling factor above 1, then the original problem is solved.
Quite naturally, the idea is to consider the scaling factor as an
objective function to be maximized. If, at the optimum point this
factor is smaller than 1, then the designer is left with the best
infeasible solution.

This scaling process is depicted in Fig. 5 for a prescribed box.
The box B0 with dashed lines in blue is the scaled image of the
smaller one with solid lines in red. The scaling factor is s and the
scaling point is C.

From this figure, we can obtain the lower-left and upper-right
coordinates of the scaled box B0 as

p0 ¼ pc þ sðp� pcÞ and p0 ¼ pc þ sðp� pcÞ (32)

respectively. Vector pc and scalar s represent the position of the
scaling point C and the scaling factor, respectively. If we consider
the centroid of the box as the scaling point, then pc ¼ 1

2
ðpþ pÞ.

Introducing this objective function enables us to develop a nonlin-
ear program for the dimensional synthesis of PPCDMs.

5.2 A Nonlinear Program for the Dimensional Synthesis of
PPCDMs. We now turn the feasibility problem (31) into a non-
linear program where R0j is obtained by substituting p0 and p0 for

p and p, respectively, in the expression of Rj given in problem

(23). Moreover, to ensure that p0 and p0 remain the lower-left and

upper-right corners of the scaled box, we constrain the scaling fac-
tor s to non-negative real numbers. Hence, the corresponding non-
linear program to solve the synthesis of PPCDMs for a prescribed
box is

maximize s
subject to R0jyj þ g ¼ 015

p0 � pc � sðp� pcÞ ¼ 02

p0 � pc � sðp� pcÞ ¼ 02

a � ai � a; b � bi � b; i ¼ 1;…;m
yj � 0mþ24; j ¼ 1;…; 8
s 
 0

over yj 2 Rmþ24; ai 2 R2; bi 2 R2; s 2 R

(33)

Since the main challenge of the synthesis problem consists in
finding a PPCDM whose WCW contains a prescribed workspace
with an irregular shape, we may estimate such a shape with multi-
ple boxes. To this end, we use interval analysis [23] as a tool to
overestimate the prescribed workspace with a set of boxes. The
procedure consists in considering a large rectangle that includes
the prescribed workspace. Dividing this large rectangle along its
longer edge provides two new boxes, which are examined to ver-
ify whether they are inside or outside the prescribed workspace.
For each box, if we find it completely inside or outside of the pre-
scribed workspace, then we mark it as a certain box and put it
aside. Otherwise, the box is an uncertain box and must be divided
into smaller boxes. Again, we examine these new boxes to verify
whether they are completely inside or outside the prescribed

Fig. 5 An scaled-up box and its corresponding parameters
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workspace. The procedure ends whenever the total number of cer-
tain and uncertain boxes reaches a given maximum number of
boxes. Evidently, a larger number of boxes provides a more accu-
rate estimate of the prescribed workspace. Also, notice that it may
prove useful to divide even a rectangular prescribed WCW, into
smaller boxes, since the proposed convex relaxations are tighter
over smaller boxes, and may thus lead to a larger maximum s* of
the scaling factor, as we mentioned in Sec. 4.

In order to solve the dimensional synthesis problem for a pre-
scribed workspace composed of multiple boxes, the formulation
(33) can be developed to include several boxes. This is done by
considering the constraints corresponding to each box while
attempting to maximize a common scaling factor s with respect to
a common scaling point, which may be the centroid of the
approximated WCW. Symbolically, we obtain

maximize s

subject to Rk;jyk;j þ g ¼ 015

p0
k
� pc � sðp

k
� pcÞ ¼ 02

p0k � pc � sðpk � pcÞ ¼ 02

a � ai � a; b � bi � b; i ¼ 1;…;m

s 
 0

yk;j � 0mþ24; j ¼ 1;…; 8; k ¼ 1;…; n

over yk;j 2 Rmþ24; ai 2 R2; bi 2 R2; s 2 R

(34)

where n is the number of boxes. Notice that we must consider the
lower-left corner p0

k
and upper-right corner p0k of each scaled box

to construct the matrix Rk,j. This forms a nonlinear program with
8n(mþ 24)þ 4mþ 1 variables, 120n equality constraints, and
8n(mþ 24)þ 8mþ 1 inequality constraints. Evidently, depending
on the number of boxes required, this problem can become a
large-scale nonlinear program. Nevertheless, problem (34) pro-
vides us with a tool to find a PPCDM whose WCW includes a pre-
scribed workspace within a given range of orientations. As the
problem (34) is nonconvex, the geometry it yields depends on the
chosen initial guess. We illustrate this with a synthesis example as
follows.

Example 1. Dimensional synthesis of PPCDMs for a given box
and a given range of orientations.

Suppose, we are given a prescribed rectangular WCW with
lower-left and upper-right coordinates p ¼ 0:4 0:4½ �T and
p ¼ ½0:55 0:55�T , respectively and the range of rotation angles
is�p/3 � / � p/3. We want to find a PPCDM whose WCW
within this given range of rotation angles includes this prescribed
workspace. The assumed upper and lower bounds for the geome-
try of the mechanism are given in Table 2.

The number of cables is set to m¼ 4, which is the minimum
necessary for a WCW to exist. In order to tighten the constraints
on the variables defined in Sec. 4 and obtain a PPCDM with a
larger WCW, we divide this prescribed box into n¼ 9 similar
boxes with edges of 0.05 in the xy plane.

One of the most popular methods of finding local maxima to
problem (34) is to use the standard MATLAB solvers, which are
called through the fmincon function. Unfortunately, we found this
solver too slow when applied to the obtained formulation for the
synthesis of PPCDMs. Also, as the function cannot accept sparse
matrices, it often encounters memory errors, depending on the
available memory of the computer used and on the number of

boxes n. In order to circumvent these problems, we decided
instead to use our own specific MATLAB implementation of the
penalty successive linear programming (PSLP) algorithm [26] to
solve the problem. The algorithm is in the class of SLP algo-
rithms, which employ the l1-norm, i.e., the absolute value in the
direction-finding subproblem, which becomes a linear program
based on first-order Taylor series approximations to the objective
and constraint functions. These linear-programming subproblems
were solved using MATLAB’s linprog command where the sparsity
pattern could be exploited to improve the speed and avoid mem-
ory errors. From this linear program, PSLP algorithm converges
toward a local maximum of the principal problem, by means of a
hypercube shaped trust region approach.

In order to solve the current example, we used the parameters
of the PSLP algorithm that are proposed in Ref. [26]. The algo-
rithm was implemented in MATLAB 7.6.0 R2008a on a PC with
Intel(R) Core(TM)2 CPU 6400 @ 2.13 GHz, and 4 Gbyte RAM.
In order to find a better local optimum, the problem is solved
repeatedly for 100 initial guesses, which were generated using
uniformly distributed pseudo random numbers, produced by the
rand function in MATLAB. In order to ensure that the produced
initial guesses cover well the feasible set, we use the following
formulation to produce the initial geometry:

ai ¼ aþ diagða� aÞai

bi ¼ bþ diagðb� bÞbi; i ¼ 1;…;m
(35)

where ai 2 R2 and bi 2 R2 are random numbers produced by
rand function of MATLAB. Figure 6 shows the histogram of the
obtained results for the generated points.

As can be seen from this figure, 32% of the generated initial
guesses end with the scaling factor greater than 1, which means
that the WCWs of the corresponding PPCDMs are guaranteed to
include the prescribed box for the given range of orientation
angles. As for the remaining 68% initial guesses we cannot draw
conclusions, but the prescribed box may yet be inside of the
resulting WCW, as the proposed method always underestimates
the WCW.

One of the robot geometries obtained by applying the PSLP
algorithm to problem (34) is shown in Fig. 7. This PPCDM corre-
sponds to the best scaling factor obtained, namely s*¼ 2.8273.

The corresponding scaled boxes and WCW cross sections are
depicted in Fig. 8. As can be seen, the scaled boxes and, conse-
quently, the prescribed boxes are entirely inside the WCW of the
mechanism obtained. The exact initial guess and final optimum
are reported in Tables 3 and 4, respectively. For this example, it
took 42 min to obtain the final solution by using the desktop com-
puter mentioned at the beginning of this example. Figure 9 shows
the evolution of the scaling factor during the solution procedure.
Notice that the initial decrease in s is a result of the PSLP algo-
rithm first seeking to satisfy the constraints at the expense of
objective.

Example 2. Synthesizing a PPCDM for a nonrectangular pre-
scribed workspace.

Suppose, we want to find the geometry of a PPCDM whose
WCW for the given range of orientations, �p/6 � / � p/6,
includes the elliptic desired workspace Ed represented by
(x� 3.5)2/1.62þ (y� 3)2/1.12 � 1. We approximate this pre-
scribed WCW by means of interval analysis, as explained in the
second paragraph of Sec. 5.2. The resulting approximation is
depicted in Fig. 10.

In order to ensure that the multiple boxes will cover entirely the
prescribed WCW, we overestimate the desired WCW with Ee rep-
resented by (x� 3.5)2/1.92þ (y� 3)2/1.332 � 1 whose corre-
sponding certain boxes inside cover Ed . For this estimation, we
have n¼ 32 prescribed boxes and the selected lower and upper
bounds for the base and moving platform anchor points are shown
in Table 5.

Table 2 Upper and lower bounds on the geometry of the
PPCDM

aT aT bT b
T

[0 0] [1 1] [�0.2� 0.2] [0.2 0.2]
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The number of cables is set to m¼ 5 and we solve this problem
using the PSLP algorithm for 50 initial uniformly distributed ran-
dom points.

The best solution obtained using these initial guesses is
s*¼ 1.3832 and its corresponding geometry and COWCW for the
angles / =� p/6, 0, p/6 are depicted in Fig. 11. Table 6 shows the

coordinates of the attachment and anchor points corresponding to
the initial guesses and its resulting solution.

As can be seen from this figure, the scaled boxes and
consequently the prescribed ellipse Ed are all included inside the
WCW of the obtained PPCDM for the provided range of
orientations.

Fig. 6 Distribution of the randomly generated initial points with the obtained scaling factors

Fig. 7 One of the obtained PPCDMs
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Fig. 8 Scaled boxes and COWCWs for the orientations / = 2 p=3, 2 p=9, p=9, p=3

Table 3 Initial geometry

i aT
i;0 bT

i;0

1 [0.4972 0.1391] [0.1813� 0.1943]
2 [0.5965 0.5021] [�0.0612� 0.1840]
3 [0.1940 0.2865] [�0.1971 0.1408]
4 [0.3583 0.2099] [0.1447 0.0457]

Table 4 Final geometry

i aT
i;f bT

i;f

1 [0.2627 0.0000] [0.0000 0.0000]
2 [1.0000 0.4566] [0.0399� 0.1748]
3 [1.0000 0.4566] [�0.0399 0.1748]
4 [0.2627 1.0000] [0.0000 0.0000]

Fig. 9 Evolution of scaling factor
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6 Discussion

Splitting the given interval of orientation angles into several
subintervals and providing tighter relaxations on trigonometric
and trilinear terms [27,28] may provide better approximations of
the WCW. Applying the procedures presented in this paper to the

wrench feasible concept may lead us to the designs of PPCDMs
whose wrench-feasible workspaces include a prescribed work-
space. This is more interesting from a practical point of view, as
tensions in cables are limited to maximum possible tensions due
to their limited strength. Finding the global optimum for the
developed optimization problems will lead to the best possible
designs of PPCDMs. Applying the branch and bound method [25]
may lead to such global optima.

In this paper, we gave priority to the point-position rather than
the orientation during the development of the formulation for the
dimensional synthesis of PPCDMs. However, depending on the
application, we may require a PPCDM that is capable of operating
in wide ranges of orientations. Introducing a multi-objective func-
tion including scaling factors for both the point-position and the
orientation seems to be a good method of turning the obtained fea-
sibility problem into a nonlinear program.

Moreover, the extension of the proposed formulation to spatial
parallel cable-driven mechanisms may provide a good tool for the
synthesis of such devices. Even better, our intuition is that the
same approach could be applied to the dimensional synthesis of
conventional mechanisms. All these ideas will be the topics of fur-
ther reports.

7 Conclusions

A method for the dimensional synthesis of PPCDMs was pro-
posed. To achieve this goal, an optimization problem was first
introduced to verify whether a given pose is inside the WCW of a

Fig. 10 Approximated desired workspace with multiple boxes

Table 5 Upper and lower bounds on the geometry of the
PPCDM for the prescribed WCW

aT aT bT b
T

[0 0] [6 5] [�0.5� 0.5] [0.5 0.5]

Fig. 11 The obtained PPCDM and its corresponding COWCW

Table 6 Initial and final geometries

i aT
i;0 bT

i;0 i aT
i;f bT

i;f

1 [0.4884 0.3551] [0.1656 0.2700] 1 [1.6382 0.0033] [0.3774� 0.1935]
2 [2.9599 2.2603] [0.6799 0.5078] 2 [5.9999 4.9995] [0.0000 0.0000]
3 [1.7818 1.3436] [0.0239 0.8245] 3 [5.9999 0.1784] [0.0000 0.0000]
4 [0.7605 0.4252] [0.3723 0.3152] 4 [1.6382 0.0033] [�0.3774 0.1935]
5 [0.9550 3.8578] [0.7498 0.1322] 5 [0.2906 4.7378] [0.0000 0.0000]
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given PPCDM. We then relaxed this problem over a box in the
workspace, which leads us to a sufficient condition for this box to
be inside the WCW of a given PPCDM for a given range of orien-
tations. These mathematical conditions allowed the formulation of
a nonlinear program in which the scale of the prescribed work-
space is maximized while being constrained inside the PPCDM
WCW. The robot geometry being included in the decision varia-
bles of the nonlinear program, this optimization problem is a use-
ful tool sought for the dimensional synthesis of PPCDMs. The

value of the scaling factor at the optimum indicates whether the
prescribed box is inside the WCW for the given range of orienta-
tion angles. Solving the problem for different initial guesses may
provide us a larger scaling factor, and thus a larger WCW.

Appendix: Expressions of Matrix Rj and Vector g

The vector g 2 R15 and the matrix Rj 2 R15�ðmþ24Þ appearing
in Eq. (23) are

g � 0 �1T
mu �1T

mv �1T
mAT m1T

2 1T
mBT 1T

mBTET 1T
mBTET �1T

mBT
� �T 2 R15

Rj �

0m�1 �u �v �AT 1m1T
2 BT BTET BTET �BT

02�1 02�1 02�1 diagðrjÞdiagðpÞ �diagðrjÞ 02�2 02�2 02�2 02�2

02�1 02�1 02�1 �diagðrjÞdiagðpÞ diagðrjÞ 02�2 02�2 02�2 02�2

02�1 02�1 02�1 cdiagðrjÞ 02�2 �diagðrjÞ 02�2 02�2 02�2

02�1 02�1 02�1 ��cdiagðrjÞ 02�2 diagðrjÞ 02�2 02�2 02�2

02�1 02�1 02�1 sdiagðrjÞ 02�2 02�2 �diagðrjÞ 02�2 02�2

02�1 02�1 02�1 ��sdiagðrjÞ 02�2 02�2 diagðrjÞ 02�2 02�2

r0;ja 02�1 02�1 02�2 02�2 02�2 02�2 �r0;j12�2 02�2

�r0;ja 02�1 02�1 02�2 02�2 02�2 02�2 r0;j12�2 02�2

r0;jb 02�1 02�1 02�2 02�2 02�2 02�2 02�2 �r0;j12�2

�r0;jb 02�1 02�1 02�2 02�2 02�2 02�2 02�2 r0;j12�2

r0;j �r0;j 0 01�2 01�2 01�2 01�2 01�2 01�2

�r0;j�c r0;j 0 01�2 01�2 01�2 01�2 01�2 01�2

r0;j 0 �r0;j 01�2 01�2 01�2 01�2 01�2 01�2

�r0;j�s 0 r0;j 01�2 01�2 01�2 01�2 01�2 01�2

2
66666666666666666666666666666666666666664

3
77777777777777777777777777777777777777775

T

2 R15�mþ24
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Springer, Berlin, pp. 311–323.

[11] Pham, C. B., Yeo, S. H., Yang, G., Kurbanhusen, M. S., and Chen, I.-M., 2006,
“Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms,”
Mech. Mach. Theory, 41, pp. 53–69.

[12] Stump, E., and Kumar, V., 2006, “Workspaces of Cable-Actuated Parallel
Manipulators,” ASME J. Mech. Des., 128(1), pp. 159–167.

[13] Fattah, A., and Agrawal, S., 2005, “On the Design of Cable-
Suspended Planar Parallel Robots,” ASME J. Mech. Des., 127(5), pp.
1021–1028.

[14] Riechel, A. T., and Ebert-Uphoff, I., 2004, “Force-Feasible Workspace
Analysis for Underconstrained, Point-Mass Cable Robots,” IEEE International
Conference on Robotics & Automation, New Orleans, LA, USA, pp.
4956–4962.

[15] McColl, D., and Notash, L., 2009, “Extension of Antipodal Theorem to Work-
space Analysis of Planar Wire-Actuated Manipulators,” Proceedings of the 5th
IFToMM International Workshop, pp. 9–16.

[16] Gouttefarde, M., Daney, D., and Merlet, J. P., 2011, “Interval-Analysis-Based
Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven
Robots,” IEEE Trans. Rob., 27(1), pp. 1–13.

[17] Hay, A. M., and Snyman, J. A., 2005, “Optimization of a Planar Tendon-Driven
Parallel Manipulator for a Maximal Dextrous Workspace,” Eng. Optimiz.,
37(3), pp. 217–236.

[18] Kolev, K., and Cremers, D., 2009, “Continuous Ratio Optimization via Convex
Relaxation With Applications to Multiview 3D Reconstruction,” IEEE

031011-12 / Vol. 4, AUGUST 2012 Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

www.skycam.tv
http://dx.doi.org/10.1109/TRO.2009.2012339
http://dx.doi.org/10.1109/TRO.2009.2024792
http://dx.doi.org/10.1109/ICAR.1991.240402
http://dx.doi.org/10.1016/j.mechmachtheory.2005.04.003
http://dx.doi.org/10.1115/1.2121741
http://dx.doi.org/10.1115/1.1903001
http://dx.doi.org/10.1109/TRO.2010.2090064
http://dx.doi.org/10.1080/03052150512331328303


Computer Society Conference on Computer Vision and Pattern Recognition,
Miami, FL, USA, pp. 1858–1864.

[19] Cafieri, S., Lee, J., and Liberti, L., 2010, “On Convex Relaxations of Quadrilin-
ear Terms,” J. Global Optim., 47(4), pp. 661–685.

[20] Porta, J., Rose, L., and Thomas, F., 2009, “A Linear Relaxation Technique for the
Position Analysis of Multiloop Linkages,” IEEE Trans. Rob., 25(2), pp. 225–239.

[21] Graham, T., Roberts, R., and Lippitt, T., 1998, “On the Inverse Kinematics,
Statics, and Fault Tolerance of Cable-Suspended Robots,” J. Rob. Syst., 15(10),
pp. 581–597.

[22] Dantzig, G., and Thapa, M., 2003, Linear Programming: Theory and Exten-
sions, Springer, New York.

[23] Moore, R. E., Kearfott, R. B., and Cloud, M. J., 2009, Introduction to Interval
Analysis, SIAM, Philadelphia, PA, USA.

[24] Sherali, H., and Tuncbilek, C. H., 1995, “A Reformulation-Convexification
Approach for Solving Nonconvex Quadratic Programming Problems,” J. Global
Optim., 7, pp. 1–31.

[25] Boyd, S., and Vandenberghe, L., 2004, Convex Optimization, Cambridge Uni-
versity Press, Cambridge, UK.

[26] Bazarra, M., Sherali, H., and Shetty, C., 2006, Nonlinear Programming, Wiley
Interscience, Hoboken, NJ, USA.

[27] McCormick, G. P., 1976, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I: Convex Underestimating Problems,” Math. Pro-
gram., 10, pp. 147–175.

[28] Meyer, C. A., and Floudas, C. A., 2004, “Trilinear Monomials With Mixed
Sign Domains: Facets of the Convex and Concave Envelopes,” J. Global
Optim., 29, pp. 125–155.

Journal of Mechanisms and Robotics AUGUST 2012, Vol. 4 / 031011-13

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1007/s10898-009-9484-1
http://dx.doi.org/10.1109/TRO.2008.2012337
http://dx.doi.org/10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
http://dx.doi.org/10.1007/BF01100203
http://dx.doi.org/10.1007/BF01100203
http://dx.doi.org/10.1007/BF01580665
http://dx.doi.org/10.1007/BF01580665
http://dx.doi.org/10.1023/B:JOGO.0000042112.72379.e6
http://dx.doi.org/10.1023/B:JOGO.0000042112.72379.e6

	s1
	F1
	l
	s2
	E1
	E2
	E3
	F2
	E4
	E5
	E6
	E7
	E8
	s2
	s3
	E9
	E10
	E11
	s4
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	E23
	F3
	T1
	E24
	E25
	E26
	E27
	E28
	E29
	E30
	s5
	F4
	E31
	s5A
	E32
	s5B
	E33
	F5
	E34
	E35
	T2
	F6
	F7
	F8
	T3
	T4
	F9
	s6
	s7
	F10
	T5
	F11
	T6
	s8
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28

